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ABSTRACT
The elicitation of private information from individuals is cru-
cially important to many real-world tasks. But elicitation
is most challenging when it is most useful: when objective
(verifiable) truth is inaccessible or unavailable, and there is
no “answer key” available to verify reports. Prior work has
designed mechanisms that truthfully elicit private informa-
tion without verification for some restricted set of possible
information structures of the participants (i.e. the common
prior joint distributions of participants’ signals). In fact, no
mechanism can elicit private information truthfully for all
information structures without verification. In this paper,
we identify the maximal set of information structures that
are truthfully elicitable without verification, and provide a
mechanism for such elicitation. This mechanism requires
that the designer know the information structure of the par-
ticipants, which is unavailable in many settings. We then
propose a knowledge-free peer prediction mechanism that
does not require knowledge of the information structure and
can truthfully elicit private information for a set of informa-
tion structures slightly smaller than the maximal set. This
mechanism works for both small and large populations in
settings with both binary and non-binary private signals,
and is effective on a strict superset of information struc-
tures as compared to prior mechanisms that satisfy these
properties.
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J.4 [Social and Behavioral Sciences]: Economics

General Terms
Economics, Theory
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1. INTRODUCTION
The elicitation of private information from individuals is

essential to human knowledge gathering and decision mak-
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ing. For example, Yelp.com collects user feedbacks on restau-
rants and other local businesses; citizen scientists contribute
their knowledge to help classify galaxies or find planets around
stars at websites like Zooiverse; and the popularity of on-
line labor markets such as Amazon Mechanical Turk allows
many people to solicit answers to questions of interest from
the crowd.

However, information elicitation is most challenging when
it is most useful: when there is no ground truth available
to evaluate answers. For example, the information being
elicited may be inherently subjective, such as in user satis-
faction surveys, or too costly to be practical to verify, such
as the answers collected on a citizen science website. These
settings, recently termed information elicitation without ver-
ification by Waggoner and Chen [16], have motivated both
the rapid theoretical development of mechanisms – Peer Pre-
diction [9] and Bayesian Truth Serum [12] being the most
famous – that elicit private information strictly truthfully
in some restricted settings despite the lack of verification,
and the deployment of simple and intuitive mechanisms,
such as the Output Agreement mechanism used by the ESP
game [15], in practice.

While the theoretical development of mechanism design
has achieved many successes in strictly truthfully eliciting
private information without verification, mechanisms pro-
posed in the literature all have various restrictions. The orig-
inal Peer Prediction mechanism [9], its improved variants [4,
5, 6], the Bayesian Truth Serum [12], and the more recently
developed Robust Bayesian Truth Serum [20] all require that
the private information of individuals is identically and in-
dependently distributed conditioned on some true outcome
of an event. The original Peer Prediction method [9] also
requires that the mechanism know the prior distribution of
the private signals of all individuals and the event outcome,
which we call the information structure in this paper, to
operate. The Bayesian Truth Serum [12] relaxes this re-
quirement by asking individuals to predict the distribution
of all participants’ signals in addition to reporting their pri-
vate signal and effectively obtains the prior distribution em-
pirically. However, the Bayesian Truth Serum incentivizes
truthful reporting only when the number of individuals is
large, and this number depends on the prior distribution.
Robust Bayesian Truth Serum [20] was developed specifi-
cally for small populations. While it elicits private signals
truthfully from any population with three or more individu-
als, each individual’s signal must be binary. Radanovic and
Faltings [13] improved the Robust Bayesian Truth Serum
with a mechanism that can handle non-binary signals. But,
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in doing so, the mechanism places additional restrictions on
the information structure, assuming that signals are cor-
related – that one agent receiving a signal maximizes the
probability that another agent receives the same signal.

Clearly, the development of truthful mechanisms for in-
formation elicitation without verification has been accom-
panied by carefully carving out territories for these mecha-
nisms, by placing restrictions on information structures, size
of the population, signal spaces, and the knowledge of the
mechanism. In an ideal world, we wish to have a mecha-
nism that can strictly truthfully elicit private information
without verification for all information structures, all signal
spaces, and both small and large populations, and does not
require the knowledge of information structure to operate.
Not surprisingly, we prove that it is impossible for a mech-
anism to strictly truthfully elicit private information for all
information structures without the knowledge of the infor-
mation structure [16]. In light of this impossibility result,
we ask the following two questions in this paper:

• What is the maximal set of information structures that
a mechanism can strictly truthfully elicit private infor-
mation from, even with knowledge of the information
structure?

• Without knowledge of the information structure, can
we design a mechanism that strictly truthfully elicits
private information for a large set of information struc-
tures, both binary and non-binary signals, and both
small and large populations?

We study these questions in a general model where the
mechanism designer can query any knowledge of individuals
that solely depends on their private signal and the informa-
tion structure. For a class of queries, including the signal
elicitation query considered in the above mentioned prior
work, we show that no mechanism can truthfully elicit such
information in any information structure that does not sat-
isfy a stochastic relevance condition, regardless of whether
or not the mechanism knows the information structure. For
the signal elicitation query – which is the focus of most prior
work – we demonstrate that this bound is strict, by provid-
ing a Generalized Peer Prediction mechanism that can elicit
signals in all stochastically relevant information structures.

