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ABSTRACT
This paper considers the problem of cooperation between self-interested
agents in acquiring better information regarding the nature of the
different options and opportunities available to them. By sharing
individual findings with others, the agents can potentially achieve
a substantial improvement in overall and individual expected ben-
efit. Alas, when it comes to self-interested agents, it is well known
that equilibrium considerations often dictate solutions that are far
from the fully cooperative ones, hence the agents do not manage
to fully exploit the potential benefits encapsulated in such coop-
eration. In this paper we introduce, analyze and demonstrate the
benefit of two methods aiming to improve cooperative information
gathering. Common to all two that they constrain and limit the in-
formation sharing process. Nevertheless, the decrease in benefit
due to the limited sharing is outweighed by the resulting substan-
tial improvement in the equilibrium individual information gather-
ing strategies. The equilibrium analysis that is given in the paper,
which, in itself, is an important contribution to the study of cooper-
ation between self-interested agents, enables demonstrating that for
a wide range of settings with the use of the two methods all agents
end up with an improved individual expected benefit.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent Systems

General Terms
Economics, Algorithms

Keywords
Multi-Agent Exploration, Self-Interested Agents, Cooperation, Team-
work, Economically-Motivated Agents

1. INTRODUCTION
In many settings agents can benefit from cooperating in infor-

mation gathering [8, 17, 20, 16]. For example, consider two travel
agents, from the same city, that plan to participate in an interna-
tional tourism conference, taking place in a highly traveled desti-
nation. There are many airlines offering flights to nearby destina-
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tions, each setting a price according to various external factors such
as seat availability and agreements it has with its airlines partners.
Similarly, depending on the airport of arrival, one can get to the
conference by train, bus, ferry, taxi or any combination of these for
different segments of the trip. Each of these means of transportation
may be characterized by a different availability and fare, depend-
ing, for example, on the time of the day when it is required. Check-
ing the feasibility and cost of the different alternatives for traveling
to the conference, thus, potentially involves several time consum-
ing activities, such as checking locations on the map and checking
the companies’ web-sites for routes, timetables, fares and availabil-
ity, and thus incurs some “opportunity cost”. Since both agents can
benefit from the information each of them gathers regarding the
different options for getting to the conference, they have a strong
incentive to share their findings, i.e., execute the information gath-
ering process (hereafter denoted IGP) cooperatively.

Cooperative information gathering is used in many real-life ap-
plications of different domains. For example, consider two friends,
both interested in buying a big TV screen. The friends can visit
the shopping mall, together, while each of them checks offers in
different stores, and eventually they meet and share their findings.
Alternatively, consider an oil drilling company sending multiple
agents to explore possible drilling sites, in order to develop the best
site discovered. Similarly when looking to fill-in a position, HR
personnel can interview candidates in parallel and recruit the best
candidate found.

The benefits of multi-agent cooperative information gathering
are twofold. First, since each alternative (hereafter termed “oppor-
tunity”) reviewed can benefit many agents, the relative cost of in-
formation gathering is reduced, while the overall welfare increases.
Secondly, the task can potentially be divided according to the ex-
pertise of the different agents, if such expertise exists.1

Cooperative information gathering can be seen as a type of a
public goods game, where all agents contribute by their individual
IGP and the collective result influences the welfare of all of them.
In public goods games, in general, inefficiencies in private giving
commonly occur whenever the agents are self-interested [11, 10].
Similarly, it has been shown that cooperative information gather-
ing, carried out by self-interested agents, does not result in the
amount of cooperation as in the optimal fully cooperative case [20].

In this paper we propose two cooperative information gathering
methods that can increase the individual benefit of all participating
agents. The methods differ by the constraints they put on the in-
formation sharing process (henceforth denoted ISP). The first, de-

1For buyers’ cooperation, the agents can also benefit from a volume
discount through their cooperation; however this property holds
only for that specific domain.
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noted “Enforced probabilistic information sharing” prevents indi-
vidual agents from taking part in the ISP according to some prob-
abilistic function. The second, denoted “Cost filtered information
sharing”, introduces some cost for taking part in the ISP (where the
proceeds are wasted and are not returned to the agents) and allows
agents to choose whether to take part in the ISP or not. Each of
these methods may seem counter intuitive, because the absence of
some of the agents in the ISP is harmful to all agents. Yet, in many
settings, the use of these methods can be highly beneficial. This
is because of the paradox embedded in the ISP option - while the
sharing of information benefits all agents, the very fact that all in-
formation gathered is going to be shared, discourages agents from
investing much resources in their individual IGP. Therefore, with
the use of these methods the individual benefit of each agent from
taking part in the ISP decreases, however the IGP carried out by
that agent individually becomes more efficient. Therefore, by intel-
ligently managing the tradeoff between the two, a more beneficial
equilibrium can be achieved, which improves both the overall and
individual benefits.

