
Forming Coalitions and Facilitating Relationships for
Completing Tasks in Social Networks

Liat Sless
Dept of Computer Science
Bar Ilan University, Israel

slasli@cs.biu.ac.il

Noam Hazon
Dept of Computer Science

and Mathematics
Ariel University, Israel
noamh@ariel.ac.il

Sarit Kraus
Dept of Computer Science
Bar Ilan University, Israel

sarit@cs.biu.ac.il

Michael Wooldridge
Dept of Computer Science
University of Oxford, UK

mjw@cs.ox.ac.uk

ABSTRACT
We consider the problem of computing effective coalition struc-
tures in situations where the coalitions that can be formed and the
value of these coalitions is determined by a social network, indi-
cating the strength of relationships between agents. We assume
that a central organizer desires to build coalition structures to carry
out a given set of tasks, and that it is possible for this central or-
ganizer to create new relationships between agents, although such
relationship-building is assumed to incur some cost. Within this
model, we investigate the problem of computing coalition struc-
tures that maximize social welfare, and the problem of computing
core-stable coalition structures. In addition to giving some general
results on these problems, we identify tractable instances of the
problems, and present algorithms for these cases.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Algorithms

Keywords
coalition formation; additively separable hedonic games; social net-
works

1. INTRODUCTION
Coalition formation is one of the fundamental research problems
in multi-agent systems [7]. Most studies of coalition formation
in the multi-agent systems community are based on models taken
from the field of cooperative game theory (e.g., characteristic func-
tion games [20], non-transferable utility games [11], or hedonic
games [12]). However, while such game models are useful for il-
lustrating key concepts in coalition formation, they are often too
abstract to be useful in modeling real-world cooperative scenarios.

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and
Michael Huhns (eds.), Proceedings of the 13th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS
2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

A challenge for multi-agent systems researchers is therefore to in-
vestigate the extent to which these models can be enriched in order
to adequately model real-world scenarios, while ensuring that such
additional expressive power does not bring with it computational
intractability. One gross simplifying assumption made in most co-
operative game models is that any coalition can form. In practice,
in any real-world organization, there are a huge number of factors
that must be taken into account when considering which coalitions
can form, that will inevitably rule out from consideration the for-
mation of some coalitions. One issue that would surely be taken
into account when forming coalitions in most real-world organi-
zations is that of the interpersonal relationships between potential
coalition members. For example, irrespective of the personal skills
of the relevant individuals, in a mission-critical situation, we would
typically not seek to form a coalition from individuals that were not
acquainted, or that did not have a proven track record of being able
to cooperate effectively. It is, of course, precisely these concerns
that lead organizations to undertake team-building initiatives and
the like, with the goal of either establishing or further strengthen-
ing interpersonal relationships between potential team members.

In this paper, we therefore consider the problem of how mod-
els, concepts, and techniques from cooperative game theory can
be adapted to capture such concerns. We consider the following
scenario. We are given a weighted graph representing a social net-
work: vertices are agents, edges indicate acquaintance relationships
between agents, and the weight of an edge indicates the strength of
the relationship. Weights may be positive or negative, with nega-
tive weights indicating that the respective agents will not be able
to successfully cooperate. The utility an agent obtains from being
part of a coalition is then simply defined to be the sum of weights
of edges in the social network for agents in his coalition that he is
acquainted with. The value of a coalition is defined to be the sum
of utilities of the agents in that coalition. We then assume there is
a central body who wants to build coalitions to carry out k tasks.
Thus, the centre wants to build a coalition structure containing k
coalitions. However, in our setting, we assume that the centre has
some capability to adapt the game, by building relationships be-
tween agents (adding edges to the social network), although such
relationship building is assumed to have an associated cost. Thus,
the problem of the centre involves trading off the cost of creating
such relationships against the benefits that this brings to coalition
formation.

In this setting, allowing for the possibility of adding new rela-
tionships to the social network, we investigate two problems. The

261

first is that of creating coalition structures that maximize social
welfare (i.e., maximize the sum of the values of coalitions within
a coalition structure). We first establish some general results on
this problem, relating to the cost of forming a new relationship in
the social network. We then identify cases where the problem is
tractable. For example, we show that the problem of computing a
coalition structure that maximizes social welfare can be solved in
polynomial time if there are only a small number of negative edges
in the social network. We note that we do not impose any other
restrictions on the structure of the social network, in contrast to
much related work [3]. We then go on to consider the computation
of core stable coalition structures to carry out exactly k tasks. We
first illustrate how core stable coalitions and coalition structures
that maximize social welfare are different, and we then consider
cases where the problem is intractable (NP-hard), and isolate cases
where it is solvable in polynomial time. Again, we find that the
problem can be solved in polynomial time if there are only a small
number of negative relationships in the social network. The motiva-
tion for considering maximizing social-welfare coalition structures
is for situations where organizers can force people to be in groups
and for core stable solutions is where the organizers cannot. In sec-
tion 5 we discuss related work, and then present some conclusions.

2. PRELIMINARY DEFINITIONS
Let A = {a1, . . . , an} be a finite, non-empty set of agents, and
let G = (A,E, ω) be an undirected weighted graph representing
the relations between agents, where each edge (ai, aj) ∈ E is as-
sociated with a weight ω(ai, aj) = ω(aj , ai) ∈ Z ∪ {−∞,∞},
representing the relationship strength or the affinity between agent
ai and aj . If (ai, aj) /∈ E then we assume ω(ai, aj) = 0. In
addition, the graph does not contain self loops. We refer to G as
the social network. A coalition C ⊆ A is a subset of agents; we
do not require that agents in a coalition form a connected compo-
nent in the corresponding social network. We let u(ai, C) denote
the utility that agent ai would obtain from being in the coalition C.
This value is simply the sum of edges’ weights corresponding to
immediate neighbors of ai that are members of C, that is:

u(ai, C) =
∑
aj∈C

ω(ai, aj).

