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ABSTRACT
How does skepticism affect opinion formation in networks?
In many settings, agents exhibit skepticism in the presence
of people whose beliefs radically different from their own,
and they are reluctant to be persuaded by such individuals.
We present a model of opinion dynamics where agents are
receptive toward other agents that have similar opinions, but
remain skeptical of agents holding disparate opinions. We
analyze how agents with extreme opinions affect the general
population, using simulations on Barabási-Albert random
graphs, and modified Erdös-Rényi random graphs that in-
corporate homophily. Finally, we show that even skeptical
agents are able to come to an early consensus and take co-
ordinated action to reach a final opinion in most settings;
but, agents in homophilic networks may fail to converge to
a single opinion. Paradoxically, this happens when agents
are least skeptical, and are able to stabilize themselves by
balancing influence from extremists from opposing camps.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems; J.4 [Computer Applica-
tions]: Social and Behavioral Sciences—Sociology

General Terms
Experimentation, Theory

Keywords
Agent-Based Models, Social Simulation, Social Networks,
Information Propagation, Innovation Diffusion, Opinion Dy-
namics, Cognitive Convergence, Degree-based Voter Model,
Homophily

1. INTRODUCTION
The field of opinion dynamics draws its early roots from the
study of innovation diffusion. Under these model, agents
within a community individually choose whether or not to
adopt a novel trait based on the actions of their neighbours,
in a repeated coordination game. Early studies focused on
the decision to adopt new technologies such as antibiotics [4]
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and hybrid corn [23]. These decisions are naturally modelled
by binary variables, and the model can just as easily be ap-
plied to study operating system and social media adoptation
today.

While binary variables are appropriate for modelling such
decisions, they lack the richness necessary to capture more
gradated opinions such as political leanings, socioeconomic
standings, or various fashions and fads. The field of opinion
dynamics generalizes the innovation model by interpreting
opinions as continuous values in the interval [0, 1]. Agents’
opinions are swayed by each other through repeated interac-
tions, and the opinions of the community gradually converge
to an equilibrium.

The analogous problem to innovation adoption in the con-
tinuous domain is the study of the effects of extremism in
a community. In the discrete model, “early adopters” are
represented as agents whose opinions are fixed to a certain
value. In the continuous model, agents with fixed (or merely
steadfast) opinions at the ends of the spectrum are akin to
extremists in a population. The pitfall is that most mathe-
matical models in this domain tend to focus on convergence
of opinions [13]. The challenge then is to devise a model
that allows fractions of a population to disagree with each
other, even at equilibrium.

A class of phenomena known to cognitive scientists as
cognitive bias motivates our approach. When subjects ex-
perience cognitive bias, they arrive at skewed or irrational
conclusions based on an inaccurate and subjective recon-
struction of reality [1]. One particular type of cognitive bias
is motivated cognition, where observations are evaluated in
ways most beneficial to the individual or compatible with the
individual’s beliefs.1 In one experiment [17], when asked to
rate the attractiveness and personality of a confederate, par-
ticipants who were led to believe they must go on a date with
the confederate consistently gave more favorable ratings. In
a study of a more everyday phenomenon, after observing a
sports event containing a minor but questionable call, fans
of the losing team were more likely to attribute the outcome
to referee error over qualities of the teams, when compared
to fans of the winning team; however, in games where no
such a questionable call is evident, there is no such bias.

The second study is very telling. Two groups of people
were exposed to the same evidence, but their opinions (on

1A competing theory called cognitive dissonance explains
the same behavior through a different set of mechanisms.
The specific mechanics of these behaviors are unimportant
to us, as we are only concerned with the fact that these
behaviors do occur regularly in humans and other animals.
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the competitive merits of the respective teams) did not con-
verge. This seems to fly in the face of belief updates via
Bayes’ rule. Jaynes provides some insight on this by al-
lowing agents to consider the possibility that the evidence is
unreliable. The further away the evidence is from an agent’s
expectations, the more likely the agent is to believe that it
is flawed, and therefore the less persuasive the evidence [14].
Laplace summarizes this idea nicely in his essay on probabil-
ity [18], that outlandish claims “decrease rather than aug-
ment the belief which they wish to inspire; for the those
recitals render very probable the error or the falsehood of
their authors.”

