
Xipho: Extending Tropos to Engineer Context-Aware
Personal Agents

Pradeep K. Murukannaiah
Department of Computer Science

North Carolina State University
Raleigh, NC 27695-8206, USA

pmuruka@ncsu.edu

Munindar P. Singh
Department of Computer Science

North Carolina State University
Raleigh, NC 27695-8206, USA

singh@ncsu.edu

ABSTRACT
We introduce Xipho, an agent-oriented methodology for en-
gineering context-aware personal agents (CPAs). Xipho ex-
tends Tropos to support CPA development. Xipho’s steps
span a CPA’s requirements acquisition, design, and imple-
mentation. Importantly, we treat context as a cognitive no-
tion and systematically relate it to other cognitive notions
such as goals and plans. Xipho incorporates reusable compo-
nents in a CPA’s design and implementation to simplify the
development process. We evaluate Xipho empirically, find-
ing that Xipho reduces development time and effort, and
improves the comprehensibility of CPA designs.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements and Specifi-
cations—Methodologies

General Terms
Design, Experimentation, Human Factors

Keywords
Methodology, Context, Personal agent, Tropos

1. INTRODUCTION
Humans have an inherent understanding of the contexts in

which they act and interact. A context-aware personal agent
(CPA) adapts to the contexts of its human user. CPAs can
prove valuable in settings such as healthcare, smart (physical
or virtual) environments, and e-commerce.

Engineering a CPA is nontrivial. First, a CPA must cap-
ture its users’ mental models of context—a high-level con-
cern centered on meaning. Second, a CPA must acquire
the desired contextual information—a low-level concern cen-
tered on devices and infrastructure. We describe Xipho, a
methodology for systematically developing a CPA.

We treat context as a cognitive notion and understand
other cognitive notions, such as goals and plans, as inher-
ently related to context. Thus, a natural approach to de-
veloping a CPA would be an agent-oriented software en-
gineering (AOSE) methodology that employs cognitive no-

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

tions throughout development. Existing AOSE methodolo-
gies, e.g., [6, 17, 22], describe generic steps of software devel-
opment, but fall short in dealing with challenges specific to
CPA development. Xipho fills this gap by providing system-
atic steps for (i) capturing a CPA’s contextual requirements,
(ii) deriving a context information model specific to a CPA,
and (iii) leveraging reusable components in a CPA’s design
and implementation. These tasks pose nontrivial challenges
(described below). We demonstrate that Xipho addresses
the challenges of CPA development successfully.

A CPA’s contextual requirements are often (i) unknown
ahead of time, and (ii) subject to change as users employ the
CPA in different contexts. A developer, inevitably, makes
assumptions about a CPA’s users’ contextual needs, but of-
ten buries such assumptions in the implementation. Xipho
provides constructs necessary to explicate such assumptions,
yielding easily renewable CPAs [20].

Context is traditionally defined as “any information rele-
vant to an interaction between a user and an application” [8].
Accordingly, the space of what constitutes context is vast,
e.g., a user’s location, activities, emotions, or social setting.
Existing techniques [4] model context as a notion generic
across applications and users, which a developer must tailor
to the requirements of a CPA. Xipho assists a developer in
restricting a CPA’s context information model to a set of
abstractions meaningful in the CPA’s scope, enabling the
CPA to offer a natural user experience.

To acquire the desired context information, a CPA must
address device and network centric concerns such as sensing,
aggregating, and propagating context information. How-
ever, the concerns of context acquisition can be separated
from those of CPA development. Importantly, several ex-
isting works address the problem of context acquisition [2].
Xipho enables a developer to build a CPA on reusable com-
ponents, reducing the cognitive burden of CPA development
and yielding easily comprehensible CPA designs.

Contributions. Our contributions are two fold. First, we
propose Xipho as an extension of Tropos for developing
CPAs. Xipho addresses nontrivial challenges associated with
requirements acquisition, design, and implementation of a
CPA. We demonstrate Xipho via a case study, which in-
volves the engineering of a smart phone based CPA.