We denote the utility of a coalition C ⊆ A by U(C), and define
this value to be the sum of utilities of members of C, that is:

U(C) =
∑
ai∈C

u(ai, C).

In our model, we assume the game also has a centralized entity or
an organizer, who desires to establish coalitions in order to perform
0 < k ≤ N tasks. Let Πk(A) denote the set of partitions of agents
A that contains exactly k non-empty subsets. We refer to elements
of Πk(A) as coalition structures, and typically use P, P ′, . . . to
denote such coalition structures. With respect to P , let σP : A →
P be the function mapping agents to their coalitions, i.e., if a ∈ Ci
then σP (a) = Ci.

We denote social welfare of the coalition structure P ∈ Πk(A)
by SW (P) (see, e.g., [20]):

SW (P) =
∑
C∈P

U(C).

In case we need to explicitly name the edges of the social network
E (with the corresponding weight function) in a social welfare
computation, we will write SW (P,E).

Technically speaking, the model described above can be consid-
ered as a special case of symmetric additively separable hedonic
games [7].

We will address scenarios in which a centralized organizer has
the ability to adapt the game by adding edges to the social network
G. Specifically, if (ai, aj) /∈ E, then we assume the organizer is
able to add an edge in a way that ω(ai, aj) = 1. Intuitively, adding
an edge (ai, aj) implies creating a social working relationship be-
tween agents ai and aj where no such relationship existed before.
In real-world scenarios, such working relationships are facilitated
by a range of mechanisms, such as team-building exercises. Note
that we do not consider the possibility that the organizer can change
the weight of any existing edge. Moreover, by adding an edge, we
assume the organizer incurs a fixed cost, denoted by α, for every
edge added.

Let E+ be the set of edges that the organizer is adding to the
graph, and Enew be the set of edges of G after the addition done
by the organizer, with corresponding weights ωnew, that is:

ωnew(ai, aj) =

{
1

ω(ai, aj)

(ai, aj) ∈ E+

(ai, aj) ∈ E

In this paper we consider several standard stability concepts, but
we adapted them to our model, where every coalition structure con-
sist of exactly k coalitions.

Definition 1. (Individually rational) A coalition structure is in-
dividually rational if each agent does as well as by being alone, i.e.,
for all a ∈ A, u(a, σP (a)) ≥ u(a, {a}).

Definition 2. (Blocking coalition) Let P = (C1, C2, ..., Ck) be
a coalition structure. A coalition B is blocking if ∀a ∈ B :
u(a,B) > u(a, σP (a)), and there exists exactly one coalition
Cm ∈ P such that Cm ⊂ B.

Note that unlike the usual definition of a blocking coalition, in our
case we do not allow the blocking coalition to cause an increase
or decrease of k (by the creation of new coalition or the merge of
existing coalitions, respectively). We are now ready to define the
version of the core which is suitable for our game, which we call
the k-coalitions-core.

Definition 3. (k-coalitions-core) A coalition structure P ∈
Πk(A) is in the k-coalitions-core if P admits no blocking coalition
and P is individually rational.

We note that although we did not allow for a blocking coalition
to increase k, we still require that P is individually rational, to
prevent the case where there is an agent with a negative payoff who
cannot leave her coalition (and the game). We also introduce a
weaker stability concept, group stability, which restricts the type of
deviations that can occur. This definition is a natural generalization
of inner stability [5], in which there does not exist a blocking that
is contained in an existing coalition.

Definition 4. (Group stability) A coalition structureP ∈ Πk(A)
is group stable if P admits no blocking coalition B such that B ⊂
Ci ∪ Cj where Ci, Cj ∈ P and i 6= j.

That is, we only consider the case when a subset of agents from the
same coalition benefits from merging into another coalition as a
legitimate deviation, and we do not require that P will be individu-
ally rational, since we want to capture the essence of deviations be-
tween coalitions. Note that since B is a blocking coalition, exactly
one of Ci or Cj may be a subset of B, as required by Definition 2.

262

3. MAXIMIZING SOCIAL WELFARE
In this section, we consider the problem of an organizer who de-
sires to construct a coalition structure to perform k tasks that max-
imizes social welfare while taking into account the cost incurred
by adding edges to the graph. Before we consider this case, we
need to determine the complexity of finding the coalition structure
P that maximizes social welfare. We use the following standard
graph theoretic definitions.

Definition 5. A cut C = (S1, S2) of a social network G =
(A,E) is a partition of the agents A into two disjoint non-empty
sets. (Note that in contrast to the common usage of the term “cut”,
we do not require that there is at least one edge in the social net-
workG connecting S1 to S2; i.e., it is possible the sets of agents are
not connected. This assumption does not affect our results below.)
Where (s, t) ∈ A2, we define an s-t-cut to be a cut where s ∈ S1

and t ∈ S2. A k-cut Ck = (S1, S2, . . . , Sk) is simply a partition
of A into k disjoint sets, i.e., an element of Πk.

Definition 6. The size of a cut (respectively s-t-cut, or k-cut)
is defined as the sum of the weights of the edges between each
Si, Sj ∈ C. The MINIMUM-CUT problem is to find a cut with
a minimal size. The MAXIMUM-CUT, MINIMUM-S-T-CUT and
MINIMUM-K-CUT problems are defined in a similar way.