This idea of motivated cognition is central to our model.
Agents are skeptical of another agent when their opinions
diverge, but are more receptive to persuasion when their
opinions better align. In the rest of this paper, we detail
work on related models in opinion dynamics, then we for-
malize this concept of skepticism and trust2 in our model of
opinion dynamics, and explore its effects in simulated social
networks.

2. RELATED WORK
Numerous researchers in the artificial intelligence commu-
nity have explored how ideas diffuse through social networks.
Recent works that emphasize the convergence of opinions in-
clude a model for how language features emerge, evolve and
expire [24] and how opinions can be efficiently diffused in
large communities [21]; Parunak also coins the term “collec-
tive cognitive convergence” in his study of the phenomenon,
which also includes a more comprehensive review of litera-
ture [20].

Our skeptical paradigm places emphasis on limiting inter-
actions between agents whose opinions diverge significantly.
Many researchers in the 20th century have explored various
linear models for opinion formation [13]. Krause [15] was the
first in the field to incorporate nonlinear systems, formulat-
ing the bounded confidence model. In this scenario, a panel
of experts must arrive at a consensus about the evaluation
of a piece of work. Each begins with a private opinion and
a level of confidence on the accuracy of that opinion. As
they interact with each other, they allow their opinions to
be swayed by only those experts who hold opinions within a
certain interval of theirs. The more confident the expert, the
smaller their interval. The more confident the other expert
is, the larger the sway.3

In the bounded confidence model, the ability of agents
to influence each other is cut off sharply at a certain limit.
Deffuant [5] refines this model by incorporating a Gaussian
kernel with bandwidth equal to the confidence level. This
allows influence to be dropped off in a smooth, continuous
manner. The initial motivation for this model was to study
the emergence of “mob mentality”, where sensible individu-
als are driven to extreme actions when present in a crowd
containing only a small fraction of radicals [6]. Interestingly,
while this avalanche effect sits as a counterpoint to the skep-
tical behavior motivating our model, it is emergent in our

2We use “trust” only in its plain, nontechnical sense, and
not in reference to mathematical trust models within the
multi-agent systems community.
3This description is based on subsequent work in [16], as [15]
is written in German. A subsequent model by Deffuant [7]
also weights the amount of influence exerted by the degree
of overlap between the intervals.

experiments. In his paper, Deffuant explores the ramifica-
tions of this model on Erdös-Rényi random graphs, while a
variant of his model is explored in small-world social net-
works [11].

The idea of skepticism arising in social networks, between
agents with different opinions, has also been explored more
recently by Cho, Ver Steeg and Galstyan, and verified on
data from the U.S. Senate [3]. In their paper, they consider
co-membership in groups as being a surrogate for trust and
a driver for evolution of network structure. Salzarulo [22]
also investigates a similar phenomenon based on exogenously
defined “in-group” and “out-group” mentalities.

Carvalho and Larson [2] explore the role skepticism plays
in expert panels. In their model, a group of experts with
initially different opinions revise their evaluations, with less
weight given to experts whose opinions differ greatly from
their own. They show that such a panel always reaches
consensus, and such a model works efficiently on real world
data.

The concepts of trust and persuasion have also been ex-
plored from different perspectives. Fang, Zhang and Thal-
mann [10] proposed a model for uniting the concepts of trust
and innovation diffusion by allowing trust itself to be dif-
fused through a network; Hazon, Lin and Kraus [12] con-
sidered how group decisions may be altered by appealing to
self-interested individual to change their preference ballots.

Finally, Martins [19] proposes a model bridging the con-
tinuous and discrete domains, where agents maintain an in-
ternal (continuous) probability about which of two actions is
more profitable, but is only able to communicate with each
other through taking (discrete) actions. His simulations on a
grid lattice show that a population eventually reaches stable
equilibrium configurations of actions, where certain agents
can become extremely confident of their choices.

