
Multi-Robot Inverse Reinforcement Learning under
Occlusion with Interactions

Kenneth Bogert
Computer Science Department, University of

Georgia
kbogert@uga.edu

Prashant Doshi
Computer Science Department, University of

Georgia
pdoshi@cs.uga.edu

ABSTRACT
We consider the problem of learning the behavior of multiple mo-
bile robots executing fixed trajectories in a common space and pos-
sibly interacting with each other in their execution. The mobile
robots are observed by a subject robot from a vantage point from
which it can observe a portion of their trajectories only. This prob-
lem exhibits wide-ranging applications and the specific application
we consider here is that of the subject robot who desires to pene-
trate a simple perimeter patrol by two interacting robots and reach
a goal location. Our approach extends single-agent inverse rein-
forcement learning (IRL) to a multi-robot setting and partial ob-
servability, and models the interaction between the mobile robots
as equilibrium behavior. IRL provides weights over the features
of the robots’ reward functions, thereby allowing us to learn their
preferences. Subsequently, we derive a Markov decision process
based policy for each other robot. We extend a predominant IRL
technique and empirically evaluate its performance in our applica-
tion setting. We show that our approach in the application setting
results in significant improvement in the subject’s ability to predict
the patroller positions at different points in time with a correspond-
ing increase in its successful penetration rate.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems
; I.2.9 [Robotics]: Workcell organization and planning

General Terms
Algorithms, Performance

Keywords
inverse reinforcement, machine learning, multi-robot systems, pa-
trolling

1. INTRODUCTION
We consider the problem of learning the behavior of multiple

mobile robots executing fixed trajectories in a common space and
possibly interacting with each other in their executions. A sub-
ject robot who observes the mobile robots from a vantage point
from which a significant portion of their trajectories is occluded,
is tasked with learning their behaviors. This problem has wide-
ranging applications in robotics including forming an ad hoc team

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and
Michael Huhns (eds.), Proceedings of the 13th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS
2014), May 5-9, 2014, Paris, France.
Copyright © 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: An example run of the subject robot in green reaching
the goal state in the presence of two patrollers executing simple
cyclic trajectories, shown in dark and light gray.

by coordinating with the other robots, executing a follow-the-leader
behavior, and penetrating a simple perimeter patrol of two interact-
ing robots in order to reach a goal location.

Inverse reinforcement learning (IRL) [11] investigates ways by
which a learner may approximate the preferences of an expert by
observing the experts’ actions over time. Usually, the expert is as-
sumed to be optimizing its actions using a Markov decision pro-
cess (MDP), whose parameters except for the reward function are
known to the learner. The reward function is commonly modeled
as a linear combination of feature functions. This reduces the IRL
problem to that of finding the weights in the combination, which
completes the MDP, such that the optimal policy from the MDP
matches the observations.

Consequently, IRL methods provide an approach to learn the be-
haviors of the mobile robots from observations. However, previous
applications of IRL techniques in robotics such as in learning from
demonstrations [4] and in other areas [1] have been in situations
where the results from our physical runs reflect those from simu-
lations as the. Our problem limits the subject robot to observing
a portion of the state space that is occupied by multiple mobile
robots, whose trajectories may be disturbed due to interactions.

In this paper, we present approaches that extend IRL to simul-
taneously learn the behavior of multiple robots in our problem
context. Specifically, we modify a predominant IRL method – a
maximum entropy-based approach [17] – to the context of obtain-
ing observations over a portion of the state space only and where
the behavior of the other robots is disturbed due to interactions.
While we could model the joint state of the robots in a single large

173

MDP taking interactions into account in the transition function, the
joint MDP becomes both prohibitively large and leads to a partially
observable state space when both robots are not observable at the
same time. Consequently, we model each robot separately except
for when they interact. At these points of interaction, we model the
multi-robots playing a game with the interaction behavior being
one of possibly multiple Nash equilibria of the game.

We evaluate our approach in the application setting of two mo-
bile robots executing simple cyclic trajectories for perimeter pa-
trolling with the subject robot observing them from a point that
affords partial observability of their trajectories only. The subject
robot learns a set of policies that best matches the observed mo-
tion of the patrollers. It then simulates these policies forward in
time, starting at the point of the recent observations while account-
ing for the interactions. This facilitates an informed prediction of
the future positions of each patroller in space and time in order to
plan a path through the space that avoids detection. We evaluate
our algorithms by experimenting with both simulated and physical
robots. Our results demonstrate significantly more accurate pre-
dictions of future patroller positions and a corresponding increase
in the rate of successful penetrations across various degrees of ob-
servability, in comparison to using standard IRL without modeling
interactions. We show an example run in Fig. 1 where the sub-
ject robot reaches the goal without being detected by the two pa-
trollers. In some cases, the subject robot performs as well as the
upper bound in which it has perfect knowledge of the patrollers’
policies and how they interact.

2. BACKGROUND ON INVERSE
REINFORCEMENT LEARNING

Inverse reinforcement learning [11] seeks to find the most likely
policy, πI , that an expert, I , is executing. IRL methods usually
assume the presence of a single expert, that the expert has solved
a MDP, and that this MDP excluding the reward function is known
to the learner.