Second, we evaluate Xipho through a study in which 46
developers applied Xipho to engineer three CPAs. Its results
support our claims that Xipho (i) reduces the time and effort
required to develop a CPA, and (ii) yields CPA designs that
are easy for other developers to comprehend.

309

2. BACKGROUND: TROPOS
Xipho extends Tropos [6] to support CPA development.

Specifically, Xipho adopts the Tropos metamodel, which
consists of the following main constructs.
Actor: A social, physical, or software agent (or a role of an

agent). An actor has goals within a system.
Goal: A strategic interest of an actor. A hard goal has a

crisp satisfactory condition. A soft goal has no clear-cut
definition or criterion for deciding whether it is satisfied
or not. Thus hard goals are satisfied whereas soft goals
are satisficed.

Plan: An abstraction of doing something. Executing a plan
is a means of satisfying or satisficing a goal.

Resource: A physical or information entity.
Dependency: A relationship indicating that a depender

actor depends on a dependee actor to accomplish a goal,
execute a plan, or furnish a resource. The object (goal,
plan, or resource) here is the dependum.

Belief: An actor’s representation of the world.
Capability: An actor’s ability to choose and execute a plan

to fulfill a goal, given certain beliefs and resources.
Our motivation to extend Tropos is that it spans all de-

velopment phases. First, Tropos captures early and late
requirements as system-as-is and system-to-be models, re-
spectively. A system-as-is model captures (i) the actors in-
volved: primary users of the application as well as those
indirectly affected by it, (ii) goals and plans of each actor,
and (iii) dependencies among actors on their goals or plans.
A system-to-be model introduces the solution as the system-
to-be actor and its goals, plans, and dependencies. In the
following phases, Tropos maps the system-to-be actor into
one or more agents, and derives a detailed specification of
agents’ capabilities to implement on a chosen platform.

3. XIPHO
Xipho augments Tropos with tasks specific to CPA de-

velopment in each development phase as shown in Table 1.
Before describing Xipho’s steps, we introduce a case study,
and derive its system-as-is and system-to-be models.

Case Study: Ringer Manager
We demonstrate Xipho via a case study, which involves en-
gineering the Ringer Manager Application (RMA), a CPA
for phones to help a user better handle incoming calls.
Automated ringer mode. The RMA sets an appropriate

ringer mode on the user’s phone based on the user’s con-
text at the time of an incoming call. The alternatives
(assumed to be mutually exclusive) are to set the ringer
mode to silent, vibrate, or loud.

Automated notification. If the user does not answer the
call, the RMA sends a notification to the caller. The no-
tification can be generic (e.g., “leave your name and num-
ber”), or describe the user’s context at the time of missing
the call, either abstractly (e.g., “in a meeting”) or in detail
(e.g., “in a meeting with Bob at the Starbucks”).
We imagine the system-as-is as follows. Each episode

starts when a caller tries to reach a callee by phone. The
callee wants to be reachable unless he wants to work unin-
terrupted. The callee’s plan is to answer the call if he wants
to be reachable and not answer otherwise. The callee’s de-
cision to answer or not answer depends on (i) whether he
disturbs a neighbor by answering or (ii) if the caller has a

Callee

Callee's
neighborCaller To reach

by phone
To be not
disturbed

To be reachable
by phone

To work
uninterrupted

To not disturb
a neighbor

To set an
appropriate
ringer mode

To answer
the call

+
To update
the caller

To not
answer the

call

To send an
appropriate
notification

AND

To preserve
privacy

AND

Perspective

Actor Goal Plan means-end

dependencycontribution (+/-)

Soft
goal

LEGEND

- +

Figure 1: Actor model: Callee’s perspective.