3. OPINION DYNAMICS MODEL
In our model, agents {1, 2, . . . n} are embedded in a social
network represented by a simple, undirected graph G =
(V,E). Each agent i has an opinion xi ∈ [0, 1] and is influ-
enced by neighbours N(i) = {v ∈ V |{i, v} ∈ E}. For each
neighbour j, i maintains a trust value wi,j > 0 representing
the weight i gives to j’s opinions.

We define a trust function T , based on the distance be-
tween any particular opinions x and x′ via the Gaussian
kernel, described in Equation (1). The bandwidth param-
eter h represents the empathy of the population; a higher
empathy reflects a population more willing to be persuaded
by someone with a more different opinion.

T (x, x′) = exp(− (x− x′)2

h
) (1)

Equations (2) and (3) describe the trust and opinion updates
performed at each time step: each agent i updates its opin-
ion xi and trust values wi,j via a weighted average. A lower
wi,j indicates i is more skeptical of j, and therefore, less in-
fluenced by j’s opinions. We include a parameter wi,i as the
inertia of i’s trust and opinions, to be weighted against those
of its neighbours. We also define a parameter r representing
the learning rate of the population; a higher learning rate
reflects a more judgemental population that more quickly
distrusts someone with a different opinion. Note also that
the opinion update (2) is performed before the trust update
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(3) in each iteration.

xi ←
wi,ixi +

∑
j∈N(i)

wi,jxj

wi,i +
∑

j∈N(i)

wi,j
(2)

wi,j ←
wi,j + r T (xi, xj)

1 + r
(3)

The majority of nodes in each network will represent mod-
erate agents, with randomly chosen initial opinions which
update as described above. The reminder of the vertices
will represent extremists. Extremists have polarized opin-
ions xi fixed at one extreme of the spectrum (either 0 or 1),
which is equivalent to setting their empathy to 0. They do
not updated according to equations (2) and (3).

The use of the Gaussian kernel is reminiscent of the smoothed
bounded confidence (SBC) model in [5]. Our model differs
by replacing each agent’s personal confidence value, with dy-
namically updated trust values between every pair of agents.
This allows agents to remain receptive to some of their neigh-
bours while becoming more skeptical of others, and also for
trust to be gradually lost or recovered over time. The notion
of equating confidence with persuasiveness is appropriate in
a cooperative setting such an expert panel, but seems less
suitable in a setting where agents are skeptical in their in-
teractions.

Figure 1: A Erdös-Rényi graph with homophily.
Node colors indicate initial opinions, with progres-
sion from white (0) to black (1).

3.1 Graph Models
We consider two types of random graph models in our ex-
periments: the classic Barabási-Albert random graph, and
a homophily model based on Erdös-Rényi random graphs
similar to that presented in [25].

A Barabási-Albert random graph with attachment param-
eter m is constructed by iteratively adding vertices, connect-
ing them tom existing vertices with probability proportional
to their respective degrees. It is often used to model the
scale-free property of social networks where a relatively few
number of vertices (“hubs”) cover most of the edges.

An Erdös-Rényi random graph with connectivity prob-
ability p is constructed by considering every pair of ver-
tices i and j, and connecting them with fixed probability
p. We incorporate homophily in this model by reweighting
the connection probability between i and j as (1−d)p, where
d = |xi − xj |. This causes vertices with similar opinions to
be joined with higher probability than those with disparate
opinions. As with the classic Erdös-Rényi model, the re-
sulting graph may be disconnected. If this is the case, we
simply discard and regenerate the graph. A typical modified
Erdös-Rényi graph on 50 vertices and p = 0.2 is shown in
Figure 1; agent opinions were drawn from the distribution
Beta(0.5, 0.5).