Because the space of possible reward functions is very large, it is
common to express the function as a linear combination of feature
functions. It is defined as a function, φ: S ×AI → R, which maps
a state from the set of states, S, and an action from the set of I’s
actions, AI , to a real number. It is based on observable aspects of
the environment, and in general, all features must be observable to
both the expert and the learner. The expert’s reward function is then
approximated by a linear combination of K > 0 feature functions,
RI(s, a) =

∑
K

θk · φk(s, a), where θk are the weights.

In order to evaluate the quality of the learned policy, many IRL
algorithms make use of feature expectations. For a learned policy,
πI , the kth feature expectation is,

∑
s

µπI (s)× φk(s, πI(s)). Here,

µπI (s) is the number of times state, s, is visited on using the policy,
πI , and may be computed using dynamic programming:

µπI (s) = µ0
πI
(s) + γ

∑
s′

T (s, πI(s), s
′)µπI (s

′) (1)

where, µ0
πI

is initialized to 0 for all states, 0 < γ < 1 is the
discount factor, T : S×A×S′ → [0, 1] is the transition function.

These feature expectations are compared with those of the
expert’s from its observed trajectory, which are obtained as,∑
s,a∈traj

φk(s, a). Let ΠI be the space of expert’s policies whose

size is |AI ||S|. IRL seeks to learn a policy, π∗
I ∈ ΠI , which mini-

mizes the difference between the two expectations. More observa-
tions of the expert improve the estimate of its feature expectations.

2.1 Maximum Entropy
Often, multiple policies may match the observed feature expecta-

tions equally well. In order to resolve this ambiguity, the principle
of maximum entropy is useful. It allows maintaining a distribution
over the policies constrained to match the observed feature expec-
tations while not being committed to any policy except as required
by the constraints.

We may formulate the problem as one of finding a distribution
over deterministic policies, Pr(ΠI), which has the maximum en-
tropy while matching the feature expectations from each policy
with those observed from the expert’s trajectory. Mathematically,
we define the problem as a nonlinear optimization:

max
∆

(
−

∑
πI∈ΠI

Pr(πI) logPr(πI)

)

subject to∑
πI∈ΠI

Pr(πI) = 1∑
πI∈ΠI

Pr(πI)
∑
s∈S

µπI (s)φk(s, πI(s)) = φ̂k ∀k

(2)

Here, ∆ is the space of all distributions, Pr(ΠI); φ̂k is the expec-
tation over the kth feature from observations of the expert; and the
visitation frequency, µπI , is computed as in Eq. 1.

In order to solve this nonlinear program, we may apply the La-
grangian relaxation technique bringing both the constraints into the
objective function and solving the dual Lagrangian. Let the La-
grangian function be L(Pr, η, θ) where η and θ are the Lagrange
multipliers. We obtain its partial derivative w.r.t. Pr(πI) and θ as:

∂L
∂Pr(πI)

=
∑
s

µπI (s)
∑
k

θkφk(s, πI(s))− logPr(πI)+η−1

(3)

∂L
∂θ

=
∑

πI∈ΠI

Pr(πI)
∑
k

∑
s

µπI (s)φk(s, πI(s))− φ̂k (4)

The objective function in (2) may have its optimal solution as
a saddle point in L. However, many numerical optimization tech-
niques such as hill climbing and gradient descent are instead de-
signed to find local minima or maxima. Subsequently, we modify
the objective function of the relaxed Lagrangian so that the optimal
solution(s) reside at local or global maxima or minima. The revised

objective function is
√

∂L
∂Pr(πI)

2
+ ∂L

∂θ

2.

2.2 Approximating Maximum Entropy
Dvijotham and Todorov [9] suggests an approach for approxi-

mating Eq. 3 that avoids computing η. Notice that the term, µπI (s)∑
k

θk ×φk(s, πI(s)), in Eq. 3 represents the action value of per-

forming I’s policy, πI , from state, s, which is commonly denoted
as QI(s, πI(s)). We desire to learn an MDP whose optimal so-
lution prescribes actions that matches the observed actions of the
expert. Subsequently, we may approximate Eq. 3 with:

∂L
∂Pr(πI)

≈
∑

(s,a)∈traj

QπI (s, a)− VπI (s) (5)

where, QπI (s, a) denotes the action value of performing the ob-
served action, a, from state, s, and following πI thereafter; and
VπI (s) is the optimal value of (candidate) I’s policy, πI . Note that
QπI (s, a)−VπI (s) = 0 when a = πI(s). In other words, the value
difference is 0 when the action from the policy under consideration

174

matches the observed action. Then, we have found a reward func-
tion that leads to the MDP whose solution matches observations.
However, it is possible that some other action could also result in a
Q-value that is the same as the optimal value. Therefore, the above
substitution is an approximation. If the observed action at s fails to
match the policy, the difference is negative and accumulates over
the trajectory.