We denote by MIN-CUT, MAX-CUT, MIN-S-T-CUT and MIN-K-
CUT the decision versions of MINIMUM-CUT, MAXIMUM-CUT
MINIMUM-S-T-CUT, and MINIMUM-K-CUT, respectively.

Brânzei and Larson in [5] refer to the problem of maximizing
the social welfare over all possible coalition structures, where we
consider maximization only over those of size k. Hence, solutions
to these two problems exhibit some similar properties and a few
key differences. This will be the subject of discussion later on in
this section. Now, as noted by [5], the coalition structure of size k
which maximizes the social welfare is the one that minimizes the
size of the k-cut. This is true because the sum of all edges is con-
stant, so by minimizing the sum of edges outside the coalitions, we
are maximizing the sum of edges that are within coalitions, a.k.a the
social welfare. Thus we need to utilize an algorithm for MINIMUM-
K-CUT in order to find the coalition structure that maximizes the
social welfare. Note however, that MIN-K-CUT was shown to be
NP-complete if the required partition size k is part of the input [15].
Moreover, [10] showed that MIN-K-CUT is W [1]-hard even if all
weights are positive; it implies that there is no possibility of find-
ing an algorithm with a complexity of O(f(k)nc), where f is an
arbitrary function and c is a constant. Hence, we assume that k is
fixed. Even with a fixed k, MIN-K-CUT is still hard when there are
edges with negative weights by a simple reduction from MAX-CUT
which is NP-Complete [16]. We show that if the number of edges
with negative weights is small, then MIN-K-CUT is in P .

Definition 7. (Nearly positive graphs) Let Eω− be the set of
edges in E with negative weights. The cover number c(G) is the
smallest size of a node subset X such that each edge of Eω− has
an endpoint in X . We define a class of weighted undirected graphs
{Gi} as nearly positive if c(Gi) ∈ O(log(n)).

For example, ifG is a star graph where all the edges are negative,
then the c(G) = 1. If G is a graph where the group of nodes
connected by negative edges form a clique with negative edges,
i.e.,between every two nodes in the group there is a negative edge,
then c(G) = |clique| − 1.

Although the consideration of nearly positive graphs imposes
certain limitations, in the context of building cooperating teams for

performing k tasks it is reasonable to assume that there should not
be too many negative relations in the corresponding social network.
Moreover, we did not impose any other restriction on the structure
of the social network.

THEOREM 1. MIN-K-CUT is in P for nearly positive graphs
and a fixed k.

PROOF. We generalize the proof of Goldschmidt et al. [15] that
showed how MIN-K-CUT is in P on graphs with non-negative
weights when k is fixed. The essence of their polynomial time
algorithm is recursively applying of an algorithm for MINIMUM-
S-T-CUT with multiple sources and sinks. However, McCormick
et al. [18] showed how to solve the MINIMUM-S-T-CUT problem
in polynomial time for nearly positive graphs. Their algorithm is
easily generalized to multiple sources and sinks by adding a super-
source node and a super-sink node, connected to the sources and
sinks respectively with edge weight of∞. Therefore, by replacing
the algorithm for MIN-S-T-CUT with multiple sources and sinks
used by [15] with the generalized version of the algorithm of [18]
we get a polynomial time algorithm for MINIMUM-K-CUT when k
is fixed and the graph belongs to a family of nearly positive graphs,
with a complexity of O(nk

2

).

Now, since finding a coalition structure that maximizes the social
welfare is equivalent to finding the MINIMUM-K-CUT, we get the
following corollary:

COROLLARY 2. Finding the coalition structure that maximizes
the social welfare can be done in polynomial time if k is fixed and
G belongs to a family of nearly positive graphs.

We now address the problem faced by an organizer. This prob-
lem has two interconnected aspects. First, it involves improving so-
cial welfare by facilitating social relationships between agents, i.e.,
by adding edges to the social network. Second, it involves finding
an optimal partition of the agents. Note that, in general these com-
ponent problems cannot be considered in isolation: deciding which
social relationships to facilitate will in part depend on the partition
of agents chosen, and choosing the optimal partition of agents will
depend on the social network in place. Thus, the overall problem
faced by the organizer is captured by the following optimization
problem:

arg max
Enew,P

(SW (P,Enew)− α · |E+|)

For this general problem, there are three cases:

1. No cost: α = 0. Here, any social relationship can be facili-
tated at no cost.

2. Full cost: α = 2. Here, the cost of facilitating a social rela-
tionship equals the value of the affinity created.

3. Intermediate cost: 0 < α < 2.

Due to the additivity of the utility function, we have:

PROPOSITION 3.1. When α = 0 , the optimal edges to add to
G are such that Enew = {(ai, aj)| ai, aj ∈ A} = Kn, i.e., a
complete graph.

PROPOSITION 3.2. When a = 2, adding edges is not benefi-
cial.

The most interesting case is when 0 < α < 2.

263

THEOREM 3. When 0 < α < 2, the organizer can solve the
optimization problem arg max

Enew,P
(SW (P,Enew)−α · |E+|) in poly-

nomial time if k is fixed andG belongs to a family of nearly positive
graphs.

Algorithm 1 SN-max-SW

1. Set E+′ = {(ai, aj)| (ai, aj) /∈ E} with corresponding
weights ω′(ai, aj) = 2−α

2
, and let Enew ′ = E+′ ∪ E.

2. Find the coalition structure P ∗ in G′ = (A,Enew ′) that
maximizes the social welfare.

3. Set E+ = {(ai, aj)| (ai, aj) /∈ E, (ai, aj) ∈ C,C ∈ P ∗}
with corresponding weights ωnew(ai, aj) = 1, and let
Enew = E+ ∪ E.