3.2 A-priori Trust Models
The initial trust between the agents represent how much the
agents trust each other prior to the start of the experiment.
We utilize three different trust models:

First, we have the uniform trust model, where wi,j =
1,∀{i, j} ∈ E. We define wi,i = di, where di is the degree of
vertex i, which is consistent with a degree-based voter model
where the interactions between an agent and its neighbours
are modeled as a series of pairwise interactions. This model
makes the fewest assumptions about how trust has been es-
tablished.

Next, we have the degree based trust model, where more
initial trust given to the opinions of well-connected (“pop-

ular”) members of the community: wi,j =
dj
di
, ∀{i, j} ∈ E.

Similarly by the logic above, we define wi,i = 1.
Finally, we have the kernel based trust model. Here, we as-

sume the vertices have interacted previously and their trust
value have converged to equilibrium values specified by equa-
tion (1); that is, wi,j = T (xi, xj) and wi,i = 1

4. EMPIRICAL SIMULATIONS
In this section, we describe two sets of experiments that ex-
plore the behavior of agents in our model. The first set of ex-
periments operate only on Barabási-Albert random graphs,
and aims to explore the ability of extremists to influence
the moderate population on typical (i.e. scale-free) social
networks.

In the second set of experiments, we explore the ability for
extremists at both ends of spectrum to polarize the moder-
ate population, with the ultimate goal of finding necessary
conditions for the opinions of the moderates to stratify and
stabilize at multiple, non-polarized levels. We introduce the
modified Erdös-Rényi random graph model, and the kernel
initial trust model in pursuit of this goal.

4.1 Experimental Design
For each experiment, we initialize the social network G with
200 nodes using the appropriate graph model, with varying
parameters for graph construction and agent empathy. In
the first set of experiments, 10% (20 nodes) of the population
is chosen uniformly at random to be 1-extremists; we call
this the 1-pole model. In the second set, the population
contains 10% 0-extremists and 10% 1-extremists, also chosen
uniformly at random; we call this the 2-pole model.

The remainder of the population comprise the moderates.
They begin with opinions initialized to random values: ei-
ther sampled uniformly from the interval [0, 1), or from the
partially polarized distribution Beta(0.5, 0.5). Initial trust
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between them is set according to one of the models outlined
in Section 3.2.

Once the instance is initialized, the variables are updated
according to equations (1)-(3). We set r = 1.5 for all exper-
iments, as preliminary tests did not find varying r changed
our qualitative results.

The experiment terminates when no opinions changed by
more than a small value ε, or a maximum number of iter-
ations tmax has been reached. In our experiments, we set
ε = 0.001 and tmax = 500; tmax was rarely reached in prac-
tice. This model was implemented using Python 3.3.2. All
results are averaged over 25 replicated trials.

4.2 Influence of Extremists
We begin by investigating the ability of extremists to affect
the opinions of the moderates, and how that impact varies
with graph structure and parameters of the agents. Figure
2 shows the evolution of opinions over the course of an ex-
periment. To measure this impact, we measure the mean
opinion of the moderates at the end of each experiment. If
the moderates were completely unaffected by the extrem-
ists, the mean would hover around 0.5. If the extremists
were completely successful at persuading the moderates, the
mean would near 1.0.

Figure 2: Opinions of moderates over the course of
an experiment. Note the color scale is logarithmic.

Figure 3 shows how the average opinion at convergence
changes as we adjust the empathy bandwidth parameter h,
and the attachment parameter m. As expected, increasing
empathy increases the impact of the extremists on the pop-
ulation. However, aside from the special case when m = 1,
which imposes a tree structure on the network, increas-
ing connectivity does not significantly impact the mean at
convergence. This is likely due to the small-world prop-
erty of these graphs, allowing influence to propagate quickly
through the network.

Figure 3 also contrasts the effects of initializing using uni-
form trust (left) and degree-based trust (right). Adopting
initial degree based trust introduces more degrees of free-
dom in the experiment, in the form of the portion of hubs
becoming extremists. This accounts for the higher variabil-
ity in our results.