To answer our second question, we propose a Knowledge-
Free Peer Prediction mechanism. This mechanism does not
require knowledge of the information structure and strictly
truthfully elicits private information for both small and large
populations in settings with both binary and non-binary pri-
vate signals, without placing significant restrictions on the
information structure. It can elicit signals in all informa-
tion structures that satisfy a second-order stochastic rele-
vance condition; this requirement is only slightly more re-
strictive than stochastic relevance, the minimal requirement
for truthful elicitation of signals.

The rest of the paper is organized as follows. We discuss
other related work in Section 1.1. In Section 2, we introduce
the setting and discuss our model of the information elicita-
tion problem. In section 3, we provide an upper bound for
the set of information structures that can be elicited from,
and show that this upper bound is strict for signal elicita-
tion. Finally, in section 4, we introduce the Knowledge-Free
Peer Prediction Mechanism, and conclude in section 5.

1.1 Other Related Work
In addition to original Peer Prediction [9], Bayesian Truth

Serum[12] and Robust Bayesian Truth Serum [20], Jurca and
Faltings have a nice line of work proposing mechanisms that
improve the original Peer Prediction in many aspects, in-
cluding reducing the mechanism’s total payment using tech-
niques from computational mechanism design [4], and en-
suring that truthful reporting is the unique equilibrium and
the mechanism is collusion resistant [5, 6].

All mechanisms discussed so far require all agents share a
common prior distribution. Witkowski and Parkes [19] pre-
sented two related mechanisms that truthfully elicit signals
even when agents do not share a common prior for a binary
signal space. This is achieved by using the same shadowing
technique developed for the Robust Bayesian Truth Serum
[20]. We assume the existence of a common prior in this
paper.

In terms of elicitability, in addition to Waggoner and Chen
[16]’s general impossibility result mentioned above, Radanovic
and Faltings [13] also give several impossibility results con-
cerning the design of mechanisms for various information
structures. Their results are limited to the setting where
agents have conditionally independent and identically dis-
tributed signals.

More recently Dasgupta and Ghosh [2] and Witkowski et.
al. [18] consider settings where agents may incur a cost
to improve their information and study how to incentivize
effort in information elicitation without verification. We do
not consider effort elicitation in this paper and assume that
the private information of agents is given.

2. THE SETTING
We model the general problem of information elicitation

without verification as follows. For some event of interest,
there are a finite set of possible outcomes Ω, from which
nature selects the true outcome ω ∈ Ω. There are n ≥ 2
rational and risk-neutral agents that are only interested in
maximizing their payout. Each agent i will observe a private
signal θi drawn from a finite set of all possible signals Θi.
Θ = Θ1× · · · ×Θn is the joint signal space of all agents and
θ ∈ Θ is a vector of the signals of all agents. Agents have
common knowledge about the event and how it affects their
signals in the form of a prior distribution Pr[ω, θ] over the
outcome space and signal spaces. For example, if the event is
whether a hotel is of high or low quality, i.e. Ω = {high, low},
and each player may experience either good or bad service at
the hotel, i.e. Θi = {good, bad}, then the prior distribution
can be viewed as modeling agents’ common belief on the
distribution of the hotel’s quality, Pr[ω], and the conditional
distribution of all agents’ experience given a realized hotel
quality, Pr[θ | ω], prior to receiving their private signals.
Upon receiving a private signal θi, agent i updates her belief
in a Bayesian fashion.

We refer to this common prior Pr[ω, θ] as an information
structure I because it describes how agents’ private signals
relate to each other and to the event outcome. We use I
to denote the set of all possible information structures on Ω
and Θ, i.e. I ≡ ∆(Ω×Θ).

This model allows individual agents to have different sig-
nal spaces and places no restriction on the information struc-
ture as long as it is a valid probability distribution over Ω
and Θ. This is less restrictive the models used in most prior
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work. For example, the original Peer Prediction method [9],
the Bayesian Truth Serum [12], and the Robust Bayesian
Truth Serum [20] all assume that agents have the same sig-
nal space and their signals are identically and independently
drawn conditional on the realized event outcome.

Similar to Waggoner and Chen [16], we formalize the infor-
mation sought by the mechanism designer as a query (C, T ),
where

• C = (C1, ..., Cn), where each Ci is the set of possible
answers for agent i.

• T = (T1, ..., Tn), where Ti : I × Θi → 2∆(Ci) maps
an information structure and a signal to a set of dis-
tributions on Ci. In words, Ti specifies the response
of agent i, given her signal and her common prior dis-
tribution, that the mechanism designer desires or con-
siders truthful. We allow responses that randomize
among answers and more than one truthful response
for every unique signal and information structure pair.