The paper provides a comprehensive analysis of the individual
information gathering strategies used by the agents, given the strat-
egy of others, under the different methods. For the Enforced prob-
abilistic method the agents’ individual strategy is proven to be sim-
ilar in structure to the one used with the standard cooperative in-
formation gathering method — the agent will resume information
gathering as long as the best value obtained so far is lower than
some reservation value (a threshold), regardless of how much more
information can potentially be gathered. For the Cost filtered method,
the individual strategies are proven to be based on a single reser-
vation value for determining the benefit in additional information
gathering and for deciding whether to take part in the ISP. This
allows the characterization of the resulting Bayesian Nash equi-
libria. Using synthetic environments, we numerically demonstrate
that all two methods result in substantial improvement to each of
the agents’ individual expected benefit for a wide range of settings.

The results contribute to the advancement of theories of cooper-
ation in MAS. As discussed later in the paper, the methods can be
easily applied and their use can benefit both individuals planning to
engage in cooperative information gathering and MAS designers of
systems where cooperative information gathering is likely to take
place.

In the following section we review related work, in particular
emphasizing models of cooperative information gathering. In Sec-
tion 4 we describe the two proposed mechanisms, present their
equilibrium analysis and supplies numerical examples for the ben-
efit that can be achieved when using them. Discussion, conclusions
and directions for future research are given in Section 5.

2. RELATED WORK
The model analyzed in this paper is based on two important

concepts: multi-agent cooperation and costly information gather-
ing. Multi-agent cooperation has been shown to be widely effec-
tive for better achieving agents’ individual goals or improve their
performance measures, especially when there are differences in the
agents’ capabilities, knowledge and resources or when an agent is
incapable of completing a task by itself [35, 29, 9]. It is also the
main driving force behind many coalition formation models in the
area of cooperative game theory and MAS [33]. Yet, the majority of
cooperation and coalition formation MAS-related research tends to
focus on the way coalitions are formed and consequently concerns
issues such as the optimal division of agents into disjoint exhaustive
coalitions, division of coalition payoffs and enforcement methods
for interaction protocols. To the best of our knowledge, no prior

work on multi-agent cooperation has considered the cooperation
problem of a group of self-interested agents in costly information
gathering settings where findings can benefit all agents.

Group-based cooperation of self-interested agents can also be
found in public goods games and allocation games in general [2,
22, 11, 10]. Common to these games is that according to their equi-
librium each agent individually should opt out of the cooperation
as soon as possible or invest the minimum allowed. Therefore the
research of cooperation in this domain is limited to repeated games
[32] or settings with bounded-rational participants (e.g., people) for
which cooperation to some extent is commonly exhibited [23]. The
main difference between public goods allocation games and our
work is the complexity of the settings used. In our settings there
is much room for individual information gathering, to some extent,
even if all others are “free riders”. Moreover, with the simplistic
settings used in public goods games, information sharing and the
way it is handled, which is the essence of our work, is irrelevant.

The second concept upon which this paper relies, i.e. costly in-
formation gathering, is of great importance whenever there is no
central source that can supply an agent full immediate reliable in-
formation on the environment and the state of the other agents. The
introduction of search costs into MAS models leads to a more re-
alistic description of these environments. This is because agents
are typically required to invest/consume some of their resources in
order to obtain information concerning opportunities available in
their environment [30].

Optimal strategies for settings where individuals need to search
for an applicable opportunity when information gathering is costly
have been widely studied, prompting several literature reviews [34,
21, 15]. These models, which are often termed “costly search”
models or “economic search” models have been developed to the
point where their total contribution is referred to as “search theory”.
Within this line of work, many cooperative information gathering
models have been studied, extending the theories to multi-agent
(or multi-goal) environments. Examples include, among others,
an attempt to purchase several commodities while facing imperfect
information concerning prices or operating several robots in order
to evaluate opportunities in different locations. These works dif-
fer from ours either in that they consider fully cooperative agents
that attempt to maximize the overall utility [31, 14, 5, 6, 19], and
thus lack any equilibrium considerations, or they assume that any
agent’s IGP is constrained by the findings of the other agents, rather
than augmented/improved by such findings as in our case [27].
Consequently they constitute substantially different equilibrium strate-
gies. Models that do consider cooperative information gathering,
which rely on assumptions similar to ours (e.g., [20, 16]), focus
primarily on the extraction of the equilibrium strategies and inves-
tigate the influence of the different model parameters on the agents’
performance in equilibrium. None of these works, however, sug-
gested methods for improving the cooperative information gather-
ing in such settings, of the kind that we suggest and analyze in this
paper.