One critique of Deffuant’s SBC model is its sensitivity to
noise [9]. We introduce a similar level of noise to our model,
allowing each moderate agent to change their opinion by a
small value drawn from a Gaussian distribution, with small

probability at each update. More formally, each agent at
each iteration has a 0.01 probability of using the following
equation in place of equation (2) for their opinion update.
Note that the resulting opinion is bounded within [0, 1].

xi ←
wi,ixi +

∑
j∈N(i)

wi,jxj

wi,i +
∑

j∈N(i)

wi,j
+ ∆,∆ ∼ N (0, 0.15) (4)

Figure 4 shows the effect of introducing this degree of
noise into the update process. Aside from the m = 1 case,
there is little qualitative difference compared to Figure 3.
Equation (3) controls the trust dynamics within our network
and enables agents to react to sudden deviations in opinions.
This gives our model the robustness to absorb noisy signals.

Examining the evolution of opinions in Figure 2, we see
that in the initial stage of the experiment, the moderates
rapidly converge toward a common opinion. Even agents
near the pole are drawn in due to the initial trust conditions.
This effect is amplified by the small-worlds property of these
graphs. Once an early consensus is reached, the moderate
opinion may slowly migrate to the extreme through grad-
ual influence from extremists (as the case in Figure 2), or
may successfully insulate the extremists from influencing the
general opinion.

4.3 Opinion Polarization
In our second set of experiments, we incorporate two sets

of extremists competing for the opinions of the moderate
population. We initialize a randomly selected 10% of the
population as 1-extremists and another 10% as 0-extremists.
Deffuant [5] characterized 4 types of convergence in these
two-pole situations: the moderates may converge to a single
opinion that is either (I) moderate or (II) polarized, (III)
the population may split in two with a portion converging
at each pole, or (IV) the population may fragment, with
fractions that retain non-extreme opinions.

The polarization of each agent’s opinion is the absolute
difference of their final opinion from the middle ground of
0.5. The higher the polarization, the more influence felt from
the extremists. This allows us to differentiate non-polarized
outcomes (types I and IV) from polarized outcomes (types II
and III). To detect whether or not moderates have stratified
opinions, we examine the final distribution of their opinions
to see if they are unimodal (types I and II), or multimodal
(types III and IV).

To eliminate false positives due to noise, we use the follow-
ing procedure for identifying multimodality. First, we form
a histogram of opinions, dividing the [0, 1) interval into 20
buckets b1, . . . b20, each of width 0.05. A distribution is mul-
timodal if there exist three buckets bi, bj , bk (i < j < k) such
that bj < min(bi, bk)/2, and min(bi, bk) ≥ T . We arbitrary
choose the threshold T = 20, which represents 10% of the
agents.

Figure 5 shows the average polarization for our experi-
ments. As before, higher empathy h is correlated with in-
creased influence from extremists. However, now network
structure plays a role as well, with impact from extremists
being mitigated in more highly connected networks. We
examine the final opinions and find that, in all cases with
m > 1, the moderates converge to a unimodal distribution
that drifts toward one of the extremes, reaching a type I or
type II convergence. As before, we verify that these results
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Figure 3: The convergence mean opinion of moderates, in the presence of 10% 1-extremists. The model on
the left is initialized using uniform trust (95% confidence interval within ±0.11 for all sets), and the right,
using degree based trust (95% C.I. within ±0.10).

Figure 4: Effects of introducing noise to the model of Figure 3. Uniform trust (left, 95% C.I. within ±0.11)
and degree based trust (right, 95% C.I. within ±0.10).

Figure 5: The average polarization of moderates when exposed to extremists of opposing camps. The model
on the left is initialized using uniform trust (95% C.I. within ±0.09), and the right, using degree based trust
(95% C.I. within ±0.09).
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Figure 6: The average polarization of moderates with initial opinions drawn from β(0.5, 0.5). The model on
the left is initialized using uniform trust (95% C.I. within ±0.07), and the right, using degree based trust
(95% C.I. within ±0.09).

are robust against noise (data not shown).
One might wonder whether a population that is initially

divided can produce type III or type IV convergences. We in-
vestigate this possibility by drawing initial opinions xi from
Beta(0.5, 0.5). Figure 7 shows a run under these param-
eters. We observe a behavior similar to that of Figure 2
– the population converges toward an early consensus, and
gradually shift to a unimodal distribution near one of the
extremes. This behavior is consistent across all trials, with
no multimodal distributions arising when m > 1.