Conceptually, the mechanism designer begins by deciding
upon a question (where the possible answers are the mem-
bers of C) and a desired response to that question given
a particular signal and information structure (represented
by T ). These two together constitute a specification of the
information that the mechanism designer wants; they spec-
ify the question being asked, the possible answers to that
question, and the meaning of the answers (in relation to
the private information of the agents) to the mechanism de-
signer. Several examples of queries are provided below for
additional clarity:

(a) Eliciting the posterior distribution on event outcomes.

One common information elicitation task is to elicit
every agent’s posterior belief about the event outcome,
given their signal. This is represented by the query
Ci = ∆(Ω) and Ti(Pr[ω, θ], θi) = {Pr[ω | θi]}.

(b) Eliciting every agent’s signal.

Another common information elicitation task is to elicit
every agent’s private signal. This is represented by the
query Ci = Θi and Ti(Pr[ω, θ], θi) = {θi}.

(c) Eliciting the category of every agent’s signal.

Suppose there was a mapping Gi : Θi → S that clas-
sified every agent’s signal into a class s ∈ S, and we
wished to elicit the class label of every agent’s signal.
This can be represented by the query Ci = S and
Ti(Pr[ω, θ], θi) = {Gi(θi)}.

(d) Eliciting one of the attributes of every agent’s signal.

Suppose there was a set of attributes S. An agent’s
signal can be associated with one or more attributes
via the mapping Hi : Θi → 2S . We wish to elicit
any attribute of every agent’s signal. This can be rep-
resented by the query Ci = S and Ti(Pr[ω, θ], θi) =
∆(Hi(θi)) where ∆(Hi(θi)) is the set of all distribu-
tions on Hi(θi).

In this paper, we limit our scope to the subset of queries
that are signal specific, defined below.

Definition 1. We call a query (C, T ) signal specific for
a set I′ of information structures, if, for any information

structure Pr[ω, θ] ∈ I′ and i ∈ {1, ..., n}, T satisifies the
following property:

Ti(Pr[ω, θ], θ′i) ∩ Ti(Pr[ω, θ], θ′′i ) 6= ∅ if and only if θ′i = θ′′i

In some coarse sense, signal specific queries are just queries
in which the mechanism designer views different behaviors as
being truthful for different signals, thus making each signal
distinct in terms of the corresponding response distributions
desired by the mechanism designer. Formally, a signal spe-
cific query specifies mutually exclusive sets of distributions
on answers (rather than exclusively specifying an answer it-
self) as being truthful for different signals. Accordingly, a
signal specific query is not necessarily one in which the mech-
anism designer can actually distinguish between two differ-
ent signals received by a particular agent, since the truthful
distributions on answers for these signals may have inter-
secting supports, and thus an agent may report the same
answer after receiving either of the two distinct signals by
chance.

The signal elicitation query in example (b), which is also
widely studied in the literature [9, 12, 20], is signal specific
for all information structures I. The posterior elicitation
query in example (a) is only signal specific for a subset of
I, while the query in examples (c) and (d) are generally not
signal specific, unless each class contains only one signal in
(c) and each attribute applies to only one signal in (d).

To answer a query (C, T ), the mechanism designer con-
structs a mechanism M = (A, hM ) where:

• A = (A1, ..., An), where each Ai is the set of actions
available to agent i in the mechanism. There must
exist a mapping γ : Ai → Ci, which allows the mech-
anism designer to read the answers to his query from
the actions in the mechanism.

• hM = (hM1 , ..., hMn ) where each hMi : I × A → R is
the payout function for agent i under the mechanism.
Notably, the payoff functions do not depend on agents’
signals, which are not verifiable.

When the mechanism designer directly asks agents to pro-
vide an answer to his query, the action sets and the sets of
possible answers coincide, A = C. But the mechanism de-
signer could instead ask the agents other questions in addi-
tion to the question that he cares about in order to obtain
good answers to the query. For example, in the scoring rule
literature, it is known that the variance of a random vari-
able alone cannot be truthfully elicited, but the mean and
the variance can be truthfully elicited together [7]. In or-
der to elicit the variance truthfully, it is necessary for the
mechanism designer to ask for both the mean and the vari-
ance. We thus allow A to be different from C as long as the
mechanism designer can map an action to an answer.

Together, a mechanism and information structure pair
(M, I) specifies a Bayesian game. We call the set {(M, I) |
I ∈ I} the games induced by M over the set of information
structures I.

We use the Bayesian Nash equilibrium solution concept
to analyze such games. Let si : Θi → ∆(Ai) denote agent
i’s strategy, which specifies her distribution on actions given
her signal, and θ−i denote the vector of all signals excluding
agent i’s signal. Formally, a Bayesian Nash equilibrium is a
strategy profile (s1, ..., sn) where si is a best response to s−i
– the strategy profile of all other participants – for all i. By
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best response, we mean that:

E[hMi (I, (s−i(θ−i), si(θi))|θi] ≥ E[hMi (I, (s−i(θ−i), s′i(θi))|θi]

for any s′i 6= si and all θi ∈ Θi. In words, si is a best
response if it maximizes agent i’s payout regardless of what
her realized signal is. Furthermore, in a strict Bayesian Nash
equilibrium, si is the unique best response to s−i for all i.