4. Return (Enew, P ∗).

PROOF. Using algorithm 1. Intuitively, the algorithm builds a
temporary graph, denoted G′, by adding all the possible edges to
the original graph (step 1). However, the new edges have an ad-
justed weights in order to simulate the cost incurred to the orga-
nizer (α). The algorithm then finds the optimal coalition structure,
denoted P ∗, in the temporary graph (line 2), which is possible to
do in polynomial time according to Corollary 2. The algorithm
concludes that the optimal edges to add to G are all the edges that
are within a coalition in P ∗ (line 3), and the coalition structure that
maximizes the social welfare in G after adding the edges in E+

is P ∗. In order to prove the correctness, we first show that P ∗ is
the coalition structure that maximizes the social welfare in G, af-
ter adding the edges in E+. Indeed, given a coalition structure P
in G′, every edge from E+′ within a coalition C ∈ P contributes
2−α to the social welfare. Each such edge is also added to G with
a weight of 1 (line 3). By definition, every other edge from E+′

does not contribute to the social welfare. Thus, SW (P,Enew ′) =
SW (P,Enew) − α · |E+|. In particular, SW (P ∗, Enew) − α ·
|E+| = SW (P ∗, Enew ′) ≥ SW (P,Enew ′) = SW (P,Enew)−
α · |E+|, for every coalition structure P . That is, P ∗ maximizes
the social welfare in G after adding the edges in E+, as required.
Now we need to show that adding the edges from E+ (as de-
fined in line 3) is the optimal way of adding edges to G. In-
deed, given any set of edges to add to G, Ê+, we can build a
temporary graph Ĝ′ with the set of edges ˆEnew ′ = Ê+ ∪ E
where every edge from Ê+ has a corresponding weight of 2−α

2
.

Since Ê+ ⊆ E+, by an equivalent argument used in the proof
to theorem 3.1 we get that SW (P,Enew ′) ≥ SW (P, ˆEnew ′),
for every coalition structure P . In particular, SW (P ∗, Enew ′) ≥
SW (P̂ ∗, ˆEnew ′), where P̂ ∗ is the coalition structure that maxi-
mizes the social welfare in G′ after adding the edges in ˆEnew ′.
Therefore, SW (P ∗, Enew) − α · |E+| = SW (P ∗, Enew ′) ≥
SW (P̂ ∗, ˆEnew ′) = SW (P̂ ∗, ˆEnew) − α · |Ê+|, as required. As
for the complexity, lines 1 and 2 takes at most O(n2) steps, and
lines 3 can be performed in O(nk

2

) steps, as was shown in Theo-
rem 1.

To demonstrate the benefits of the adaptations made by the or-
ganizer on a real network, we used data from the Slashdot net-
work, a website where users can tag others as friends/foes (the
network’s data was downloaded from snap.stanford.edu).

Figure 2: Illustration of Theorem 4

Since Slashdot’s dataset represents an undirected network, we de-
fined the undirected edge weight to be the sum of the two directed
edges between the nodes. Therefore, the weights of the edges vary
between −2 and 2. Using a subgraph of size 20, with 3 coalitions,
and setting the cost of adding edges, α, to 0.5, 1 or 1.5, we dis-
covered that the organizer can improve the original social welfare
by 150, 100 or 47 percent, respectively. As expected, the improve-
ment decreases as α increases. Initial runs also suggest that the
improvement increases as k decreases, and increases as the number
of nodes increases (more possibilities to improve). Experiments
and further analysis on real networks are a subject for future work.

Now, we proceed to examine theoretically some aspects of sta-
bility. The coalition structure P ∗ that maximizes the social welfare
(after addition of edges by the organizer) does not necessarily be-
longs to the k-coalitions-core, as illustrated in Figure 1. Even when
all the weights are non-negative P ∗ is not necessarily a member of
the k-coalitions-core. However, P ∗ has the desirable property of
group stability, as we show in the following theorem:

THEOREM 4. The coalition structure maximizing the social wel-
fare is group stable.

PROOF. LetP ∗ = (C∗1 , C
∗
2 , ..., C

∗
k) be a coalition structure that

maximizes the social welfare. Without loss of generality assume
there existsD ⊂ C∗1 such that C∗2 ∪D is a blocking coalition. This
is illustrated in figure 2. By definition, ∀a ∈ C∗2 ∪D : u(a,C∗2 ∪
D) > u(a, σP∗(a)). In particular, this holds for every d ∈ D.
Therefore, for a specific d ∈ D:∑
aj∈C∗

2

ω(d, aj) +
∑
aj∈D

ω(d, aj) >
∑
aj∈
C∗

1 \D

ω(d, aj) +
∑
aj∈D

ω(d, aj)

which implies:
∑

aj∈C∗
2

ω(d, aj) >
∑

aj∈C∗
1 \D

ω(d, aj)

This is true for every d ∈ D, and thus,∑
aj∈C∗

2 ,d∈D

ω(d, aj) >
∑

aj∈C∗
1 \D,d∈D

ω(d, aj) (*)

We calculate the utilities of the coalitions:

U(C∗1) = U(C∗1 \D) + 2 ·
∑

aj∈C∗
1 \D

d∈D

ω(d, aj) + 2 ·
∑
aj∈D
d∈D

ω(d, aj)

U(C∗2 ∪D) = U(C∗2) + 2 ·
∑
aj∈C∗

2
d∈D

ω(d, aj) + 2 ·
∑
aj∈D
d∈D

ω(d, aj)

Now, sinceP ∗ maximizes the social welfare, it holds that: U(C∗1)+
U(C2

∗) ≥ U(C∗1 \D)+U(C∗2∪D), since the rest of the coalitions
remain unchanged. Using substitution, we get:

264

Figure 1: The difference between the 3-coalition-core and the coalition structure that maximizes the social welfare

0 ≤ U(C∗1\D)+2·
∑

aj∈C∗
1 \D,d∈D

ω(d, aj)+2·
∑

aj∈D,d∈D
ω(d, aj)+

U(C2
∗) − U(C∗1 \ D) − U(C∗2) − 2 ·

∑
aj∈C∗

2 ,d∈D
ω(d, aj) − 2 ·∑

aj∈D,d∈D
ω(d, aj).