3. IRL FOR MULTIPLE MOBILE ROBOTS
As we mentioned previously, this paper focuses on the prob-

lem of learning the behavior of N ≥ 2 mobile robots executing
fixed trajectories in a common space and possibly interacting with
each other in their execution. Consequently, the maximum entropy
based method outlined in Section 2 must be generalized in multiple
ways. While the mobile robots will take on the role of being the
experts in IRL, a key generalization is to learn the reward functions
of multiple experts who could be interacting.

A straightforward approach would be to model the other robots
jointly in a single MDP whose joint state includes the local state
of each robot and a variable to allow for distinguished states where
the interaction occurs. The action space is the Cartesian product
of the set of actions of each robot, which includes the actions each
robot may perform during interactions. The transition function of
this MDP gives the next joint state due to the robots performing
the joint action from a current state. The reward function gives the
preferences of performing each joint action from each joint state.

This approach suffers from two significant limitations, which
precludes its usage: (i) The joint state space may get very large
and the transition function models the effect of performing all ac-
tions from each state including the effects of performing actions
related to the interaction from non-interacting states as well. This
not only increases the size of the MDP but its solution must con-
sider the effect of performing each joint action from each state as
well, which significantly increases the time to solve it optimally.
Note that several potential MDPs are solved during IRL, and there-
fore, the learning may be slowed significantly. (ii) Traditional IRL
is targeted toward environments exhibiting complete observability
of the expert’s actions. As a result, all robots must be visible at
all times to the learner in order to observe the joint action from the
joint state. However, this may not be possible in the context of mo-
bile robots executing their own trajectories parts of which may be
occluded. Indeed, this complicates the learning procedure signifi-
cantly, and as shown by Choi and Kim [8], the model becomes a
POMDP.

3.1 IRL for Robots with Occlusion
Given the limitations above, we pursue an alternative approach

of ascribing a smaller, individual MDP to each mobile robot. Be-
haviors at the interacting states are modeled separately and override
those prescribed by the individual MDPs at the interacting states.
Although we are solving more MDPs, each is significantly smaller
than the joint in its state and action spaces, and as we show in our
experiments solving takes much less time. Subsequently, a non-
linear program that combines the one in (2) for each mobile robot
is used for learning the policies of the robots:

max
∆1,...,∆N

−
N∑

n=1

∑
πn∈Πn

Pr(πn) logPr(πn)

subject to

(6)

∑
π1∈Π1

Pr(π1) = 1 , . . . ,
∑

πN∈ΠN

Pr(πN) = 1∑
π1∈Π1

Pr(π1)
∑
s∈S

µπ1(s)φk(s, π1(s)) = φ̂k,1 ∀k

... ∑
πN∈ΠN

Pr(πN)
∑
s∈S

µπN (s)φk(s, πN (s)) = φ̂k,N ∀k

(7)

Another complication in our problem that is not usually present
in previous applications of IRL such as learning from demonstra-
tions and others, is that significant portions of the state space of
the mobile robots may be occluded from the subject robot. Let
Obs(S) ⊆ S be the subset of all states of each robot that are
observable. Policy πn is then obtained by limiting the optimiza-
tion over the observable state space only because we are unable to
compute the observed feature expectations for the occluded states.
While feature expectations from the observed states could be pro-
jected to the occluded states, this approach may not account for any
disturbances in the trajectory. To account for the partial observabil-
ity, we revise Eq. 4 as:

∂L
∂θ

=
∑

πn∈Πn

Pr(πn)
∑
k

∑
s∈Obs(S)

µπn(s)φk(s, πn(s))− φ̂k

(8)
In addition, we sum over the partial subset of each of the other
robot’s trajectory that is observable, in Eq. 5. The above revisions
to the equations have the effect of under-constraining the optimiza-
tion problem compared to the original.

While Broyden-Flecher-Goldfarb-Shanno (BFGS) [6] – a fast
gradient descent technique – is the method of choice for solving
the relaxed Lagrangian for the maximum entropy method, it may
not be utilized here. This is because the gradient is not defined
for the unobservable states (Eq. 8) due to which BFGS may fail to
learn the Lagrange multipliers for those feature functions that apply
in the occluded states only. A method that does not use the gradi-
ent function such as Nelder-Mead’s simplex technique [10] is more
suitable when some states are occluded.

3.2 Modeling the Interaction
At certain states where the robots interact, their behavior requires

coordination. For example, consider the application domain of two
mobile robots, I and J , executing a simple perimeter patrol. If the
common space is narrow as in a corridor, the robots must coordi-
nate their actions when they are in close proximity to minimize the
disturbance to their patrols.

Sidestep Turn left Turn right Turn around Stop
Sidestep 5,5 5,1 5,1 5,5 5,5
Turn left 1,5 1,1 1,1 1,2 1,0

Turn right 1,5 1,1 1,1 1,2 1,0
Turn around 5,5 2,1 2,1 2,2 2,0

Stop 5,5 0,1 0,1 0,2 0,0

Table 1: An example game that models the interaction between two
patrolling robots (row player is I , column player is J) that approach
each other from opposite directions in a corridor. The Nash equilib-
ria of the game (shown in bold) are the possible ways of resolving this
conflict. Values are a function of the agents’ effort and outcome of the
interaction.