Ringer
Manager

Callee's
neighborCaller

To be reachable
by phone

To work
uninterrupted

To not disturb
a neighbor

+
To update
the caller

To preserve
privacy

Send a
detailed
message

Send a
generic

message

Send an
abstract
message

Set as
loud

Set as
vibrate

Set as
silent

Callee

OR OROR OR

Figure 2: Expanding the RMA’s perspective.

pressing need to reach him. In these cases, the callee de-
pends on the neighbor or the caller to provide appropriate
information. The callee sets an appropriate ringer mode on
his phone to help him answer or not (e.g., loud to answer;
silent to not). Next, when the callee does not answer a call,
he would notify the caller of a reason (e.g., busy, in a class,
talking to boss, and so on) or to ignore the call depending
on who the caller is. If he decides to notify the caller, he
would disclose only the necessary details, preserving privacy.
Figure 1 shows the system-as-is model.

However, the system-as-is is quite inefficient. First, it
relies on the callee to manually set an appropriate ringer
mode and send an appropriate notification. Second, a caller
has no effective way of expressing an urgent need to reach
the callee—calling repeatedly does not help if the phone is
silent. Third, it is tedious for a neighbor to let each callee
know that the neighbor prefers not to be disturbed.

Figure 2 introduces the RMA (system-to-be) actor. The
RMA acts on behalf of the callee and accordingly adopts
the callee’s goals to make call handling more efficient. This
model captures what the RMA does and why, by linking the

310

Table 1: An overview of how Xipho extends Tropos to support CPA development.

Development Phase Tropos Task Xipho Task (Extension)

Early & late requirements Identify system-as-is and system-to-be actors,
and their goals, plans, and dependencies

Step 1: Identify contextual beliefs and resources

Architectural design Define system’s global architecture Step 2: Derive a context information model
Map system actors to software agents Step 3: Incorporate a middleware agent

Detailed design Specify agent capabilities and interactions Step 4: Specify contextual capabilities
Implementation Implement agents on a chosen platform Step 5: Implement contextual capabilities

RMA’s plans to the callee’s goals (e.g., set as silent to accom-
plish the callee’s goal to be uninterrupted). For simplicity,
we explore the RMA only from the callee’s (primary user’s)
perspective and assume that the secondary users (caller and
neighbor) employ appropriate mechanisms to provide the
information required by the RMA.

3.1 Step 1: Context-Means Analysis
A CPA needs to make decisions based on the contexts of

one or more of the actors involved. The objective of context-
means analysis is to identify scenarios where an actor’s con-
text provides the application a means of making a decision.
We describe four types of such scenarios with examples.
OR-decomposition, where some decomposed goals or plans

are to be chosen over the rest based on context, e.g.,
whether to set the ringer mode as silent or vibrate—
vibrate may be acceptable in a seminar, but not in a one-
on-one meeting.

Conflicting goals, where the goal chosen for accomplish-
ment depends on context. For example, the RMA must
choose between the callee’s goals to be reachable and to
work uninterrupted. This decision could be based on the
callee’s context—busy or not.

Soft goal, where the extent to which the goal is satisficed
depends on context. For example, each ringer mode sat-
isfices the soft goal to not disturb a neighbor differently.
The chosen ringer mode could be based on who the neigh-
bor is, e.g., set as silent near a colleague, vibrate near a
family member, and loud near a stranger.

Dependency, where the dependum can be refined based
on context. For example, the dependum to be reachable
can be refined to context because the actual dependency is
that the callee depends on the caller to provide contextual
information (e.g., caller’s context indicating whether he
has a pressing need to reach the callee).
A developer must identify all scenarios of each type de-

scribed above and perform one of the following for each.
• If the scenario is influenced by the primary user’s (callee)

context, capture the influence as a belief and add context-
means links from the belief to each goal or plan involved
in the scenario.
• If the scenario is influenced by a secondary user’s (caller or

neighbor) context, capture the context as a resource and
add (or update) a dependency with the context resource
as the dependum. Also, add context-means links from the
resource to each goal or plan involved in the scenario.
The motivation is that the CPA would maintain beliefs

about its primary user, and access information resources
about the secondary users as shown in Figure 3.