We say a player’s strategy si in a game (M, I) is truthful
under query (C, T ) if γ(si(θi)) ∈ Ti(Pr[ω, θ], θi) for all θi ∈
Θi. Furthermore, an equilibrium (s1, ..., sn) is truthful under
query (C, T ) if all si in the equilibrium are truthful.

We emphasize that truthfulness is defined with respect to
a query, the information sought by the mechanism designer.

Following Waggoner and Chen [16], we relax the notion of
a strict and truthful equilibrium to only require strictness
with respect to non-truthful strategies. In particular, we call
an equilibrium (s1, ..., sn) quasi-strictly truthful under (C, T )
if, in addition to being a truthful equilibrium, it satisfies the
property that for any s′i 6= si that is also a best response
to s−i, γ(s′i(θi)) ∈ Ti(Pr[ω, θ], θi) for all θi ∈ Θi.

1 In other
words, when the query specifies more than one truthful re-
sponse, at a quasi-strictly truthful equilibrium, a player can
deviate to reporting another response in the range of the
query, but cannot deviate to reporting any response out-
side of the range of the query, without hurting her expected
payoff. Said more simply, at a quasi-strictly truthful equilib-
rium, a player can only deviate to other truthful strategies
while still best responding. This concept is weaker than
a strictly truthful equilibria, where a player cannot deviate
to any other strategy without hurting her expected payoff.
All strictly truthful equilibria under (C, T ) are also quasi-
strictly truthful under (C, T ). When a query always specifies
a unique response, quasi-strictly truthful and strictly truth-
ful equilibria under (C, T ) are equivalent.

We now formalize the goals of a mechanism designer with
a signal-specific query (C, T ):

1. The mechanism induces a game with a quasi-strictly
truthful equilibrium under (C, T ) over a large set of in-
formation structures; the mechanism works in as many
information structures as possible.

2. The payoff functions of the mechanism do not depend
on the information structure; the mechanism designer
does not need to know the information structure to
run the mechanism.

Together, these two properties guarantee that the mecha-
nism is effective (truthful) in most settings, and can be em-
ployed even in situations where the mechanism designer is
unfamiliar with the domain’s information structure, such as
when the mechanism designer is asking a previously unasked
question.

3. THE MAXIMAL QUERYABLE SET OF
INFORMATION STRUCTURES

3.1 An Upper Bound
In this section, we provide an upper bound for the set of

all information structures in which a mechanism can answer
a signal-specific query.
1Waggoner and Chen [16] called such equilibria strongly
truthful. We use the term “quasi-strictly” to emphasize that
this notion is a relaxation of a strictly equilibrium.

We first extend the concept of stochastic relevance used
in Miller et al. [9] to our setting.

Definition 2. An information structure I = Pr[ω, θ] sat-
isfies stochastic relevance if and only if for any i ∈ {1, ..., n},
and any θ′i, θ

′′
i ∈ Θi where θ′i 6= θ′′i ,

Pr[θ−i | θ′i] 6= Pr[θ−i | θ′′i ].

In words, stochastic relevance means that for every agent i,
the joint distribution of all the other agents’ signals condi-
tional on agent i’s signal is different for different realizations
of agent i’s signal. This definition of stochastic relevance is a
weaker requirement than the one used in in Miller et al. [9],
which assumed that for different realizations of agent i’s sig-
nal, the distribution of any other agent’s signal would be
different. Obviously, the two definitions are equivalent when
there are only two agents.

For signal-specific queries, stochastic relevance is a nec-
essary criterion for the information structures where an in-
formation elicitation mechanism without verification has a
quasi-strictly truthful equilibrium.

Theorem 1. Consider any information structure I that
does not satisfy stochastic relevance and query (C, T ) that is
signal specific for information structure I. There is no mech-
anism M that induces a game (M, I) with a quasi-strictly
truthful equilibrium under (C, T ).

Proof. Consider any I that does not satisfy stochastic
relevance, and any mechanism M with payout function hM .
Since I is not stochastically relevant, there must exist some
i ∈ {1, ..., n} and some θ′i, θ

′′
i ∈ Θi, θ

′
i 6= θ′′i , where

Pr[θ−i | θ′i] = Pr[θ−i | θ′′i ].