At interaction states such as the one in Fig. 2, the subject robot,
L, models the robots as playing a game. The strategies of this game

175

correspond to the actions in each robot’s MDP. The solution of a
game is a Nash equilibrium, which is a profile of strategies with the
property that no player has an incentive to deviate from its strategy
given the other’s strategy in the profile. A game may admit multi-
ple profiles in equilibrium. The robots adopt a profile of strategies
in equilibrium as a way to resolve any conflicts during the interac-
tion. If the interaction is observed, robot L constructs an example
game whose sole equilibrium is the observed one. On the other
hand, if the interaction behavior is occluded, robot L constructs a
game whose equilibria include all the possible profiles of strategies
that resolve the conflict. In Table 1, we show an example game
in the context of the patrolling application domain, which has five
profiles in equilibria each representing a possible way of resolving
the difficulty in moving when the patrolling robots are approaching
each other from opposite directions.

Figure 2: (a) Patrollers I and J spot each other approaching thereby
entering an interaction state. (b) The two robots begin executing joint
actions in equilibrium. (c) Here, I stops while J sidesteps. (d) In-
teraction behavior is completed. The two robots continue with their
trajectories as guided by their policies.

In order to accurately learn the policy of each robot, the interac-
tion behavior as prescribed by an equilibrium must be considered
during IRL. Otherwise, because the interactions affect the observed
behavior, the policy learned will likely be different from the actual
policy of the observed mobile robot. Interactions impact the state-
visitation frequencies of the robots. Let, σe = 〈σ1, . . . , σN 〉 be an
equilibrium with σn, n = 1, . . . , N denoting each robot’s actions
that are in equilibrium, respectively.

We may decompose Eq. 1 into a piecewise function for each
other robot, n = 1, . . . , N , as,

µπn (s) =

µ0
πn

(s) + γ
∑
s′

T (s, πn(s), s′)µπn (s
′) if s is not an

interacting state
µ0
πn

(s) + γ
∑
s′

T (s, σn(s), s′)µπn (s
′) if s is an

interacting state
(9)

We may then replace µπI in Eqs. 3 and 4 with the above equation.
Notice that the new state-visitation frequency computation re-

quires the subject robot to ascertain whether a particular state is
an interacting state. This is possible if the entire state space is ob-
servable to L. On the other hand, if a portion of the state space is
occluded from L, it may not observe when and where interaction(s)
between the robots occurs. Consequently, the learned policy may
not be accurate and the above principled approach of Eq. 9 is not
robust in the context of occlusion of the state space.

Instead, we empirically compute the state-visitation frequencies
by projecting in the full environment the current policy under con-
sideration for each robot for a large number of time steps overlaid
with the equilibrium behavior, σe, when the robots interact. The
state visitations in the projections are accumulated to obtain the
approximate state-visitation frequency, denoted as µe

πn
. Our next

step is to utilize this empirical function in the constraints of the
nonlinear optimization of (7):∑

s∈Obs(S)

µe
πn

(s)φk(s, πn(s)) = φ̂k ∀k (10)

3.3 Multiple Equilibria
While the interaction game may admit multiple equilibria, the

robots pick one to resolve any conflict during each interaction. If
the interaction is not observed, how should the subject robot, L,
model which equilibrium behavior was used?

Our approach is to retain each equilibrium behavior and weight
its potential based on how close each behavior gets the projec-
tions to the observations. If µe

πn
is the empirical state-visitation

frequency when equilibrium, σe, is used at the interaction and
πn elsewhere, and µ̂πn is the state-visitation frequencies from the
observed trajectories, then L weights the potential of this inter-
action behavior as an inverse function of the difference, ωe =

e
−

∑
s∈Obs(S)

|µe
πn

(s)−µ̂πn (s)|
. We generate a weight for each equi-

librium behavior, and the vector of weights is then normalized to
sum to 1.

Finally, the modified constraint of (10) is substituted with a
weighted convex combination accounting for each equilibrium-
based interaction. Let E be the number of equilibrium behaviors.
Then, the constraint becomes:

E∑
i=1

ωei ·
∑

s∈Obs(S)

µei
πn

(s)φk(s, πn(s)) = φ̂k ∀k (11)

During the IRL, as more observations are made, the weights are
recomputed at each iteration. Initially the weights may be nearly
uniform because the learned policies do not correctly model the
observed behavior for the most part. Eventually, as the policies
improve, projecting the true interaction behavior begins to matter
and its corresponding weight increases compared to the others.

4. DOMAIN: PENETRATING A SIMPLE
MULTI-ROBOT PATROL

We apply the approach described in Section 3 to the problem
domain of two mobile robots, I and J , each executing cyclical pa-
trolling trajectories in a common space independently for the most
parts unless they approach each other from opposite directions. In
order to continue moving past each other as smoothly as possible,
the two robots must coordinate their actions. These events real-
ize the interactions described in section 3.2 during which the joint
behavior must be modeled. A subject robot, L, starting at a point
in the space with a limited field of view – it can observe a por-
tion of the patrolling robots’ trajectories only – is tasked with au-
tonomously reaching a goal state via a path that overlaps with the
patrollers’ trajectory, without being detected by any patroller. We
show an example scenario in Fig. 3.