More broadly, our problem can be seen as part of the field of
planning under uncertainty, hence it is related to Markov decision
processes (MDP) [3, 26] and decentralized Markov decision pro-
cesses [4]. In these models the goal is to maximize the expected
cumulative reward, which is also the objective in our case. Alas, the
use of MDPs in our case is complicated by the continuous nature of
the value probability distribution functions. More importantly, our
analysis and proofs result in threshold-based (or interval-based) so-
lutions which are both simpler in terms of strategy and state repre-
sentation and can be derived with a substantially lesser complexity
compared to solving as MDPs.
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Finally, we note that the non-intuitive findings whereby methods
that essentially limit information sharing and cooperation actually
have a positive impact in the self-interested case follows, in spirit,
earlier results in other settings. In particular, ones in which it has
been shown that so-called “inefficiencies” can increase market per-
formance, under certain circumstances. For example, in transporta-
tion economics, e.g., congestion games, taxation can change the
equilibrium to a more desirable one [25, 24, 13]. Similarly, taxes
can facilitate more desirable equilibria in Boolean games [12] and
in centralized matching schemes [1]. In this work we show that a
somewhat similar phenomenon also occurs in the context of coop-
erative information gathering, though the model and analysis are,
of course, totally different from the above mentioned.

3. THE MODEL
The model considers a set K = {A1, ..., Ak} of fully-rational

self-interested agents. Each of the agents needs to gather informa-
tion pertaining to the value (e.g., benefit) of different opportunities
to which it has access and eventually choose one. While the val-
ues of the different opportunities are a priori unknown, the agent is
acquainted with the distribution of opportunity values. Information
is gathered for one opportunity at a time and due to the resource
consuming nature of the process it is considered costly in the sense
that revealing the value of an opportunity incurs a fixed cost. The
individual information gathering problem, as just defined, is stan-
dard and follows the assumptions commonly used in literature [7,
17, 16, 28]. The model allows agents to differ in their informa-
tion gathering competence and in the set of opportunities they can
potentially access, hence the cost of revealing the value of an op-
portunity, the distribution of opportunity values and the number of
opportunities accessible to an agent, are modeled in the agent level,
using ci, fi(x) and ni to denote the three, respectively.

In settings where all opportunities are applicable to all agents
the agents have an incentive to cooperate in information gathering
in the sense that all individual findings are eventually shared with
all others. While there are many ways to share the information, the
focus of this paper, as with prior models of cooperative information
gathering (e.g., [20]), is on setups where the ISP takes place at some
pre-specified time, after all agents have completed their individual
IGPs and each needs to decide on the opportunity it chooses. As in
prior models of cooperative information gathering, we also assume
that: (a) the agents are truthful in the sense that they always report
the true values they obtain; (b) in the absence of any finding agent
Ai’s utility is vi0; and (c) either the opportunities each agent can
check are unique or the agents can a priori divide the opportuni-
ties among them such that each will be assigned a different set. It
is assumed that information gathering costs and opportunity values
are additive and each agent Ai is interested in maximizing its ex-
pected benefit, denoted EBi. The benefit of an agent is therefore
the best value obtained by the group minus the costs accumulated
individually along the agent’s individual IGP.

The cooperative information gathering model as detailed above
can be found in full or with some insignificant variations in prior
literature [16, 20, 14, 6].2 The truthfulness assumption is com-
monly justified by a substantial potential reputation loss, and is
easily enforceable using fines. The choice of sharing findings at
the end of the individual IGPs is mostly natural and commonly
used in real life. More importantly, the alternative of sharing in-

2While some model variants consider the task to be executed by a
representative agent, acting on behalf of the group, the essence of
gathering costly information and trading-off costs and benefit is the
same.

formation throughout the process has a major setback in the sense
that each individual agent finds information sharing to be benefi-
cial only when it is on the receiving end, i.e., it is the one being
informed that a “favorable” opportunity was found; when it is on
the reporting end, the agent loses from such communication since
the report can potentially encourage the other agents to terminate
their individual information gathering. On the other hand sharing
the information after concluding the individual IGPs is always ben-
eficial for the agent as it gains more information, and at the same
time the information it discloses does not affect the behavior of
others thereafter since they also have already concluded their IGPs.

Taking the travel agents example, the opportunities represent dif-
ferent alternatives for reaching the conference location and their
value is their total cost. The information gathering cost is the agents’
cost of the time exploring alternatives. The goal of each agent is
to minimize her expected expense, defined as the cost of the best
alternative found by the two plus the cost of the time spent individ-
ually reviewing different alternatives. Similarly, the model can be
mapped to all the other applications mentioned in the introduction.

4. ANALYSIS
This section is divided according to the two cooperative informa-

tion gathering enhancing methods suggested in the paper. For each
method, we first develop the individual expected-benefit-maximizing
(optimal) information gathering strategy of an agent taking part in
the process, as the best response to the other agents’ strategies.
Then, we show how the collective behavior is derived and extract
the equilibrium set of strategies. Since the findings of the agents
are a priori uncertain, we use the Bayesian Nash Equilibria con-
cept. Finally, we demonstrate how the expected individual bene-
fit of all agents improves, when the method is used, compared to
the standard cooperative IGP. For this purpose we use a simplis-
tic synthetic setting where both the agents and the opportunities
available to them are homogeneous. The use of the homogeneous
setting is more tractable numerically and enables demonstration of
the main phenomena without substantial overhead. Specifically, we
use a setting where all opportunities available to all agents share the
same information gathering cost and probability distribution func-
tion (uniform, between 0 and 1), denoted c and f(y) respectively.
We stress that even though such a setting is standard in costly in-
formation gathering literature [21, 18], its use in our case is merely
for illustration purposes and all the results concerning individual
strategies and equilibrium structure that are given in this paper are
based on formal theoretical proofs.