Figure 6 shows the average polarization of the general
population using the two initial trust models. On the left,
we observe that uniform initial trust allows polarization to
occur rapidly, regardless of network structure, with nearly
complete polarization occurring at h > 0.04. This is a sur-
prising result, since in order for moderates to polarize at
one extreme, a large portion of the population must be con-
verted from their initial opinions set on the other end of the
spectrum. We also observe this trend when the network is
initialized using degree-based trust (Figure 6) (right), but it
is not as obvious as with uniform initial trust.

Thus, there appear to be two main factors preventing
opinions from stratifying. The initial trust given to agents
of significantly different opinions, and the lack of homophily
in the graph structure. To remedy the first issue, we im-
plement the kernel trust model, where agents are inoculated
with skepticism right from the start, modeling a situation
where agents have previously interacted and trust dynamics
have reached an equilibrium between them. To combat the
second issue, we define the modified Erdös-Rényi random
graph to capture the homophily property of social networks.

Interestingly, in our simulations of this new model, strati-
fication does not occur until empathy h > 0.3, far above the
point at which opinions normally become polarized. Figure
8 shows the evolution of opinions in a run that ends in a
Type IV convergence. Notice the concentration of opinions
migrate gradually from the poles, but do not converge. As
shown in Figure 9 (left), the amount of polarization actually
decreases as empathy increases beyond 0.3. Figure 9 (right)
shows the fraction of runs that converge to multimodal dis-
tributions. As empathy exceeds 0.3, the likelihood of a type
III or type IV outcome increases, and the presence of type
IV convergences necessarily lowers the average polarization.

Figure 7: Evolution of opinions in moderates, with
partially polarized initial opinions. Note the color
scale is logarithmic.

Figure 8: Evolution of opinions in moderates, on a
modified ER-graph with homophily, with partially
polarized initial opinions. Note the color scale is
logarithmic.
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Figure 9: Average polarization of moderates on a modified ER-graph with homophily, with partially polarized
initial opinions (left, 95% C.I. within ±0.03), and the frequency of stratification (right).

The notion that agents with higher empathy, and there-
fore “listen” to, and are influenced by, a wider range of opin-
ions, is a necessary ingredient for opinions to stratify is very
surprising. We hypothesize that this is because agents with
such high empathy values are simultaneously affected by ex-
tremists from both poles, stabilizing their opinions in a bi-
modal configuration. Similar stratification is not observed
in the Barabási-Albert or the unmodified Erdös-Rényi mod-
els, even when employing kernel trust; nor is it observed in
the modified Erdös-Rényi model without kernel trust (data
not shown).

5. DISCUSSION
One natural question to ask is how the conversion of half
the population from one end of the opinion spectrum to the
other occurs in Barabási-Albert graphs. The answer may be
found by approximating the amount of influence that can
be exerted on a densely connected community, even when
they have already reached a unified opinion (this is a best
case scenario that lower bounds the amount of influence that
can be exerted on it). To do this, we extend the concept
of cluster densities from innovation diffusion. We define a
cluster of density p as a set of nodes in G such that no node
in the cluster has more than fraction p of its neighbours
outside the cluster [8].

Now, suppose A is a cluster of density p, B = G \A, and
all agents in A have opinion x, while all agents in B have
opinion x+ ∆.