Each patroller is modeled as acting according to the output of its
own MDP. The states of these MDPs are the cell decompositions of
the common space, 〈x, y〉, along with the discretized orientation of
the robot, ψ, and the actions of the patroller allow it to move for-
ward one cell, stop, turn right or left 90◦ at its place or turn around
180◦ at its place. The transition function models the probability of
any action failing at 33%. Subsequently, an unintended action is
randomly selected for execution. Each patroller’s reward function
is modeled as a weighted linear combination of feature functions,
as we mentioned in Section 2. As these pertain to the specific map
used, we describe these in detail in the next section.

176

Figure 3: Trajectories of patrollers, I and J , in the hallways
of a building. Subject robot L is tasked with reaching the goal
state at X undetected from its starting position.

The subject robot shares the same state and action spaces as a
patroller with one addition. To facilitate an accurate reward func-
tion, its state includes an additional variable, t, which is a time
dimension discretized into steps as shown in Fig 4. The reward
function of the subject robot assigns a positive number to a goal
state regardless of the time step. However, modeling detections are
challenging as the patrollers are mobile, which would make the re-
ward function non-stationary. We may address this by considering
the patrollers to be a part of the dynamic environment, and waiting
until the patrollers have been observed and their policies learned.
We may then jointly project their trajectories forward in time and
space thereby indicating the location of each patroller at each time
step. States at which the location of L is within visible distance of
any patroller with both at the same time step are given a negative
number. Each complete MDP is solved using the standard approach
of value iteration [13].

Figure 4: State space of the subject L (colored cells and time steps)
including example predicted locations of I and J . The black cell is the
goal and the white cells denote spaces that may not be traversed. I and
J use a smaller physical state space (dark cells only) and without time.

An important open question so far is when the subject robot
should start moving toward the goal? In order to answer this, we
outline the algorithm utilized by the robot: As the patrollers may
begin at any point in their trajectories, robot L stays at its starting
location for a predefined time limit collecting observations of each
patroller. Here, we assume that L is able to distinguish between the
two patrollers and associate the observations with the patroller gen-
erating them. At the end of this phase, the gathered observations
are utilized for learning each patroller’s reward function using our
approach for IRL under occlusion and with interaction modeling.

The MDPs of each patroller are solved and its policy obtained.
Robot L then formulates its own MDP using the policies of the

patrollers to project both their trajectories forward simultaneously
from their most recent observations. The projections are utilized
in formulating L’s reward function, which completes its MDP. In
Fig. 4, we show the state space of this MDP in the example map.
States corresponding to the starting location ofL at which the value
as given by the value function is positive is indicative of finding a
path from that state that leads to the goal without being detected.
Within the set of such states, we focus on those whose time step
remains in the future as the time elapses. L must simply wait un-
til the time corresponding to the time steps in one of those states
with the largest positive value has elapsed in order to start moving.
Of course, none of the states may obtain a positive value. Subse-
quently, the subject robot continues to observe and utilizes its new
observations to iterate over the procedure.

5. EXPERIMENTS
To better understand and evaluate our approach’s performance

in the application domain, we performed several experiments both
in simulation and on physical robots. We utilize two distinct envi-
ronments, one considerably larger than the other, in the simulations
and perform our experiments with the physical robots in the smaller
environment.

Figure 5: An environment and the corresponding MDP state space
for our experiments. The two goal cells are colored black and the white
cells denote occupied locations. L’s starting location is shown while I

and J move in a cycle between the two goal cells.

Our first environment is a simple hallway with restrictive routes
and two possible goals (Fig. 5). Two robots, I and J , are known
to be patrolling the hallways. They use simple cyclic trajectories,
which are unknown to the subject robot, L, that starts just inside a
room looking out an open door. This limits its field of view. The
second environment is a larger portion of an office building floor
(Fig. 3). The subject robot L located in a room on the outer rim
of a building desires to reach the elevators near the center of the
floor. In between, there are two hallways as well as open rooms.
The hallways are patrolled by two robots. While the latter environ-
ment admits few paths for L to reach a goal, the former exhibits
several potentially successful routes through the map depending on
the positions of the patrollers. In each, L is spotted if it is roughly
within 3 cells of any patroller that faces it.

The interactions between the patrollers in each environment oc-
cur when the two robots approach each other in a hallway from
opposite directions. Each robot could then come to a stop, turn
left or right, turn back around or side step, which involves the robot
slowing down and moving forward while bypassing the other robot.

177

These interactions are time-extended requiring more than a single
time step to perform (and they are upper bounded at 3).

Each robot in our simulations and physical experiments is a
TurtleBot equipped with a Microsoft XBox 360 Kinect, which pro-
vides a camera and a ranging sensor. The base is an iCreate, which
has a simple differential drive. Each robot also possesses a laptop
running ROS Fuerte on Ubuntu 12.04. A robot identifies another by
detecting its unique color signature using CMVision’s blob finder.
We use ROS’s default local motion planner to locally navigate each
robot. Each robot localizes itself in a map using the adaptive Monte
Carlo localization method available in ROS.