After re-arrangement we get,∑
aj∈C∗

2 ,d∈D

ω(d, aj) ≤
∑

aj∈C∗
1 \D,d∈D

ω(d, aj),

which contradicts (*). Therefore, there does not exist any such
blocking coalition.

We would like now to emphasize some inherent differences be-
tween our model and the model of Brânzei and Larson [5]. In our
model, if P ∗ = (C∗1 , C

∗
2 , . . . , C

∗
k) is the coalition structure that

maximizes the social welfare, then there might exist some coalition
C∗i ∈ P ∗, where a cut of C∗i is negative. For example, in a clique
with negative edges, every coalition structure contains at least one
coalition with a negative cut. Therefore, P ∗ is not guaranteed to
be individually rational. Similarly, the k-cut imposed by P ∗ may
contain positive edges. All of these properties do not hold in the
model of [5]. Moreover, if there are only positive edges, the only
coalition structure that maximizes the social welfare in the model
of [5] is the grand coalition. In our model, in order to enable proper
task execution there must be exactly k coalitions, and when k is
not fixed finding the coalition structure that maximizes the social
welfare is hard even when all the edges are positive.

4. THE K-COALITIONS CORE
We now turn our attention to problems relating to the k-coalitions
core. First, let us state the three key decision problems relating to
the k-coalitions core:

Definition 8. K-C-EXIST: Given: G = (A,E, ω), the social
network (E may contain positive and negative edges), and a natural
number k – the number of coalitions. Question: Is the k-coalitions-
core of G is non-empty?

Definition 9. K-C-MEMBERSHIP: Given: G = (A,E, ω), the
social network (E may contain positive and negative edges), and a
coalition structure P ∈ Πk(A). Question: Is P is a member of the
k-coalitions-core?

Definition 10. K-C-FIND: Given: G = (A,E, ω), the social
network (E may contain positive and negative edges), and a natural
number k – the number of coalitions. Output: A member of the k-
coalitions-core, if such exists.

In the analysis of these problems, we make use of the notion of
a k colouring of a graph.

Definition 11. A k-coloring of a graph G is a vertex coloring,
that is an assignment of one of k possible colors to each vertex of
G, such that no two adjacent vertices receive the same color.

Note that a graph may have a proper coloring with less than k
colors. In this case we can arbitrarily assign each unused color to a
vertex, to achieve a coloring of exactly k colors. The key decision
problem associated with k colorings, which is known to be in NP-
complete [13], is as follows:

Definition 12. K-COLORING: Given: Graph Gc with nc ver-
tices and natural number k. Question: Does G admits a proper
vertex coloring with k colors?

We first consider the K-C-EXIST problem. We show that, sim-
ilarly to the existence problem of the core for hedonic games with
symmetric and additively separable preferences [2], the problem is
NP-hard in the strong sense, even for a fixed k.

THEOREM 5. For a social network with negative and positive
weights, K-C-EXIST is NP-hard, for every fixed k > 2.

PROOF. The reduction is from K-COLORING, when k = 3.
That is, we prove that the 3-C-EXIST is NP-hard by a reduction
from the NP-hard 3-COLORING problem.

Given an instance of 3-COLORING, Gc = (Vc, Ec), we build an
instance of 3-C-EXIST such that A = Vc, E = Ec, and for every
(ai, aj) ∈ E,ω(ai, aj) = −1. Clearly, this construction can be
performed in polynomial time. Now, assume there is a proper 3-
coloring, and let P =

⋃
i

Ci, where Ci = {al| the color i assigned

to al}. We show that P is a member of the 3-coalitions-core. First,
it is clear that P consists of exactly 3 coalitions, since the coloring
uses 3 colors. All the vertices with the same color are not adjacent
(since this is a proper coloring), and therefore a vertex does not
have any of its immediate neighbors in the same coalition. Hence,
the utility of every agent is 0, which is the maximal value possible
(since all weights are negative). Therefore, no agent can strictly
benefit from moving to a different coalition or by leaving the game,
which implies that P is a member of the 3-coalitions-core. For the
other direction, assume that there exists a coalition structure P that
is a member of the 3-coalitions-core. Moreover, assume that in P
there are at least two adjacent vertices, ai, aj , in the same coali-
tion. Thus, the utility of ai and aj is necessarily negative, and they
would benefit from leaving the game. That is, P is not individually
rational – a contradiction. Hence, in all of the coalitions of P there
are no two adjacent vertices. By assigning the same color to all the
vertices from the same coalition, we get a proper 3-coloring.

265

Theorem 5 immediately implies that:

COROLLARY 6. K-C-FIND is NP-hard for every fixed k > 2.

We note that on nearly positive graphs, K-C-EXIST is still not triv-
ial, since given a specific k, if G contains a sub-graph that is not
k-colorable, then the k coalitions core does not exist, regardless of
the size of the cover number.

We now turn to the K-C-MEMBERSHIP problem. For this prob-
lem, we make use of the well-known CLIQUE problem.

Definition 13. CLIQUE: Input: Graph Gc = (Vc, Ec) with nc
vertices and natural number s. Question: Does G contains a subset
of nodes of size s, such that between every two nodes there exists
an edge?