Consider a node i in A with degree d. According to Equa-
tion (2), xi will be updated according to

xi ←
dxi +

∑
j∈N(i)

wi,jxj

d+
∑

j∈N(i)

wi,j

=

dxi +
∑

j∈N(i)∩A

xi +
∑

j∈N(i)∩B

wi,jxj

d+ |N(i) ∩A|+
∑

j∈N(i)∩B

wi,j

=

d(1 + p)xi +
∑

j∈N(i)∩B

wi,jxj

d(1 + p) +
∑

j∈N(i)∩B

wi,j

Now if we approximate the weights wi,j with the target trust
function T (x, x+ ∆), written as T (∆) for brevity,

=
d(1 + p)xi + d(1− p) T (∆)(xi + ∆)

d(1 + p) + d(1− p) T (∆)

= xi +
((1− p) T (∆))∆

(1 + p) + (1− p) T (∆)

Finally, if we assume (1 + p) >> (1− p) T (∆), then,

∼= xi +
1− p
1 + p

T (∆)∆

= xi +
1− p
1 + p

exp(−∆2

h
)∆ (5)

If the right hand side of this expression is bounded within
ε of xi, then the simulation will terminate. By comparison,
let us modify the above setup by allowing xi to have a very
small fraction p′′ of its neighbours that are bridge vertices,
with an intermediate opinion xi + ∆/2. xi still has fraction
p of its neighbours in A, and p′ of its neighbours in B with
opinion xi + ∆ (p + p′ + p′′ = 1). By a similar analysis,
approximating the weights wi,j with T yields:

xi ←
(1 + p)xi + p′ T (∆)(xi + ∆) + p′′ T ( ∆

2
)(xi + ∆

2
)

(1 + p) + p′ T (∆) + p′′ T ( ∆
2

)

= xi +
(p′ T (∆))∆ + p′′ T ( ∆

2
)) ∆

2

(1 + p) + p′ T (∆) + p′′ T ( ∆
2

)

And if we assume (1 + p) >> p′ T (∆) + p′′ T ( ∆
2

), then,

∼= xi +
1

1 + p

[
p′ T (∆)∆ + p′′ T (

∆

2
)
∆

2

]
= xi +

1

1 + p

[
exp(−∆2

h
)∆ + exp(−∆2

4h
)
∆

2

]
(6)

By comparing equation (5) with (6), we see that the amount
of influence effected on xi is greater in the presence of bridge
vertices if T (∆) < 2/3, which is certainly true if we expect
the simulation to halt in the bridgeless case.

Thus, when there is a large gulf in opinions, influence is
quite limited and skepticism is high. However, the presence
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of even a handful of unpolarized intermediaries will serve
as a siphon through which influence will flow, starting an
avalanche effect where the two clusters’ opinions begin to
converge with increasing speed. This is reminiscent of the
“mob mentality” that inspired Deffuant’s SBC model.

6. CONCLUSION
We have introduced a robust model of opinion dynamics that
captures trust and skepticism between agents that changes
over time based on the difference in opinions between the
agents. We show that agents operating in a preferential
attachment, small-world network will quickly converge to
an early, loose consensus before taking coordinated action
to migrate the collective opinion to the equilibrium. This
equilibrium may be moderate or polar, with agent empa-
thy being the primary factor influencing the final outcome.
A secondary factor is connectivity, which has a significant
moderating effect, but only in the two-pole model.

We have also modified the Erdös-Rényi graph to incorpo-
rate homophily. Only by combining this graph model and
inoculating our agents with an equilibrium amount of skep-
ticism for other agents, can we cause opinions to stratify
away from extreme values. We hypothesize that this stratifi-
cation can only exist when individual opinions are stabilized
by more extreme opinions from both ends of the spectrum.

Future work include further exploration of the proper-
ties of homophilic Erdös-Rényi graphs. The model could
be adjusted to include heterogeneous empathy and learn-
ing rates within the population. It could also be extended
to a dynamic population, with agents entering and leaving
the community over time, and with their opinions growing
more confident (higher skepticism) as they interact with the
community. Finally, our model could be adapted to the dis-
crete action domain, where each agent possesses a private
continuous opinion, takes discrete actions based on that pri-
vate opinion, and only observes the discrete actions of their
neighbours.
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