Let (s1, ..., sn) be any truthful equilibrium of M under
(C, T ). Since the equilibrium is truthful and T is signal
specific, γ(si(θ

′
i)) 6= γ(si(θ

′′
i )). Construct the strategy s′i,

where s′i(θ
′
i) = si(θ

′′
i ) and s′i(θi) = si(θi) for all θi 6= θ′i ∈

Θi; since T is signal specific and si is truthful, γ(s′i(θ
′
i)) =

γ(si(θ
′′
i )) 6∈ T (Pr[ω, θ], θ′i), and thus s′i is not truthful under

T . We claim that s′i is also a best response to s−i; this
follows directly from our assumption that Pr[θ−i | θ′i] =
Pr[θ−i | θ′′i ]. To see this, note that for any distribution on
actions p ∈ ∆(Ai),

E[hMi (I, (s−i(θ−i), p)) | θ′i] = E[hMi (I, (s−i(θ−i), p)) | θ′′i ]

because I and p are both constants, and the distribution
of θ−i, and thus the distribution of s−i(θ−i), is the same
conditional on θ′i and conditional on θ′′i . Accordingly, we
have that

E[hMi (I, (s−i(θ−i), si(θ
′
i))) | θ′i]

=E[hMi (I, (s−i(θ−i), si(θ
′
i))) | θ′′i ]

≤E[hMi (I, (s−i(θ−i), si(θ
′′
i ))) | θ′′i ]

=E[hMi (I, (s−i(θ−i), si(θ
′′
i ))) | θ′i]

≤E[hMi (I, (s−i(θ−i), si(θ
′
i))) | θ′i]

where the inequalities hold because si is a best response to
s−i. This implies that

E[hMi (I, (s−i(θ−i), si(θ
′
i))) | θ′i]

=E[hMi (I, (s−i(θ−i), si(θ
′′
i ))) | θ′i]
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and thus s′i(θ
′
i) = si(θ

′′
i ) also maximizes expected utility

against s−i when agent i receives signal θ′i, and s′i is a best
response to s−i by construction. Accordingly, (s1, ..., sn) is
not a quasi-strictly truthful equilibrium.

The previous theorem demonstrates that no mechanism
can be used to answer a signal-specific query when the infor-
mation structure is not stochastically relevant. While this
result may seem intuitive at first glance – the mechanism
designer will obviously only be able to distinguish between
different signals if those signals have a distinct impact on an
agent’s belief about the other agents – it is actually some-
what surprising due to the broad nature of signal-specific
queries. In particular, as mentioned earlier, the mechanism
designer may not be able to distinguish between which of
two distinct signals an agent has received with signal-specific
query. Nevertheless, the signals need to be distinguishable
(by satisfying stochastic relevance) for a signal-specific query
to be answered.

In this sense, the maximal set of queryable information
structures (for signal-specific queries) is the set of all infor-
mation structures that satisfy stochastic relevance. Thus,
for any signal-specific query, the goal of the mechanism de-
signer (with respect to the first desirable property) can be
restricted to designing a mechanism that induces games with
quasi-strictly truthful equilibria over all stochastically rele-
vant information structures.

3.2 A Tight Bound for Signal Elicitation
It is natural to ask whether the stochastic relevance re-

striction on information structures discussed above is tight.
In other words, is there a mechanism that induces games
with quasi-strictly truthful equilibrium over all stochasti-
cally relevant information structures?

In this subsection, we demonstrate that this bound is tight
for the signal elicitation query, mentioned in example (a) and
studied in the literature [9, 12, 20]. To recap, a signal elici-
tation query (C, T ) has Ci = Θi and Ti(Pr[ω, θi], θi) = {θi}.
With respect to this query, we can in fact construct a mech-
anism that is quasi-strictly truthful over all stochastically
relevant information structures.

3.2.1 Strictly Proper Scoring Rules
The mechanism provided below, and the Knowledge-Free

Peer Prediction mechanism developed later in this paper,
depend on the concept of a strictly proper scoring rule. Ac-
cordingly, we discuss scoring rules briefly in this section. For
a more complete treatment, see Gneiting and Raftery [3].

Strictly proper scoring rules were initially introduced by
Brier [1] as a method to calibrate weather forecasts. Then,
they were widely studied [17, 14, 8, 10, 11] and developed
into a general approach for incentivizing a risk-neutral agent
to honestly reveal her subjective probabilistic assessment of
an uncertain event. Consider a random variable o that takes
value a in outcome space O. Let ∆(O) be the set of proba-
bility distributions over the outcome space O. Scoring rules
and strictly proper scoring rules are defined as follows.

Definition 3. A regular scoring rule is a function

R : ∆(O)×O → R ∪ {−∞}

where R(p, o) can equal −∞ only when po = 0, where po is
the probability of outcome o in distribution p.

Informally, a scoring rule is a function that grades a forecast
of an event p against the actual outcome of the event o. We
are particularly interested in a specific class of scoring rules.

Definition 4. A regular scoring rule R is strictly proper
if for any p, p′ ∈ ∆(O) such that p 6= p′,

Ep[R(p, o)] > Ep[R(p′, o)].

Under a strictly proper scoring rule, a rational, risk-neutral
agent with belief p ∈ ∆(O) who wishes to maximize her
expected score would report her true belief p. We will denote
a generic strictly proper scoring rule by Rp from this point
forward.