Similarly to the CORE-MEMBERSHIP problem in symmetric ad-
ditively separable hedonic games, which is co-NP-complete [21],
the following Theorem establishes that this is also the case with the
k-coalitions-core. Below, we will examine conditions under which
K-C-MEMBERSHIP is in P .

THEOREM 7. For a social network with negative and positive
weights, K-C-MEMBERSHIP is co-NP-complete, for every fixed
k > 2.

PROOF. First, we show membership in co-NP, by showing that
the complement problem, i.e., determining that P is not a member
of the k-coalitions-core, is in NP. Indeed, given a deviating sub-
group of agents, it is easy to verify that all the members of the new
coalition strictly benefit, and that the blocking coalition is valid
(i.e., there are no more or less than k coalitions after the deviation).

For hardness, we reduce the CLIQUE problem to the complement
of K-C-MEMBERSHIP. For space reasons, we will present the gen-
eral lines of the proof. Let (Gc, s) be an instance of CLIQUE, where
Gc = (Vc, Ec) and |Vc| = nc. We construct an instance of the
complement of K-C-MEMBERSHIP as follows. We set k = 3,
and define A = V ∪ V ′ ∪ {x1, x2, x3}, where V and V ′ are a
replica of the nodes in Vc. We define P = {C1, C2, C3} where
C1 = {x1},C2 = {x2} ∪ V ′,C3 = {x3} ∪ V . We would like
to show that P is not a member of the 3-coalitions-core iff there
exists a clique q of size s in Gc. Therefore, we set E such that the
blocking coalitions can only be of a specific form that will indicate
an existence of a clique, and vise versa. E is defined as follows:
x1, x2, x3 are connected by edges of weight −∞, which ensures
they cannot be part of the same coalition, and each of them will
always be a member of a different coalition. Now we set the rest
of the weights: x2 is connected to nodes from V with −∞, and
receptively for x3 and V ′, to ensure that members of C2 or C3 will
no deviate to each other’s coalitions, and would only want to devi-
ate to C1. The rest of the weights are assigned so that a blocking
coalition may only beC1 joint with 2 replications of a clique of size
s (one from V ′ in C2 and one from V in C3). The exact technical
details are omitted.

Let us now consider conditions under which K-C-MEMBERSHIP
is in P . We show that when all the weights are non-negative and
k is fixed, it is possible to iterate over all the potential blocking
coalitions in polynomial time.

THEOREM 8. For a social network with only non-negative
weights, K-C-MEMBERSHIP is in P if k is fixed.

PROOF. Consider Algorithm 2. Step (1) verifies that the coali-
tion structure contains exactly k coalitions, otherwise it is obvi-
ously not a member of the k-coalitions-core. Step (3) is performed

in order to ensure that the possible deviating coalitions structures
are valid in a sense that they have exactly k coalitions. Therefore,
we choose k agents, one from each coalition, that are forced to re-
main in their original coalitions when considering deviations. We
consider every such possible selections of k agents.

A possible blocking coalition is a subgroup of agents deviating
to an existing coalition (since there should remain exactly k coali-
tions). Therefore in step (4) we start iterating over all the coalitions,
each time considering a deviation of a sub-group of agents to a spe-
cific coalition.

Now, we need to consider the sub-group of deviating agents. All
agents in the subgroup must strictly benefit from the deviation, as
well as the agents in the coalition that the subgroup joins. There-
fore, in step (6) we initially check a deviation to coalition Ci of
all the agents (except the k chosen agents, to ensure k coalitions).
Since all weights are non-negative, the utility function of an agent
is monotonic in the sense that if an agent does not benefit from a
certain coalition, it will not benefit from any of its sub-coalitions.
Therefore, if there are some agents in the subgroup which do not
benefit from the current deviation they cannot be a part of the devi-
ating agents (since all other possible blocking coalitions deviating
to Ci are sub-coalitions of the current one) and therefore we con-
tinue to check only the agents that did strictly benefit, and that are
potentially a part of a blocking coalition. If some agents in Ci do
not benefit from deviation to it, it means that Ci cannot be a part
of the blocking coalition, and we need to consider the next possible
coalition to deviate to: Ci+1. If all the agents in the deviation and
in coalition Ci strictly benefit from it, then we found a blocking
coalition, and therefore P is not a member of the k-coalitions-core.
Thus, the algorithm enumerates all possible potentially blocking
coalitions for P . If the algorithm did not discover such deviation,
then P is guaranteed to be in the k-coalitions-core.

As for the complexity, it is clear that Step (1) can be performed
in polynomial time. Step (3) contains redundant calculations, but
even so, its complexity can be bounded by

(
n
k

)
= O(nk). Step

(4) is performed k times and step (6) is performed at most n times.
Calculating the utility for every agent on step (8) takes O(n). In
total, we get a complexity of O(k · nk+2). Since k is fixed, this is
a polynomial time algorithm.

What about the case where we might have a small number of
negative edges? As before, we formally capture the notion of “small
number” of negative edges, by the family of nearly positive graphs.
In the following proof we will use algorithm 3, which is very sim-
ilar to algorithm 2. However, algorithm 2 utilizes the advantage of
having only non-negative weights. In that case, the utility function
for every agent has a monotonicity property, in a sense that when
an agent does not benefit from a coalition, she will not benefit from
any of its sub-coalitions. Therefore, algorithm 2 does not need
to consider all possible sub-coalitions of agents but only a linear
number of them. When negative weights are allowed, this property
does not hold anymore. Agents may well benefit from the removal
of other agents with negative edges, thus the utility function is no
longer monotonic. Nonetheless, when considering nearly positive
graphs, we can still consider all possible subgroups of the vertex
cover of the negative edges, while using the monotonicity for the
rest of the agents. Therefore, Algorithm 3 is able to maintain the
polynomial time complexity.