4.1 Enforced Probabilistic Information Shar-
ing

In this method each agent Ai is a priori assigned some probabil-
ity P IS

i which is used, after it has completed its individual IGP, to
determine whether it is allowed to take part in the ISP. This method
requires some enforcement since once the individual IGP is com-
pleted, agents obviously will benefit from taking part in the ISP, as
it does not incur any cost and at the same time can improve their
best finding. This issue and possible enforcement means are dis-
cussed in Section 5.

An agent’s state throughout its individual IGP is represented by
the subset of opportunities on which it has already gathered in-
formation, and their associated values, and consequently the re-
maining opportunities for which the values are still unknown. An
agent’s strategy is thus the mapping from a world state to a choice
{resume, terminate}where resume suggests that the agent needs
to gather information about an additional opportunity (a random
one, since all opportunities available to a given agent are a priori
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alike) and terminate means that the agent needs to proceed to the
ISP. Theorem 1 proves that the state representation in this case can
be compacted to the best value found so far (including the fallback
vi0), v, and that the optimal strategy can be represented in terms of
a single reservation value.

THEOREM 1. Given the probability distribution function of the
maximal value obtained by all other agents that take part in the ISP,
denoted f̄i(x), agent Ai’s optimal individual information gather-
ing strategy is to set a reservation value ri, where ri is the solution
to:

ci=P IS
i ·

∫ ∞
y=ri

fi(y)

∫ ∞
x=−∞

(max(y, x)−max(ri, x))f̄i(x)dxdy

(1)

+ (1− P IS
i ) ·

∫ ∞
y=ri

(y − ri)fi(y)dy

The agent should always choose to gather information on an addi-
tional opportunity (if one is available) if the best value obtained so
far is below ri and otherwise it should proceed to ISP.

PROOF. We show that each agent’s strategy can be reduced to
the mapping S(v, j) → {resume, terminate}, where v is the
best value obtained so far and j is the number of opportunities for
which the values have already been obtained. Since the benefit in
further information gathering when in state (v, j) increases as v
decreases, and the cost of doing so is not affected by v, the opti-
mal strategy is necessarily reservation value-based. Therefore, for
each given number of opportunities j, the optimal individual infor-
mation gathering strategy of agent Ai can be characterized by the
reservation value rji such that the agent should resume information
gathering if the best value obtained so far is below rji and otherwise
terminate its IGP.

The remainder of the proof is inductive, showing that the reserva-
tion value used by each agent remains stationary along its IGP and
is calculated according to Equation 1. For the case of j = ni − 1
the agent should gather information regarding the last opportunity
if and only if:

P IS
i ·

∫ ∞
z=−∞

max(v, z)f̄i(z)dz + (1− P IS
i ) · v < (2)

P IS
i ·

∫ ∞
y=−∞

fi(y)

∫ ∞
z=−∞

(max(y, v, z)f̄i(z))dzdy

+ (1− P IS
i ) ·

∫ ∞
y=−∞

max(y, v)fi(y)dy − ci

where v is the best value obtained so far. The left hand side of
the equation captures the expected benefit if the individual IGP is
terminated and the right hand side captures the expected benefit if
information is gathered for the last opportunity. Both terms distin-
guish between the case where agent Ai participates in the ISP i.e.,
with a probability P IS

i , and when it is not allowed to. Using several
mathematical manipulations we obtain that the v values for which
(2) holds are those lesser or equal to the ri value that satisfies (1).
Therefore the theorem holds for j = ni − 1.

Now assume the same ri (according to (1)) holds for any j′ > j,
for some j, and consider the agents’ decision regarding gathering
information on one more opportunity, if the best value obtained so
far is v and the number of opportunities for which the values were
already obtained is j. If v > ri and the agent gather information
on one additional opportunity, then regardless of the value obtained
next it will definitely terminate its individual IGP thereafter (as it
already has a value greater than ri and according to the induction

assumption the optimal strategy thereafter is the reservation value
ri). Therefore the benefit obtained from further information gath-
ering is given by:

P IS
i ·

∫ ∞
y=−∞

fi(y)

∫ ∞
z=−∞

(max(y, z)−max(v, z)f̄i(z))dzdy

(3)

+ (1− P IS
i ) ·

∫ ∞
y=−∞

(y − v)fi(y)dy − ci

Alas, since the latter term decreases as v increases, and obtains zero
for v = ri (according to (1)), then since v > ri the term obtains
a negative value, hence additional information gathering cannot be
the preferred choice.