Reward feature functions In the smaller environment, both
RI(s, a) and RJ(s, a) are composed of the following two types
of binary feature functions as their trajectories are simple cycles:

1. Has moved, which returns 1 if the action causes the patroller
to leave its current location, otherwise 0; and

2. Turn around at state, s, which returns 1 if the robot turns
around 180◦ at the location given by s, otherwise 0.

Reward functions of the patrollers in the larger environment ad-
ditionally include the following binary feature functions as their
trajectories may go through rooms in the large hallways as well.

1. Enter room, which returns 1 if the patroller enters a room
from one of the hallways, otherwise 0;

2. In room, which returns 1 if the patroller is in any of the rooms
in the map, otherwise 0; and

3. Leave room, which returns 1 if the patroller leaves a room to
enter a hallway.

The true vector of weights, θ, rewards moving within hallways and
turning around after I or J has turned the corner. It penalizes turn-
ing around at locations within hallways. In the larger environment,
it penalizes entering any side rooms from the hallways. Conse-
quently, the MDP-based policy of each patroller generates trajecto-
ries that move through the hallways turning around near the corners
at the end of each.

Comparative approaches In addition to our approach, which ex-
tends IRL to observing multiple robots under occlusion and which
could be interacting (labeled as mIRL*+Interaction), we utilize
three other approaches as baselines for a comparative performance
analysis. mIRL* involves the IRL extended to multiple robots un-
der occlusion but does not model interactions; an upper bound that
is given the policy of each patroller and how they interact (labeled
as KnownPolicy), and a random approach, which ignores all ob-
servations choosing a random time to move L.

5.1 Performance Evaluation in Simulations
In order to evaluate the performance of the approaches, a

straightforward metric is the success rate. This is the proportion of
runs in which the robot L reaches a goal state without being spotted
by any patroller. Notice that this metric comprehensively measures
the performance of all aspects of the approach and has practical im-
plications. It is indicative of the accuracy of the learned patroller
policies, L’s simulated prediction accuracy, and the ability of L to
traverse a route within an allotted time. In order to focus the eval-
uation on the performance of our generalized IRL, we additionally
measure the accuracy of the learned policies of both I and J and
their learned interaction behavior. The learned behavior accuracy
is the proportion of all states at which the actions prescribed by
the inversely learned policies of both patrollers or the interaction
equilibrium (if it applies) coincide with their actual actions.

At each interaction state, mIRL*+Interaction formulates a
game, such as the one shown in Fig. 2, in which the actions of a
profile that resolves the conflict each receive a payoff of 5. Ac-
tions that do not change the physical location of a robot receive
a payoff of 0, while others receive payoffs in between. Note that
affine transformations of these payoffs do not alter the solution of
the game.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L
e

a
rn

e
d

 B
e

h
a

v
io

r
A

c
c
u

ra
c
y

Degree of Observability

mIRL*

mIRL*+Interaction

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L
e

a
rn

e
d

 B
e

h
a

v
io

r
A

c
c
u

ra
c
y

Degree of Observability

mIRL*

mIRL*+Interaction

Figure 6: Learned behavior accuracy of our approach measured for
different occlusion rates. The vertical bars represent one standard de-
viation from the mean.

Learned behavior accuracy We begin by evaluating the learned
behavior accuracy of mIRL*+Interaction and mIRL* as a function
of the degree of observability. The latter is the proportion of all
(x, y) cells in the state space that are visible to the subject robot,
L; its complement gives a measure of the occlusion. Note that
KnownPolicy and random are irrelevant because these approaches
do not learn the behavior of the other robots. Each data point is the
average of 400 runs in the larger environment and 200 runs in the
smaller one. Figure 6 shows this evaluation for both the simulated
environments.

Observe that mIRL*+Interaction results in learning overall be-
havior of both I and J that is significantly more accurate in general
compared to mIRL*, in both the environments (Student’s paired,
two-tailed t-test, p < 0.025 for both environments). The improve-
ment becomes larger as the occlusion reduces. Clearly, modeling
potential interactions in IRL matters as we may expect and leads
to improved learning of others’ behaviors. Furthermore, while the
accuracy improves with the degree of observability for mIRL*+ In-
teraction, surprisingly it gradually reduces for mIRL* and at full
observability drops down to the same level as when observability
is at 10%. As the interactions between I and J become visible to
L, mIRL* is unable to learn individual policies for the two robots
that effectively model the joint behavior at the interaction states
in their trajectories, likely attributing it to noise. On the other
hand, mIRL*+ Interaction may utilize one of multiple equilibria
to model those observations.

Success rate In Fig. 7, we show the varying success rates in both
environments based on three important factors: the learned behav-
ior accuracy, the degree of observability and the time L is given
for observing the two patrolling robots. These are obtained for the
same runs as before.

Improved accuracies of the learned behaviors has a positive im-
pact on the success rate in the case of mIRL*+Interaction, as we
show in Fig. 7(a). While both approaches attain the same level of
accuracy – possibly due to better policy learning by mIRL* – the
lack of interaction modeling by mIRL* leads to a reduced success
rate. Note that our overall success rate does not exceed 60%, which
is indicative of the general difficulty level of the problem that con-
fronts L in this application domain.