3.2.2 Generalized Peer Prediction
We construct a Generalized Peer Prediction mechanism

that has a strict truthful equilibrium in all of its induced
games (M, I) where I satisfies stochastic relevance. In this
way, Generalized Peer Prediction is an optimal mechanism
for signal elicitation, in the sense that the set of informa-
tion structures it can truthfully elicit signals from is maxi-
mal. As its name suggests, the Generalized Peer Prediction
mechanism is a generalization of the original Peer Prediction
mechanism presented by Miller et al. [9] to our more general
setting.

The Generalized Peer Prediction mechanism works as fol-
lows:

1. Every agent i reports their signal xi to the mechanism.

2. The mechanism calculates pxi ≡ Pr[θ−i | xi], or the
posterior distribution on all other signals conditional
on xi, and pays agent i a reward of Rp(pxi , x−i).

where Rp is any strictly proper scoring rule.
In the case of two agents, this mechanism reduces to the

original Peer Prediction mechanism. In particular, in this
case, every agent’s report signal is scored based on how well
it predicts a reference agent’s report (since x−i is only one
report), just as in the original Peer Prediction mechanism.
Accordingly, Miller et al. [9] had already successfully elicited
signals from the maximal set of information structures in
their more restricted setting.

Theorem 2. Generalized Peer Prediction has a strict truth-
ful Bayesian Nash equilibrium for all information structures
that satisfy stochastic relevance.

Proof. This proof is very similar to the proof that the
original Peer Prediction mechanism is Bayesian Nash incen-
tive compatible, as seen in [9]. In particular, we will demon-
strate that truthful reporting of signal is a strict Bayesian
Nash equilibrium.

Fix i. Assume all agents j 6= i are reporting their signal
truthfully; then x−i = θ−i. To best respond, agent i chooses
xi to maximize her reward

E[Rp(pxi , x−i)] = E[Rp(pxi , θ−i)].

Since agent i’s posterior distribution on θ−i is pθi and Rp
is proper, playing xi = θi is a best response. The strictness
of this equilibrium follows immediately from stochastic rel-
evance; since pxi 6= pθi when xi 6= θi, playing any xi 6= θi
results in a lower expected reward because Rp is strictly
proper.
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4. KNOWLEDGE-FREE PEER PREDICTION
The Generalized Peer Prediction mechanism achieves truth-

ful signal elicitation for the maximal set of information struc-
tures. However, it requires that the mechanism know the in-
formation structure. In this section, we still focus on the sig-
nal elicitation query (C, T ), where Ci = Θi and Ti(Pr[ω, θi], θi) =
{θi}, and design a sequential elicitation mechanism that
does not need to know the information structure and has
a strictly truthful equilibrium for a set of information struc-
tures that is slightly smaller than the maximal queryable
set. The mechanism requires n ≥ 3 agents.

Because a sequential mechanism M induces an extensive-
form Bayesian game (M, I) for an information structure I,
our solution concept in this section is Perfect Bayesian equi-
librium, which is a subgame-perfect refinement of Bayesian
Nash equilibrium. Informally, a strategy-belief pair is a Per-
fect Bayesian equilibrium if the agents’ strategies are opti-
mal given their beliefs at any time of the game and the
agents’ beliefs can be derived from other agents’ strate-
gies using Bayes’ rule whenever possible. In a strict Per-
fect Bayesian equilibrium, the strategy of each agent is a
unique best response to the strategies of other agents, given
her beliefs. As before, an agent’s strategy is truthful un-
der query (C, T ) if it induces a response in Ti(Pr[ω, θ], θi)
for all θi ∈ Θi. Similarly, at a truthful Perfect Bayesian
equilibrium all agents play a truthful strategy.

We first note that the maximal queryable set of informa-
tion structures for sequential mechanisms remains to be the
set of stochastically relevant information structures. This is
because any extensive-form Bayesian game can be converted
to a simultaneous-move Bayesian game, by setting the action
space of each agent in the simultaneous-move game to be the
cross product of the action spaces of the agent at all stages
of the extensive-form game. Any Perfect Bayesian equilib-
rium of the original extensive-form game is a Bayesian Nash
equilibrium of the resulting simultaneous-move game. Thus,
by considering sequential mechanisms, we cannot truthfully
elicit signals for a larger set of information structures than
before, but instead focus on removing the mechanism’s de-
pendency on the information structure.

Now we introduce the Knowledge-Free Peer Prediction
mechanism, defined as follows:

Randomly select a permutation of the n ≥ 3 agents, and
relabel them according to this permutation. For every agent
i, select two reference agents h = (i− 1) mod n, j = (i+ 1)
mod n. Now, all n players play the following sequential
game:

1. Round 1: Every agent simultaneously reports a signal
xi ∈ Θi, which can be different from his true signal θi,
to the mechanism; we call this the information report.

2. Round 2: Every agent i receives the information report
of player h, xh, from the mechanism, and then reports
a joint distribution pi over the signals of all agents
except agents i and h; we call this the prediction report.