THEOREM 9. K-C-MEMBERSHIP is in P for social networks
that are nearly positive graphs and a fixed k.

PROOF. Consider algorithm 3. Steps(1)-(7) are the same as in
algorithm 2 except for the fact we now need to test for individual
rationality as well. In step (8) we consider every possible subgroup

266

of the vertex cover of Eω− (the set of edges in E with negative
weights), and use the fact that removing agent ai /∈ V− will not
improve the utility of an agent aj /∈ V−. Indeed, there are three
possible cases:

• If (ai, aj) /∈ E then clearly removing ai will not affect aj .

• If ω(ai, aj) > 0 then on the contrary, aj would lose from
the removal of ai.

• ω(ai, aj) < 0 is not possible, because it would mean that
either ai ∈ V−, or aj ∈ V−.

Therefore, when considering a specific subgroup of V− we can use
the monotonicity on the rest of the agents, as done in algorithm 2.

Now for the running time, in step (8) we go through all possible
subgroups of the vertex cover of Eω− . Since we are not interested
in the optimal (i.e., minimal) vertex cover, we can use one of the
2-factor approximation algorithms that finds a vertex cover [17],
which still preserves the O(log(n)) size of the cover. Enumerat-
ing through all possibilities takes O(2log(n)) = O(n). Therefore,
following the similar argument as in algorithm 2 we get a total com-
plexity of O(k · nk+3)

Algorithm 2 Is-Member(P,k)
1: if |P | 6= k then
2: return false
3: for all possible selection of k agents such that: x1 ∈
C1, ..., xk ∈ Ck (P = (C1, ..., Ck)) do

4: for i = 1 to k do
5: Initialize V̂ ← ∅
6: while Ṽ ← {A \ ({x1, ..., xk} ∪ V̂)} 6= ∅ do
7: C̃ ← Ci ∪ Ṽ
8: for every agent a ∈ C̃ do
9: calculate u(a, C̃)

10: if u(a, C̃) = u(a,Ci) then
11: if a ∈ Ci then goto 4

else
12: V̂ = V̂ ∪ {a}
13: if ∀a ∈ C̃: u(a, C̃) > u(a, σP (a)) then
14: return false{C̃ is a blocking coalition}
15: return true{P is in the k-coalitions-core}

What about an organizer that would like to add edges to the
social network, in order to increase the social welfare of the k-
coalitions-core? While adding edges to the social network causes a
linear increase in the maximal social welfare, the impact on the
k-coalitions-core is more complex. The addition of edges may
cause a non-linear decrease or increase in the social welfare of the
k-coalitions-core members, even without considering the cost of
adding edges (α). This phenomenon is illustrated in Figure 3. The
original 3-coalitions-core member in 3(d) has a social welfare of
20, while the new 3-coalitions-core member after adding all the
edges has a social welfare of only 15.

5. RELATED WORK
Coalition formation in the context of task allocations has been the
subject of multiple studies in different disciplines [9, 1, 19, 4].
Some have modeled coalition formation using transferable utili-
ties [19], but it is also very common to assume, as in our model,
that the utilities are non-transferable [11].

Our model is a special case of symmetric additively separable
hedonic games (symmetric ASHGs), which have been extensively

Algorithm 3 Is-Member(P,k)
1: if |P | 6= k then
2: return false
3: if ∃a ∈ A such that: u(a, σP (a)) < 0 then
4: return false{P is not individually rational}
5: for all possible selection of k agents such that: x1 ∈
C1, ..., xk ∈ Ck (P = (C1, ..., Ck)) do

6: for i = 1 to k do
7: Initialize V̂ ← ∅, and V− ← vertex cover of Eω−

8: for all possible subgroups V̂− of V− do
9: while Ṽ ← A \ ({x1, ..., xk} ∪ V̂) 6= ∅ do

10: C̃ ← Ci ∪ Ṽ ∪ {V̂− \ {x1, ..., xk}}
11: for every agent a ∈ C̃ do
12: calculate u(a, C̃)

13: if u(a, C̃) ≤ u(a,Ci) then
14: if a ∈ Ci then goto 6
15: else if a ∈ V̂− then goto 8
16: else then
17: V̂ = V̂ ∪ {a}
18: if ∀a ∈ C̃: u(a, C̃) > u(a, σP (a)) then
19: return false{C̃ is a blocking coalition}
20: return true{P is in the k-coalitions-core}

studied in the field of multi-agent systems [7, 2]. However, we use
the interpersonal relationships, as described by a social network, to
define the utilities of the players in the coalition formation game.
Brânzei and Larson [5] and Bachrach et al [3] have also defined
the utilities is such a way. However, Bachrach et al. in [3] imposed
some constraints on the structure of the social network, such as
planar, minor free and bounded degree graphs, in order to come-up
with constant factor approximations for the problem of maximizing
the social welfare. We provide an exact algorithm using a constraint
on the number of negative edges in the social network, but not on
its structure. Brânzei and Larson [5] investigated properties of the
coalition structure that maximizes the social welfare, the core, and
the relationship among them, but did not provide algorithms to find
them. In other work [6], Brânzei and Larson use the social net-
work to define the utilities of players, but in a different way. All
of these works did not consider the possible requirement to form
exactly k coalitions, in order to enable performing of k tasks. As
we discussed in Section 3, this restriction adds some unique prop-
erties to the coalition structure that maximizes the social welfare,
and we also had to introduce a modification of the well-known core
solution concept, which we called the k-coalitions-core.