Similarly, consider the case where v < ri for j and the agent
chooses not to gather additional information. Here the expected
benefit from resuming information gathering is necessarily greater
than if resuming in state (v, j′ > j). However, according to the
induction assumption the agent should resume information gath-
ering in state (v, j′ > j), leading to a contradiction. Therefore,
the reservation value for j is calculated, once again, according to
(1).

Theorem 1 specifies the optimal strategy of an agent given the
strategy of others. The solution of a set of k equations similar to
(1), one for each agent Ai, will supply us with a set of pure equilib-
ria of the form {ri|1 ≤ i ≤ k} if any exist. A mixed equilibrium in
our case is defined by a probability pi(v, j) assigned to each state
(v, j), defining whether the agent will resume or terminate infor-
mation gathering in that state. This may seem infeasible to extract,
based on the infinite number of states (as value distributions are
continuous). Nevertheless, in order for such a solution to hold, the
agent’s expected benefit from both actions (resume and terminate
information gathering when in that state) must be equal. Based on
the optimality of the reservation-value rule, this can hold only for
states where the value v equals ri as calculated according to (1).
However, due to the continuous nature of v, the probability of ac-
tually reaching states that satisfy the above condition is zero, thus
assigning such probabilities will have no effect on the other agents.
The only exception for the above is the agent’s strategy at the be-
ginning of its individual IGP. Here, the state is a priori known to be
(vi0, 0) hence adding some probability for actually gathering infor-
mation on one opportunity and then continuing according to ri (or
otherwise going straight to ISP due to the indifference to resuming
or terminating information gathering) will have an actual effect on
the others. Consequently, a mixed Bayesian Nash equilibrium for
our problem is of the form:

{(pi, ri)|1 ≤ i ≤ k}

where pi is the probability that agent Ai will initiate its individual
IGP (0 ≤ pi ≤ 1) and ri is the reservation value to be used by the
agent.

Now that the individual strategy in equilibrium has been defined
in its complete form (i.e., including the probabilistic aspect), we
can formulate f̄i(x) (the probability distribution function of the
maximal value obtained along the IGP of all other agents that will
take part in the ISP). For this purpose we make use of the proba-
bility that the maximum value that will be found by all the agents
that take part in the ISP, except Ai, will be smaller than or equal
to x, denoted F̄i(x). The calculation of F̄i(x) makes use of the
probability that the maximum value obtained along the IGP of an
agent Aj (that chooses to engage in IGP and uses rj), is less than
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x, denoted F return
j (x), calculated according to:

F return
i (x) =

{
Fi(x)ni x < ri
Fi(ri)

ni + 1−Fi(ri)
ni

1−Fi(ri)
(Fi(x)−Fi(ri)) x ≥ ri

(4)

For the case where x < ri the value of all ni opportunities must
result in a value below x. When x ≥ ri there are two possible sce-
narios. The first is where all ni opportunities result in a value be-
low the reservation value ri, i.e., with a Fi(ri)

ni probability. The
second, is where the information gathering terminates right after
revealing value y at the jth opportunity such that ri < y < x (oth-
erwise, if y < ri the information gathering should resume) and all
the former j − 1 values obtained are smaller than ri (otherwise the
jth opportunity is not reached). The probability of the latter case
occurring (summing over all values of j ≤ ni) can be calculated
using the geometric series:

ni∑
j=1

(Fi(x)− Fi(ri))Fi(ri)
j−1 =

1−Fi(ri)
ni

1−Fi(ri)
(Fi(x)−Fi(ri))

The probability distribution function of the maximum obtained
throughout agent Ai’s IGP, denoted freturn

i (x), is by definition,
the first derivative of F return

i (x):

freturn
i (x) =

d(F return
i (x))

dx

Thus, we can now formulate the probability that the maximum
value that will be found by all the agents taking part in ISP, except
Ai, will be smaller than or equal to x, F̄i(x):

F̄i(x) =
∏

Aj∈K∧j 6=i

(P IS
j (pjF

return
j (x)+(1−pj))+(1−P IS

j ))

The probability distribution function f̄i(x) is the derivative of
F̄i(x):

f̄i(x) =
dF̄i(x)

dx

These enable us to calculate the expected benefit of agent Ai

when the other agents use the set of strategies {(pi, ri) |1 ≤ i ≤
k}. If agent Ai chooses to engage in IGP then its expected benefit,
denoted EBi(IGP ), is given by:

EBi(IGP ) = −ci
1− Fi(ri)

ni

1− Fi(ri)
(5)

+ P IS
i ·

∫ ∞
y=−∞
freturn
i (y)