3.2 Step 2: Context Information Modeling
We used a context abstraction as a placeholder for each

Ringer
Manager

Callee's
neighborCaller

To be reachable
by phone

To work
uninterrupted

To not disturb
a neighbor

+

To update
the caller

To preserve
privacy

Send a
detailed
message

Set as
loud

Context
abstraction 1

Context
abstraction 3

Context
abstraction 5

Context
abstraction 4

Context
abstraction 6

Context
abstraction 8

Resource Belief context-means

OR

Send a
generic

message

OR

Send an
abstract
message

OR

Set as
silent

OR

Set as
vibrate

Context
abstraction 2

Context
abstraction 7

LEGEND

Figure 3: The RMA after context-means analysis.

contextual belief or resource in the previous step. Now, we
systematically refine these abstractions in the CPA’s scope
for two reasons: (i) a motivation for model-driven devel-
opment is to document the developer’s thought process by
explicitly capturing his or her intuitions, and (ii) a detailed
model would yield a detailed specification, potentially mak-
ing the implementation easier. To derive a CPA’s context
information model, identify:
A context model for each generic abstraction found in

the previous step such that the context model consists
of cognitive abstractions sufficient to make the decision
specific to the context-based scenario influenced by the
corresponding generic abstraction. For example, in Fig-
ure 3, Context abstraction 2 is used to decide whether
to set the ringer mode as loud or vibrate. This generic
abstraction can be modeled as a spatial abstraction, Am-
bience, assuming that all that matters in setting the ringer
mode as loud or vibrate is the callee’s ambience. The de-
cision to not set as silent must already have been made,
using Context abstraction 3.

Context instances of a context abstraction, where appro-
priate, such that a context instance represents all situa-
tions, within the scope of the corresponding abstraction,

311

Context
abs. 2

Space

Context
abs. 1

Context
abs. 4

Caller's
Context

Context
abs. 3

Activity

Context
abs. 5

Neighbor's
Context

EmergencyCasual Noisy

Social
Circle

Ambience

Quiet

Figure 4: RMA’s context information model.

that lead to the same context-based decision. For exam-
ple, context instances of Ambience could be Noisy and
Quiet assuming that the ringer mode would be vibrate if
the ambience is Quiet and loud if Noisy. However, to gain
adaptivity, it would be desirable to elicit the instances of
an abstraction at run time. We refer to such an abstrac-
tion as an open abstraction. For example, modeling the
callee’s activity as an open abstraction helps us elicit from
the user which of his activities are to be uninterrupted.
Figure 4 shows a context information model derived for

the RMA (each context instance is highlighted with a thick
border). We restrict the case study to the ringer manage-
ment aspect of the RMA (omitting notifications) for sim-
plicity. We employed the context abstractions of space, ac-
tivity, and social circle described in an existing metamodel
[16], which however is loosely coupled with Xipho.

3.3 Step 3: Context Middleware
Once we derive a CPA-specific context information model,

how can we enable the CPA to acquire this information? To
acquire context information, the CPA must:
Elicit context instances of each open context abstraction

from the primary user, e.g., elicit from the callee that the
desired instances of the Social circle abstraction are Fam-
ily, Colleagues, and Others.

Recognize context instances of each context abstraction
from sensors, e.g., recognize the callee’s Ambience as Quiet
via data from the microphone on the callee’s phone.

Acquire context resources from the secondary users, e.g.,
acquire from the caller that the Caller’s context is Casual.
These are nontrivial tasks, but common to all CPAs. Al-

though we model context information specific to each CPA,
the abstractions can overlap as a user employs multiple CPAs
(especially, since the abstractions are high-level, cognitive
constructs). Thus, Xipho incorporates a middleware archi-
tecture in which (i) a reusable middleware agent elicits and
recognizes a user’s contexts, and (ii) multiple CPAs interact
with the middleware to acquire desired contexts.