In another branch of work, [1], [9] and [8] used a social network
in coalition formation games, as a constraint on possible collabo-
rations, e.g., each coalition must form a connected component. In
our model we do not use this constraint, since the organizer has the
ability to facilitate relationships, and make introductions between
unacquainted agents. Similarly to the problem that we have defined
for the organizer, the work of [14] considers a problem of rewiring
the network to enable better team formation in agent organized net-
works (AON). The key difference is that in their model each agent
is able to rewire its local neighborhood, while in our case there is
a centralized organizer who can add edges throughout the entire
network. Apart from applying local strategies, they also consider
multiple iterations, as the agents adapt to the ongoing changes of
the network.

6. CONCLUSIONS AND FUTURE WORK
We analyzed the problem of coalition formation with a fixed num-

267

Figure 3: The effect of adding edges on the k-coalitions-core

ber of coalitions where in addition, a central organizer can facilitate
new relationships between agents, with a certain cost.

We examined this scenario from two aspects: maximizing social
welfare and finding core stable solutions. We provided general re-
sults, and established that the problem of finding a coalition struc-
ture maximizing the social welfare is tractable only when both k
and the number of negative edges are constrained. We provided a
polynomial time algorithm in the case of fixed k and nearly pos-
itive graphs for computing the optimal coalition structure and the
optimal set of edges the organizer should add to the network.

With respect to core stable solutions, we identified tractable in-
stances and provided polynomial time algorithms for them. We
concluded by characterizing several properties for the problem of
adding edges to network in order to increase the social welfare of
core stable solutions. Finding a polynomial time algorithm or an
approximated heuristic to this problem is the subject of further re-
search. Another future direction based on the model analyzed in
this paper would be to consider skills for the agents, where each
task requires a specific set of skills. Finally, in addition to pursuing
theoretical directions, we also intend to run experiments on a real
network data.

Acknowledgments
Sarit Kraus would like to acknowledge the support of the European
Research Council under Advanced Grant 267523, and U.S. Army
Research Lab and Research Office grant MURI W911NF0810144.
Michael Wooldridge would like to acknowledge the support of the
European Research Council under Advanced Grant 291528.

7. REFERENCES
[1] A. Anagnostopoulos, L. Becchetti, C. Castillo, A. Gionis,

and S. Leonardi. Online team formation in social networks.
In Proceedings of WWW-12, 2012.

[2] H. Aziz, F. Brandt, and H. G. Seedig. Computing desirable
partitions in additively separable hedonic games. Artificial
Intelligence, 195:316–334, 2012.

[3] Y. Bachrach, P. Kohli, V. Kolmogorov, and
M. Zadimoghaddam. Optimal coalition structure generation
in cooperative graph games. In Proceedings of AAAI-13,
2013.

[4] Y. Bachrach and J. S. Rosenschein. Coalitional skill games.
In Proceedings of AAMAS-08, 2008.

[5] S. Brânzei and K. Larson. Coalitional affinity games. In
Proceedings of AAMAS-09, 2009.

[6] S. Brânzei and K. Larson. Social distance games. In
Proceedings of IJCAI-11, 2011.

[7] G. Chalkiadakis, E. Elkind, and M. Wooldridge.
Computational Aspects of Cooperative Game Theory.
Morgan-Claypool, 2011.

[8] G. Chalkiadakis, E. Markakis, and N. Jennings. Coalitional
stability in structured environments. In Proceedings of
AAMAS-12, 2012.

[9] M. de Weerdt, Y. Zhang, and T. Klos. Multiagent task
allocation in social networks. Autonomous Agents and
Multi-Agent Systems, 25(1):46–86, 2012.

[10] R. Downey, V. Estivill-Castro, M. Fellows,
E. Prieto-Rodriguez, and F. Rosamond. Cutting up is hard to
do: the parameterized complexity of k-cut and related
problems. Electronic Notes in Theoretical Computer Science,
78(205-218):10, 2003.

[11] P. Dunne, S. Kraus, E. Manisterski, and M. Wooldridge.
Solving coalitional resource games. Artificial Intelligence,
174(1):20–50, 2010.

[12] E. Elkind and M. Wooldridge. Hedonic coalition nets. In
Proceedings of AAMAS-09, 2009.

[13] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-completeness.
Freeman, 1979.

[14] M. Gaston and M. desJardins. Agent-organized networks for
dynamic team formation. In Proceedings of AAMAS-05,
2005.

[15] O. Goldschmidt and D. S. Hochbaum. A polynomial
algorithm for the k-cut problem for fixed k. Mathematics of
Operations Research, 19(1):24–37, 1994.

[16] R. M. Karp. Reducibility among combinatorial problems.
Springer, 1972.

[17] C. E. Leiserson, R. L. Rivest, C. Stein, and T. H. Cormen.
Introduction to algorithms. The MIT press, 2001.

[18] S. T. McCormick, M. Rao, and G. Rinaldi. Easy and difficult
objective functions for max cut. Mathematical programming,
94(2-3):459–466, 2003.

[19] W. Saad, Z. Han, T. Basar, M. Debbah, and A. Hjorungnes.
A selfish approach to coalition formation among unmanned
air vehicles in wireless networks. In Proceeding of
GameNets-09, 2009.

[20] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and
F. Tohmé. Coalition structure generation with worst case
guarantees. Artificial Intelligence, 111(1–2):209–238, 1999.

[21] S. C. Sung and D. Dimitrov. On core membership testing for
hedonic coalition formation games. Operations Research
Letters, 35(2):155–158, 2007.

268