At the end of the game, agent i receives payoff

Rp(p
j , (x−(i,j)))︸ ︷︷ ︸

Information Score

+Rp(p
i, (x−(h,i)))︸ ︷︷ ︸

Prediction Score

where Rp is any strictly proper scoring rule. As in Prelec [12]
and Witkowski and Parkes [20], we call the first term the

information score because it is dependent on agent i’s re-
ported signal (and how that information informs agent j’s
prediction report), and the second term the prediction score
because it is dependent on agent i’s prediction for the dis-
tribution of signals.

Consider the following property:

Definition 5. An information structure I = Pr[ω, θ] sat-
isfies second order stochastic relevance if for any i ∈ {1, ..., n},
and any θ′i, θ

′′
i ∈ Θi where θ′i 6= θ′′i , there exists some j 6= i

and θj ∈ Θj where Pr[θj | θ′i] > 0 and

• if Pr[θ′′i | θj ] > 0, then:

Pr[θ−(i,j) | θ′i, θj ] 6= Pr[θ−(i,j) | θ′′i , θj ]

• if Pr[θ′′i | θj ] = 0, then:

Pr[θ−(i,j) | θ′i, θj ] 6= Pr[θ−(i,j) | θj ]

where θ−(i,j) denotes the vector of all signals excluding the
signals of agents i and j.

Second-order stochastic relevance is a stronger condition
than stochastic relevance, in the sense that the set of infor-
mation structures that satisfy the former is a strict subset
of the set of information structures that satisfy the latter.
At the same time, it is only marginally more restrictive.

By construction, Knowledge-Free Peer Prediction does not
require knowledge of the information structure. Further-
more, as shown below, it has a strict truthful Perfect Bayesian
equilibrium in all of it’s induced games (M, I) where I sat-
isfies second order stochastic relevance.

Theorem 3. Knowledge-Free Peer Prediction has a strict
truthful Perfect Bayesian equilibrium for the signal elicita-
tion query for all information structures that satisfy second
order stochastic relevance.

Proof. We claim that the following assessments consti-
tute a strict Perfect Bayesian equilibrium:

1. Strategies: Every agent truthfully reports their signal
in round 1, and predicts pi = pxh,θi ≡ Pr[θ−(h,i) |
xh, θi], or the posterior joint distribution on all other
signals conditional on signals xh and θi if Pr[θh = xh |
θi] 6= 0 and predicts pi = p∅,θi ≡ Pr[θ−(h,i) | θi] other-
wise.

2. Beliefs: Every agent i believes that agent h received
signal xh, unless Pr[θh = xh | θi] = 0. In this case,
agent i believes that the reporting agent’s signal is dis-
tributed according to Pr[θh | θi].

First, we show that this assessment is consistent. For agent
i, the only salient belief in the game is her belief in round
2 about agent h’s signal. Every information set where the
report xh she receives has the property that Pr[θh = xh |
θi] > 0 is on the equilibrium path, since there is some θ with
non-zero probability where she observes signal θi and agent h
observes signal xh, and thus there is some non-zero probabil-
ity that this information set is arrived at under the strategy
profile specified in the assessment. Thus, in these infoma-
tion sets, her belief that agent h has observed signal xh is
consistent with Bayes rule as applied to the strategy profile
in the assessment, since all players report their signal truth-
fully in round 1. All other information sets, where the report
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xh she receives has the property that Pr[θh = xh | θi] = 0,
are not on the equilibrium path, because it is impossible to
arrive at these information sets under the strategy profile
specified in the assessment. In these information sets, the
Perfect Bayesian equilibrium solution concept requires that
agent i’s beliefs must be derivable using Bayes rule from
some strategy profile. Consider the strategy profile where
all agents except agent h report their true signal in round 1,
and agent h reports a signal from Θh randomly, each with
equal probability. In this case, agent i’s belief that agent h’s
signal is distributed according to Pr[θh | θi] is consistent;
in particular, xh gives no information about agent h’s sig-
nal, so her belief about agent h’s signal is just her posterior
distribution after receiving her own signal.

Next, we show that this assessment is sequentially ratio-
nal. Since agent i’s total payout is equal to the sum of her
prediction score and information score, and her actions in
round 1 only impact her information score and her actions
in round 2 only impact her prediction score, it sufficies to
show that she uniquely maximizes her expected prediction
score in round 2 and expected information score in round
1. In round 2, if agent i receives a report xh such that
Pr[θh = xh | θi] 6= 0, agent i believes that agent h received
signal xh with probability 1, and thus uniquely maximizes
her expected prediction score by predicting pi = pxh,θi be-
cause Rp is strictly proper. If agent i receives a report xh
such that such that Pr[θh = xh | θi] = 0, agent i’s joint
distribution on x−(i,h) is just p∅,θi , and thus uniquely maxi-

mizes her total score by predicting pi = p∅,θi again because
Rp is strictly proper. In round 1, agent i uniquely maxi-
mizes her information score by reporting xi = θi, because
the information structure satisfies second-order stochastic
relevance. Since the agent j who is receiving her signal
is not known to agent i, for any xi 6= θi, there is a non-
zero probability that agent j will predict pxi,θj 6= pθi,θj or
p∅,θj 6= pθi,θj by second-order stochastic relevance; since Rp
is strictly proper, this results in a non-maximal expected
information score.