∫ ∞
x=−∞
max(vi0, y, x)f̄i(x)dxdy

+ (1− P IS
i ) ·

∫ ∞
y=−∞
max(vi0, y)freturn

i (y)dy

where the first term on the right hand side is the expected cost in-
curred throughout the IGP carried out by Ai, calculated as:

ci

ni∑
j=1

(Fi(ri))
j−1 = ci

1− Fi(ri)
ni

1− Fi(ri)
,

as the number of opportunities on which information is gathered
is a geometric random variable bounded by ni, with a 1 − Fi(ri)
success probability. The second term is the expected maximum be-
tween the best value found by the agent itself (i.e., associated with
a distribution freturn

i (y)) and the best value returned by the other
agents (associated with a distribution f̄i(x)) if agent Ai partici-
pate in the ISP (i.e., with a P IS

i probability). The last term is the

expected “best” (i.e., maximum) opportunity-value found by the
agent along its information gathering if the agent is not allowed to
take part in the ISP (i.e., with a 1− P IS

i probability).
When the agent opts not to execute individual IGP at all, its ex-

pected benefit, denoted EBi(¬IGP ), is simply the expected value
of the maximum value returned by the other agents, taking part in
the ISP, if taking part by itself in the process, or otherwise vi0, i.e.:

EBi(¬IGP ) = P IS
i ·

∫ ∞
x=−∞

max(vi0, x)f̄i(x)dx (6)

+(1−P IS
i )·vi0

At this point, we have everything that is needed to formulate
the equilibrium stability conditions. A set of strategies {(pi, ri)|1
≤ i ≤ k} will be in equilibrium only if the following conditions
hold: (a) for every agent Ai for which pi = 0, EBi(IGP )≤EBi(
¬IGP ); (b) for every agent Ai for which pi = 1, EBi(IGP ) ≥
EBi( ¬IGP ); and (c) for every agent Ai for which 0 < pi <
1, EBi(IGP ) = EBi(¬IGP ). Therefore, in order to find the
equilibrium, the stability of 3k possible solutions of type {(pi, ri)
|1 ≤ i ≤ k} differing in the value each pi obtains (pi = 0,
pi = 1 and 0 < pi < 1) needs to be checked. For every combi-
nation, the reservation values of the different agents and the prob-
ability pi of each agent that uses a non-pure mixed strategy (i.e.,
with 0 < pi < 1) should be calculated by solving a set of equa-
tions of type (1) (one for each agent characterized by pi = 0) and
EBi(IGP ) = EBi(¬IGP ) (one for every agent Ai for which
0 < pi < 1). Once the appropriate reservation values and proba-
bilities are obtained for a given set, the stability conditions need to
be validated.

We note that there is no guarantee that an equilibrium will actu-
ally exist (either pure or mixed, since there are an infinite number
of strategies). Also, there is no guarantee that if one exists there
will be no other equilibria (i.e., multi-equilibria is possible). In the
latter case, if there is one equilibrium that dominates the others in
terms of the individual expected benefit each and every agent ob-
tains then it will likely be the one used. Otherwise, there is no way
of deciding which of the equilibria is the one to be used, and we do
not include this question in the scope of the current paper.

We emphasize that the above analysis generalizes the analysis of
the standard cooperative information gathering model [16, 20] in
the sense that the latter is a specific case where the probability each
agent will be allowed to take part in the ISP is one (i.e., P IS

i = 1
∀1 ≤ i ≤ k). Furthermore, when the probability each agent will be
allowed to take part in the ISP is zero, the solution obtained is the
same as the one known for the single-agent information gathering
problem [21] (since each agent relies solely on the values it obtains
throughout its individual IGP).

Figure 1 depicts the agents’ individual expected benefit as a func-
tion of the probability P IS

i used, for different information gather-
ing costs (c). The setting used is the homogeneous setting described
at the beginning of the section and the value of P IS

i is the same for
all agents (i.e., P IS

i = P IS ∀i). The other model parameters were
set to: k = 15 and n = 4. As depicted in the figure, the maximum
expected benefit (agent-wise, as all agents are alike in this case) is
obtained when the participation of the agents in the ISP is not cer-
tain but rather determined probabilistically (i.e., 0 < P IS < 1).
The typical pattern exhibited in the figure is an increase and then a
decrease in the expected individual benefit as the probability P IS

increases. This is explained by the fact that when P IS = 0 each
agent actually executes an individual IGP without any information
sharing with others. As P IS increases, the agent relies more on
other agents’ findings. Thus, pi and ri become lower, which is bad
for the group since everybody gains less from the participation of
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Figure 1: Enforced Probabilistic Information Sharing - effect of P IS

on the individual expected benefit, for different information gathering
costs, c in a setting: k = 15 and n = 4. The dotted curve connects the
individual-expected-benefit-maximizing P IS values for the different k
and c values.

the agent in the ISP. However, at the same time the probability the
agent will actually take part in the ISP increases, thus, overall, the
individual expected benefit increases. Nevertheless, at some value
of P IS , the loss due to the resulting decrease in pi and ri becomes
more dominant than the benefit due to the increase in the value of
P IS .