Figure 5 shows the middleware actor in the RMA’s ar-
chitecture. Importantly, such middleware components have
been realized, e.g., [2, 14, 16]. Xipho can incorporate any
middleware that achieves the goals specified in Figure 5.

3.4 Step 4: Contextual Capability Modeling
The objective of this step is to obtain a detailed agent

specification to simplify the implementation. Xipho’s spec-
ification of a CPA is a set of contextual capabilities, each
conditioned on a context abstraction at an instance. A con-
textual capability can be represented as a rule, e.g., Am-
bience = Noisy → Set as loud. A developer performs the

Callee Callee's
context

Context
Middleware

Elicit context
instances of open

abstractions

Recognize
context

instances
Caller

Caller's
context

Calle's
Neighbor

Neighbor's
context

Ringer
Manager

Acquire context
resources

Sensors &
Network

Figure 5: Introducing a middleware actor.

Ringer
Manager

Context

Neighbor's
context

Caller's
context

OR
Set as
silent

OR
Set as
vibrate

Ambience

Activity Social Circle

Casual Emergency

Noisy Quiet

Set as
loud or
vibrate

Set as
silent or
vibrate

Set as
loud

To be reachable
by phone

To work
uninterrupted

To not disturb
a neighbor

+

Context
Middleware

Acquire
context

Figure 6: RMA’s final model.

following substeps to derive an application specification.
• Identify agent capabilities, e.g., choosing and executing

a plan, choosing a goal to accomplish, and managing a
dependency.
• Identify the context abstraction that conditions each ca-

pability, replacing the generic context abstraction place-
holders of Step 1 with specific abstractions from Step 2.
Figure 6 shows a refined actor model of the RMA that

combines context abstractions and (highlighted) capabili-
ties. This model can be used to generate a detailed set of
contextual capabilities. Table 2 lists the contextual capabil-
ities we identified for the RMA. We use variables (?A1, ?S1,
etc.) to capture instances of open abstractions.

3.5 Step 5: Implementation
Now, a developer must implement techniques to

Interact with the middleware to determine (i) elicited
instances of open abstractions, e.g., to determine that in-
stances of Activity are Working, Driving, and Dining, and
(ii) the instance at which an abstraction is at a given time,
e.g., to determine if Activity = Working, now.

Substitute variables in a contextual capability with in-

312

Table 2: RMA specification.

ID Contextual Condition → Capability

C1 Activity = ?A1 ∧ Social circle =
?S1 ∧ Neighbor’s context = ?N1

∧ Caller’s context = Emergency

→ Set as loud ∨
Set as vibrate

C2 Activity = ?A2 ∧ Social circle =
?S2 ∧ Neighbor’s context = ?N2

∧ Caller’s context = Casual

→ Set as silent ∨
Set as vibrate

C3 C1 ∧ Ambience = Quiet → Set as vibrate
C4 C1 ∧ Ambience = Noisy → Set as loud
C5 C2 ∧ Ambience = Quiet → Set as silent
C6 C2 ∧ Ambience = Noisy → Set as vibrate

Ringer
Manager

Callee's
neighborCaller

To be reachable
by phone if not

working

To work uninterrupted
if at office, unless the

call is urgent

To not disturb
a neighbor if

at office

+

Set as loud if
ambient noise
level > 40 dB

Set as vibrate if
ambient noise
level > 40 dB

Set as silent if
ambient noise
level < 40 dB

OR OR

Calendar Sound
sensor

Figure 7: A model derived without Xipho.

stances elicited by the middleware, e.g., substitute Activ-
ity = ?A1 with Activity = Driving ∨ Activity = Dining.

Exercise capabilities by executing the rules derived in
the previous section, e.g., exercise Activity = Working
→ Set as silent ∨ Set as vibrate.