Figures 7(b) and (c) show the impact of varying L’s degree
of observability and its observation time on the success rate, re-
spectively. For each degree of observability, we evaluate over an
identical distribution of observation times, and conversely for each
observation time. Observe that KnownPolicy and random form

178

Smaller environment

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.6 0.65 0.7 0.75 0.8 0.85 0.9

S
u
c
c
e
s
s
 R

a
te

Learned Behavior Accuracy

mIRL*

mIRL*+Interaction

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 R

a
te

Degree of observability

Known Policy

mIRL*

mIRL*+Interaction

Random

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400

S
u
c
c
e
s
s
 R

a
te

Observation time (s)

Known Policy

mIRL*

mIRL*+Interaction

Random

Larger environment

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.7 0.75 0.8 0.85 0.9 0.95 1

S
u
c
c
e
s
s
 R

a
te

Learned Behavior Accuracy

mIRL*

mIRL*+Interaction

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
S

u
c
c
e
s
s
 R

a
te

Degree of observability

Known Policy

mIRL*

mIRL*+Interaction

Random

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 50 100 150 200 250 300 350 400

S
u
c
c
e
s
s
 R

a
te

Observation time (s)

Known Policy

mIRL*

mIRL*+Interaction

Random

(c)

Figure 7: (a) The effect of the learned joint behavior accuracy on the success rate in both simulated environments. (b, c) A comparison of the
success rates achieved by our approach and the baselines as a function of the amount of visibility and the time spent observing. Vertical bars indicate
95% confidence intervals.

the upper and lower bounds to the IRL-based approaches as ex-
pected. As the observability and time spent observing increases,
mIRL*+Interaction’s performance improves significantly. Indeed,
for long observation times (e.g., 350s), the corresponding success
rate matches that of the upper bound in both the environments. This
implies that the generalized IRL is able to learn the observed be-
havior with a very high accuracy.

Figure 8: Trace showing a successful penetration in progress that in-
volves the subject robot L entering a room as J passes by.

Finally, in Fig. 8 we show an interesting successful run by L,
where its learning and subsequent MDP-based planning allows it
to enter a side room to avoid being spotted as patroller J passes by
it. Subsequently, it exits the room and successfully navigates to the
goal location.

5.2 Evaluations on Physical Robots
We evaluate the performance of mIRL*+Interaction using phys-

ical robots. TurtleBots I and J physically patrol the hallway of the
smaller environment (Fig. 5), while a third TurtleBot, L, is waiting
in the side room observing the patrollers in its limited field of view.
The latter is approximately equivalent to a 10% degree of observ-
ability as defined previously. The sensitivity of the blob finder on
each robot is calibrated so that the detection distance approximately
matches that utilized in the simulations. Each run has a time limit
of 20 minutes with each action taking about 3.5s, after which an

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 100 150 200 250 300 350

S
u
c
c
e
s
s
 R

a
te

Observation time (s)

Physical Simulated

Figure 9: Success rates based on observation times in the physical
runs. We compare these with those obtained from the simulations for
the same degree of observability. The vertical bars are 95% confidence
intervals.

incomplete run is aborted. Patrolling trajectories, feature functions
and the MDP models of all the robots are identical to simulations.

As it was challenging to vary the degree of observability without
L being immediately spotted, we show the success rates obtained
byL in the physical runs when its observation time varies. In Fig. 9,
we report the physical evaluations and compare it with the results
from simulations for the same environment with a 10% degree of
observability. The overall success rate starts low but improves to
about 60%. Importantly, the difference is not statistically signifi-
cant.

Figure 10 shows snapshots of robots I and J at an interaction
state. Observe that I is stationary as J navigates around it. In addi-
tion, we show snapshots of L exiting its vantage point and moving
along a path that successfully results in reaching the goal state.

6. RELATED WORK
Ng and Russell [11] introduced IRL as a problem involving a

single subject agent learning from a single expert. We view IRL
as a way of performing inverse optimal control [12] that allows for
control frameworks other than MDPs as well. IRL lends itself natu-
rally to a robot learning from demonstrations by one human teacher
or expert in a controlled environment. Improvements and robotic
applications include modeling the reward function as a linear com-
bination of features [1], robot path planning [14], and learning with

179

Figure 10: (Top) I and J interacting, one stops movement while the
other moves past at a reduced speed. (Bottom) L observing a patroller
and performing a successful penetration

noisy feature functions [5]. However, these advances do not involve
performing IRL in the presence of multiple experts; a significant
difference and the primary motivation behind this paper.

Previous work on multiple robots involved in learning from
demonstrations either as the learners or as the experts is sparse. One
such domain is the scenario where a single expert teaches a team
of robots [7]. Here, the learners consider each other’s actions to fa-
cilitate coordination while the expert acts alone. Other multi-robot
learning from demonstrations places a robot as an expert and an-
other as the learner [3]. A challenge here is that the learner cannot
directly imitate the expert’s actions due to kinematic differences.