Another interesting behavior observed in Figure 1 is that the
increase in information gathering costs, c, results in a decrease
in the value of the individual-expected-benefit-maximizing ISP-
participation probability (marked by the thick markers in the graph).
This may seem non-intuitive since the greater the information gath-
ering cost the greater the potential benefit that can be achieved by
information sharing. Therefore further limiting information sharing
in settings with high c values may seem unnatural. The phenom-
ena is explained by the fact that the positive effect of the increase
in P IS over the participation probabilities pi and the reservation
value ri used by each agent in equilibrium in this case, which are
substantially poor to begin with, is greater than the loss due to the
uncertain information sharing.

4.2 Cost Filtered Information Sharing
This method introduces a cost cIS an agent incurs if it chooses

to take part in the ISP. The introduction of such a cost (that is not
returned eventually to the agents) requires an appropriate balance
in the form of some compensation to the agents for taking part in
the ISP. Without such a compensation, no agent will be willing to
take part in the ISP, as proven in the following theorem.

THEOREM 2. If the agents incur some cost when taking part in
the ISP, then in the absence of some compensation for taking part
in the ISP, none of the agents will take part in the ISP.

PROOF. Consider the highest value v that if it turns out to be
the highest value known to any of the agents, after completing its
individual IGP, warrants the participation of this agent in the ISP.
We show that in the absence of an appropriate compensation for the
agent, such a value, v, cannot hold — since none of the other agents
will bring a value greater than v to the ISP, the agent will not gain
anything from the ISP however it will incur a cost; consequently it
will choose not to take part in the ISP.

One option to compensate the agents for taking part in the ISP
is to offer the agent with the best value that takes part in the ISP a
compensation B. The amount B can be collected from the agents
(e.g., in equal shares) prior to the IGP, such that once collected it is
considered a “sunk cost” and the agents’ strategies become affected
only by the chance of receiving the bonus B. The structure of the
best response strategy of any individual agent in this case, given the
strategy of others, is given in Theorem 3.

THEOREM 3. Given the probability distribution function of the
maximal value obtained by all other agents that take part in the ISP,
f̄i(x), agent Ai’s optimal individual information gathering strat-
egy can be described by the pair (ri, R

IS
i ), where the value of ri is

the solution to:

ci =

∫ ∞
y=ri

(EBi(y)− EBi(ri))fi(y)dy (7)

and RIS
i is the set of intervals such that for any x ∈ RIS

i :

cIS ≤
∫ ∞
y=x

(y − x)f̄i(y)dy + B ·
∫ x

y=−∞
f̄i(y)dy (8)

where EBi(v) is given by:

EBi(v) =


v v /∈ RIS

i

−cIS + B ·
∫ v

y=−∞ f̄i(y)dy otherwise
+
∫∞
y=−∞max(y, v)f̄i(y)dy

(9)

The agent should resume IGP as long as the value found so far is
below ri, and otherwise it should terminate IGP. Upon terminating
IGP (or obtaining the value of all opportunities) the agent should
participate in the ISP if the best value it has found in its individual
IGP is in one of the intervals of the set RIS

i and otherwise it should
opt out from taking part in the ISP.

PROOF. The set RIS
i as defined in (8) contains all the values v

for which the expected benefit from taking part in the ISP - calcu-
lated as the potential value improvement,

( ∫∞
y=x

(y − x)f̄i(y)dy
)

plus the expected compensation B ·
∫ x

y=−∞ f̄i(y)dy, both indepen-
dent of the reservation value ri used by the agent - is greater than
the cost cIS incurred. The remainder of the proof, concerning the
optimality of a reservation-value-based strategy and the correctness
of (7) is the same as the one provided for Theorem 1, differing only
in the way the expected benefit if resuming information gathering
is calculated.

The solution of a set of equations consisting of (7)-(9) will sup-
ply us with a set of pure equilibria of the form {(ri, RIS

i )|1 ≤ i ≤
k} if any exist. For the same considerations given in Section 4.1, a
mixed Bayesian Nash equilibrium for this case will be of the form:

{(pi, ri, RIS
i )|1 ≤ i ≤ k}

where pi is the probability that agent Ai will initiate its individual
IGP (0 ≤ pi ≤ 1), ri is the reservation value to be used by the
agent and RIS

i is the set of intervals.
Unlike the analysis given in 4.1, here we need to distinguish

between F return
i (x), which is the probability that the maximum

value obtained by agent Ai’s individual IGP will be less than x,
calculated according to (4), as before, and F return′

i (x), which is
the probability that the maximum value provided by the agent in
the ISP will be less than x, calculated as:

F return′
i (x) = F return

i (x) +

∫
y≥x∧y/∈RIS

i

freturn
i (y)dy
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Figure 2: Cost Filtered Information Sharing - effect of cIS on the
individual expected benefit, for different information gathering costs, c
in a setting: k = 2, n = 3 and B = 0.04. The dotted curve connects
the individual-expected-benefit-maximizing cIS values for the different
c values.