4. COMPARISON
Xipho is an AOSE methodology tailored specifically for

CPA development. However, what are the benefits of Xipho?
To answer this, we compare the Xipho’s RMA model shown
in Figure 6 with an alternative model shown in Figure 7.

The alternative model enhances goals and plans in Fig-
ure 2 to incorporate context. The alternative model repre-
sents three major mistakes a developer, not applying Xipho,
can commit. The alternative model:
Lacks explicit semantics of context, whereas Xipho mod-

els convey the semantics described in Steps 1 and 2. Such
lack leads to ambiguity in interpreting a model. For ex-
ample, Figure 7 is not clear about whether two goals (e.g.,
. . . if not working. . . and . . . if at office. . .) conflict; simi-
larly, the figure does not convey that the ringer mode must
be silent only if the call is not urgent and the callee’s am-
bience is quiet.

Introduces redundancy in the context information model,
whereas Xipho removes it by incorporating cognitive con-
structs. For example, each goal in Figure 7 describes a
contextual condition involving activities, redundantly. In
contrast, Figure 6 simplifies the model by including the
Activity open abstraction.

Does not separate the concerns of context acquisition
from the RMA design, whereas Xipho cleanly separates

the RMA’s and middleware’s concerns. For example, Fig-
ure 7 describes noise levels used to decide a ringer mode
within RMA’s design. In contrast, Figure 6 delegates such
tasks to the middleware, simplifying the RMA’s design.

5. EMPIRICAL EVALUATION
The foregoing intuitions lead us to hypothesize that Xipho

(i) reduces the time and effort required to develop a CPA,
and (ii) enhances the comprehensibility of CPA designs (for
other developers). We evaluated our hypotheses in a devel-
oper study, comparing Xipho against the baseline of Tropos.

5.1 Study Design
Our subjects were 46 students of a graduate level com-

puter science course. Each subject worked in a team of three
(12 teams), two (three teams), or one (four subjects) of his
or her choosing. Subjects received a partial grade toward
course credit for producing all deliverables. The study was
approved by the Institutional Review Board (IRB) and we
obtained an informed consent from each subject. Nonpar-
ticipants could work on an alternative task.

We conducted the developer study in three phases.
Practice, which required each team to learn one of Tropos

or Xipho, and exercise it to model an application, which
we reviewed to help them understand.

Modeling, which required each team to model a second
application. No feedback was given during this phase.

Verification, which required each subject (working solo)
to verify an existing model of a third application for com-
pleteness and comprehensibility.
The study lasted for eight weeks—two weeks per phase for

subjects and a week each between phases for us to review.

5.1.1 Study Units
Subjects completed a prestudy survey about their expe-

rience in software modeling and development (of context-
aware and mobile applications, and in general). Using this
information, we formed three groups of teams such that
teams’ skill sets and sizes balanced across groups.

In the first phase, we assigned one of the following appli-
cations to each group. In the subsequent phases, we rotated
the assignments as shown in Table 3. For each application,
we provided the following description and three–four sce-
narios in which the application must employ the (primary
or secondary) user’s context.
Smart alarm, whose objective is to advance or postpone

an alarm on a user’s phone. The application must employ
context information such as (i) traffic and weather condi-
tions, (ii) the amount of rest the user has had by the time
alarm goes off, and (iii) changes to the user’s schedule of
upcoming events.

Lifestyle motivator, which helps a user find friends and
identify physical activities to perform with those friends.
The application must employ context information such
as (i) the proximity to appropriate facilities and desired
friends, (ii) the weather conditions, and (iii) the amount
of exercise the user has already had.

Intelligent reminder, which decides when and how to re-
mind a user of events. The application must employ con-
text information such as (i) convenient resources (e.g., re-
mind on the computer instead of the phone), (ii) impor-
tance (e.g., reply to the boss), and (iii) timeliness (e.g.,
pick up a book when near the library).

313

Table 3: Application assignments in each phase.