Modeling of robot interactions has received attention recently
with Spaan and Melo [15] utilizing game theory to model interac-
tions as well as a component of the multiagent planning. Analo-
gous to our setting, two robots plan their trajectories using individ-
ual MDPs and overlay it with a Markov game when conflicts arise
such as when they must cross through a narrow corridor. This prob-
lem is that of multiagent planning and not inverse learning and our
work may be viewed as the inverse of this problem where we at-
tempt to learn which Nash equilibrium the two robots have chosen
based on their observed actions. Valtazanos and Ramamoorthy [16]
use demonstrations to learn a set of interaction actions, which may
then be used by the learner robot when interacting with another.
This allows it to predict the state that may result due to its actions,
and utilize these to shape the actions of a second robot as a response
to the learner’s actions. Our work differs in that we focus on entire
trajectories where the interaction is a (critical) part of the perceived
motion, the learner cannot influence the actions of the experts in
any way, and we seek to learn the behavior of multiple robots when
they are not interacting as well.

Finally, in the context of our application domain, related research
has predominantly focused on generating robot patrolling trajec-
tories that are theoretically difficult to learn from observations by
relying on randomized behavior [2]. This direction is motivated
by building robots that could be deployed for perimeter patrolling,
which is complementary to our focus on exploring state-of-the-art
techniques for building robots that may learn simple patrolling be-
havior of multiple other robots.

7. DISCUSSION
In the context of mobile robots occlusion of the state space is

usually unavoidable. Our solution is to model the observability
when performing IRL in order to learn a policy that best matches
available observations of the robots. Our experiments show that

even with highly occluded spaces and limited observation times
useful policies are learned by the subject robot.

We have shown that in an application domain involving two in-
teracting robots, modeling their interaction using a game results in
increased learned behavior accuracy, which implies a correspond-
ing improvement in the quality of predictions. In this paper, this
was empirically shown by demonstrating the increased success rate
for the algorithm which modeled the interaction.

8. ACKNOWLEDGMENTS
We gratefully acknowledge support from a NSF CAREER grant,

IIS-0845036, and an ONR grant, N000141310870.

9. REFERENCES
[1] P. Abbeel and A. Ng. Apprenticeship learning via inverse

reinforcement learning. In ICML, page 1, 2004.
[2] N. Agmon, S. Kraus, and G. a. Kaminka. Multi-robot

perimeter patrol in adversarial settings. In ICRA, pages
2339–2345, May 2008.

[3] A. Alissandrakis, C. L. Nehaniv, and K. Dautenhahn.
Correspondence mapping induced state and action metrics
for robotic imitation. IEEE Trans. Syst. man, Cybern. Part B,
Cybern., 37(2):299–307, Apr. 2007.

[4] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A
survey of robot learning from demonstration. Rob. Auton.
Syst., 57(5):469–483, May 2009.

[5] A. Boularias, O. Krömer, and J. Peters. Structured
apprenticeship learning. Mach. Learn. Knowl. Discov.
Databases, pages 227–242, 2012.

[6] R. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory
algorithm for bound constrained optimization. SIAM Journal
on Scientific Computing, 16(5):1190–1208, 1995.

[7] S. Chernova and M. Veloso. Teaching multi-robot
coordination using demonstration of communication and
state sharing (short paper). In AAMAS 2008, pages
1183–1186, 2008.

[8] J. Choi and K.-e. Kim. Inverse Reinforcement Learning in
Partially Observable Environments. In IJCAI, pages
1028–1033, 2009.

[9] K. Dvijotham and E. Todorov. Inverse optimal control with
linearly-solvable MDPs. In ICML, pages 335–342, 2010.

[10] J. A. Nelder and R. Mead. A simplex method for function
minimization. The Computer Journal, 7(4):308–313, 1965.

[11] A. Ng and S. Russell. Algorithms for inverse reinforcement
learning. In ICML, pages 663–670, 2000.

[12] R. Obermayer and F. A. Muckler. On the inverse optimal
control problem in manual control systems, volume 208.
NASA, 1965.

[13] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons, Inc.,
New York, NY, USA, 1st edition, 1994.

[14] N. D. Ratliff, J. A. Bagnell, and M. a. Zinkevich. Maximum
Margin Planning. In ICML, pages 729–736, 2006.

[15] M. Spaan and F. Melo. Interaction-driven Markov games for
decentralized multiagent planning under uncertainty. In
AAMAS, pages 525–532, 2008.

[16] A. Valtazanos and S. Ramamoorthy. Bayesian interaction
shaping: learning to influence strategic interactions in mixed
robotic domains. In AAMAS, pages 6–10, 2013.

[17] B. Ziebart and A. Maas. Maximum entropy inverse
reinforcement learning. In AAAI, pages 1433–1438, 2008.

180

	Introduction
	Background on Inverse Reinforcement Learning
	Maximum Entropy
	Approximating Maximum Entropy

	IRL for Multiple Mobile Robots
	IRL for Robots with Occlusion
	Modeling the Interaction
	Multiple Equilibria

	Domain: Penetrating a Simple Multi-Robot Patrol
	Experiments
	Performance Evaluation in Simulations
	Evaluations on Physical Robots

	Related Work
	Discussion
	Acknowledgments
	References