Using F return′
i (x), we can now calculate the function F̄i(x):

F̄i(x) =
∏

Aj∈K∧j 6=i

(pjF
return′
j (x) + (1− pj))

The probability distribution function f̄i(x) is the first order deriva-
tive of F̄i(x) as before. Similarly, the probability distribution func-
tion freturn

i (x) is the first derivative of F return
i (x).

These enable us to calculate the expected benefit of agent Ai

when the other agents use the set of strategies {(pj ,rj , RIS
j )|1 ≤

j ≤ k ∧ i 6= j}. If agent Ai chooses to engage in IGP then its
expected benefit, EBi(IGP ), is given by:

EBi(IGP )=−ci
1−Fi(ri)

ni

1− Fi(ri)
(10)

+

∫ ∞
y=−∞

EBi(max(y, vi0))freturn
i (y)dy

When the agent opts not to gather information at all, its expected
benefit, EBi(¬IGP ), is simply the expected value of the maxi-
mum value returned by the other agents, if the agent chooses to
take part in the ISP:

EBi(¬IGP ) = EBi(v
i
0) (11)

The equilibrium stability conditions remain as in Section 4.1, re-
placing the calculation of EBi(IGP ) and EBi(¬IGP ) with (10)
and (11). As with the former method, there is no guarantee that an
equilibrium will actually exist (either pure or mixed) and that if one
exists there will be no other equilibria. Also, as with the methods
presented above, the analysis of the cost filtered method general-
izes the analysis of the standard cooperative information gathering
model [16, 20] in the sense that the latter is a specific case where
cIS = B = 0. Similarly, when B = 0 the solution obtained is the
same as the one known for the single-agent information gathering
problem [21] (regardless of the value of cIS , based on Theorem 2).

Figure 2 illustrates the agents’ individual expected benefit as a
function of the cost cIS used, for different information gathering
costs (c). The setting used is the homogeneous setting described at
the beginning of the section, using the parameters k = 2, n = 3

and B = 0.04. As can be observed from the figure, the maximum
expected individual benefit is obtained when setting a substantial
cost for taking part in the ISP. The typical pattern exhibited in the
figure is similar to the one depicted in Figures 1, and explained by
similar considerations.

5. DISCUSSION AND CONCLUSIONS
As demonstrated in the previous section, each of the two meth-

ods proposed and analyzed in this paper can substantially increase
the benefit self-interested agents achieve through information shar-
ing when gathering information cooperatively. Each of the two
methods is based on a different restriction made on the agents’ abil-
ity or willingness to take part in the ISP. Intuitively such restrictions
may seem to have a negative effect on performance. Yet, since each
agent gains less from the information sharing itself, it has a greater
incentive to invest more resources in individual information gath-
ering, and hence performance improves overall.

The first method require some enforcement, as the dominating
strategy of the agents is to take part in the information sharing.
Such enforcement is easy to achieve using simple means. For ex-
ample, a designated server can be used for information sharing,
enabling the establishment of communication with each agent ac-
cording to the pre-defined probability. The second method enables
the agents to decide whether to opt-out from information sharing
hence it does not require any enforcement whatsoever. It does re-
quire, however, a means for introducing a cost for the ISP. For ex-
ample, the agents can decide that each agent that decides to take
part in the ISP will donate a fixed amount of money to her favorite
charity.

The results suggest important inputs for the designers of markets
and systems where cooperative information gathering is applica-
ble, by enabling them to predict the strategies that will be used
and the resulting system performance. These primarily facilitate
the proper design of the system and the determination of what ele-
ments should and should not be included in such systems in order
to achieve specific goals and promote certain behavior. In partic-
ular, the introduction of some seemingly non-beneficial elements
may actually be productive. We note that the paper generally does
not attempt to find the “optimal” parameter values for each method
(e.g., probability and cost of taking part in the information sharing,
or the payment received if the agent is associated with the “best”
value), since the concept of optimality in this sense is not properly
defined. Indeed in settings where there is an equilibrium solution
that is preferred by all agents (e.g., in the examples given in the
former section, where all agents are homogeneous) the choice of
parameter values is clear. Nevertheless in general, it is possible
that a certain value will be preferred by one of the agents whereas
others will prefer another. In the latter case it is the role of the
system designer to decide on these parameters based on her goals.

There are numerous extensions of the model that can be consid-
ered. Some of them are straightforward and require minor changes
in the analysis. For example, if agents are buyers and each of them
is interested in more than a single unit of the product they are
searching for, the only change required in the individual strategy
equations is multiplying the expense of purchasing the item by the
number of items in which the agent is interested. Other extensions,
while of much interest, are more complex to analyze. For exam-
ple, consider a model where the agents can continuously share their
findings along their individual IGPs. In this case, as discussed in
Section 1, it is essential to first define the method that will provide
an incentive for agents to share their findings despite the negative
influence it will have in terms of discouraging others from further
information gathering.
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