Since the stated assessment is both sequentially rational
and consistent, it is a Perfect Bayesian equilibrium. Further-
more, since every agent’s actions in the assessment uniquely
maximizes his expected payout, this equilibrium is strict.

Knowledge-Free Peer Prediction is a sequential mechanism,
in contrast to previous work which has focused on simultaneous-
move mechanisms. However, the sequential nature is not
essential to the functioning of the mechanism; we can con-
struct an analogous simultaneous-move mechanism by ask-
ing every agent i to give their prediction report conditional
on every possible signal that agent h could have received.
Then, we no longer have to give agent i the actual informa-
tion report of agent h, and can ask for both the information
and prediction reports at the same time, making the mecha-
nism simultaneous. Intuitively, by asking agent i for her re-
sponse given any information report from agent h, the mech-
anism can now play the second stage of the game for agent
i, thus removing the need for the sequential nature of the
game. It is straightforward to show that in this “virtualized”
Knowledge-Free Peer Prediction, there is a quasi-strictly
truthful Bayesian Nash equilibrium for all information struc-
tures that satisfy second-order stochastic relevance. The
drawback of this simultaneous-move mechanism is that it

is less intuitive, and requires a significantly more complex
prediction report from the participating agents.

5. DISCUSSION
This paper is a theoretical investigation toward under-

standing the limit of truthfully eliciting private information
without verification with or without the knowledge of the
information structure. In this section, we discuss the impli-
cations of our results and their relation to prior mechanisms
and suggest some potential directions for future investiga-
tion.

5.1 Elicitability
Building on the impossibility result developed by Wag-

goner and Chen[11], this paper provides an upper bound on
the set of information structures in which a signal-specific
query can be answered. Furthermore, we go on to prove
that this bound is strict for the signal elicitation query in
particular, by extending the Peer Prediction mechanism to
the more general setting of this paper. Thus, while it may
be the case that signal elicitation is impossible in all infor-
mation structures, it is important to note that it is possi-
ble in most information structures, as stochastic relevance
is a weak requirement that is likely satisfied in most real-
world situations. Furthermore, signal-specificity may be a
relatively strong requirement for queries. For more general
queries that are not signal specific, it is likely that at least
some non-stochastically relevant information structures are
elicitable.

5.2 Comparing Knowledge-Free Peer Predic-
tion to Previous Mechanisms

The main innovation that drives Knowledge-Free Peer Pre-
diction is that it “outsources” the process of calculating the
posterior conditional on a signal - as is necessary in General-
ized Peer Prediction - to the agents themselves; in this way,
the mechanism no longer needs to know the prior, since it is
not updating the prior itself. It does so by using the same
strategy employed by Bayesian Truth Serum [12] and the
Robust Bayesian Truth Serum [20]: requesting a prediction
report in addition to an information report. In Knowledge-
Free Peer Prediction, this prediction report consists of the
predicted distribution of the signals of all other agents, con-
ditional on the signal reported by one other agent, which
is exactly the posterior that is necessary to calculate the
information score of the other agent.

By combining features from these two classes of mecha-
nisms – Peer Prediction and Bayesian Truth Serum – Knowledge-
Free Peer Prediction improves on both. Whereas Bayesian
Truth Serum [12] can handle any finite number of signals,
it is only truthful for a large number of agents (the exact
number being unknown to the mechanism designer). The
Robust Bayesian Truth Serum [20] is truthful for any num-
ber n ≥ 3 of agents but can only handle binary signals.
The Knowledge-Free Peer Prediction mechanism can han-
dle any finite number of signals and any number n ≥ 3 of
agents. Furthermore, while the mechanism developed by
Radanovic and Faltings [13] also achieves this, the set of
information structures it is applicable for is a strict sub-
set of the set of information structures that satisfy second-
order stochastic relevance, even when restricted to infor-
mation structures where signals are conditionally indepen-
dent and identically distributed. Finally, unlike Generalized
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Peer Prediction, Knowledge-Free Peer Prediction does not
need to know the information structure. The weakness of
Knowledge-Free Peer Prediction is that it only works for in-
formation structures that satisfy second-order stochastic rel-
evance (and thus requires at least 3 agents), whereas Gener-
alized Peer Prediction works for information structures that
satisfy stochastic relevance and any number n ≥ 2 of agents.

5.3 Future Directions
There are several avenues of potential future work to ad-

dress the limitations of this paper.

1. Develop a mechanism for knowledge-free signal elicita-
tion that is truthful in all stochastically relevant infor-
mation structures, or prove that not all stochastically
relevant information structures can be queried by a
mechanism that does not know the information struc-
ture.

2. Demonstrate that the provided upper bound for the
maximal set of information structures that are elic-
itable under a signal-specific query is tight for all such
queries, rather than for only the signal-elicitation query.

3. Extend this type of general elicitability analysis to set-
tings where there is no common prior.
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