Phase Task Group 1 Group 2 Group 3

1 Practice Alarm Motivator Reminder
2 Modeling Motivator Reminder Alarm
3 Verification Reminder Alarm Motivator

5.1.2 Alternatives
Teams within each group (1, 2, or 3) were divided into

two groups (again, with balanced skill sets and team sizes).
Control group (C): provided with the modeling primitives,

a description, and example models from Tropos.
Xipho group (X): provided with the steps, modeling prim-

itives, and the RMA example.

5.1.3 Deliverables
In each of the first and second phases, subjects were given

an application specification (and a methodology) and asked
to deliver (i) a model of the application (covering all spec-
ified scenarios); (ii) responses to a survey after each work-
session recording the time spent (in hours and minutes), and
effort expended (on a scale of 1∼easy to 7∼difficult) during
the session. The survey also required subjects to record a
detailed breakdown of tasks they performed in each session.

In the third phase, each subject was given the specifica-
tion of a third application and two models of it produced by
other subjects (one from Control and one from Xipho team)
in the second phase. A description of the Xipho’s primitives
was provided to those who did not apply Xipho in earlier
phases. Our motivation was to compare the comprehen-
sibility of models by subjects experienced with Xipho and
those new to it. The subjects were asked to verify the model
and answer a survey to record (i) a rating of how complete
the model was (on a scale of 1∼incomplete to 7∼complete),
and (ii) a rating of how comprehensible a model was (on a
scale of 1∼easy to 7∼difficult) relative to each context-based
application scenario the model handled.

We allowed teamwork in the first two phases, but required
solo work in the third because (i) such ratings are inherently
subjective, and (ii) the third phase was less demanding than
the first two, and we expected subjects to complete the de-
liverables (in time) without compromising quality.

5.2 Results
We performed two-tailed (i) t-test to compare the differ-

ence in mean (µ) time spent, (ii) F -test to compare the dif-
ference in the variances (σ2) of time spent, and (iii) Wilcoxon’s
ranksum-test to compare the difference in the median (x̃) of
effort ratings during Practice and Modeling [12]. We com-
pared medians for the effort ratings since rating is ordinal.

With respect to the Practice and Modeling phases, Fig-
ure 8 shows box plots of times spent, and Figure 9 shows
effort perceived, building models (there were no instances
of the lowest rating). The figures also show the result of
hypothesis testing (∗ and ∗∗ indicate sufficient evidence to
reject the corresponding null hypothesis at significance levels
of 10% and 5%, respectively).

Recall that each model produced in Modeling was rated
by more than one subject for completeness and comprehensi-
bility during Verification. First, we measured the interrater
reliability for ratings of each model using Krippendorff’s al-

0 2 4 6 8 10

X

C

Practice hours per scenario

µX < µC (p = 0.325)

σ2
X < σ2

C (p = 0.087∗)

0 2 4 6 8 10

X

C

Modeling hours per scenario

µX < µC (p = 0.046∗∗)

σ2
X < σ2

C (p = 0.563)

Figure 8: Time spent building models.

0 20 40 60 80 100

C

X

Practice effort (% responses)

x̃X < x̃C (p = 0.167)

0 20 40 60 80 100

C

X

Modeling effort (% responses)

x̃X < x̃C (p = 0.01∗∗)

Figure 9: Perceived effort in modeling.

pha (α) [13] (α = 1 indicates perfect reliability and α = 0,
the absence of reliability; α = 0.67 is a suggested lower
bound for filtering). We excluded all models with α < 0.67
from further analysis. Next, we performed ranksum-tests
to test if the ratings differed significantly. Figure 10 shows
a comparison, and the results of hypothesis testing.

5.3 Discussion

5.3.1 Time and Effort of Model Building
We found that the time and effort expended by a Xipho

team in the Modeling phase are significantly lower than
those expended by a Control team (p = 0.046 and p = 0.01,
respectively). This validates that Xipho, a methodology tai-
lored for CPA development, can simplify the development
process as opposed to a generic methodology.

Next, we found that the differences in time spent and ef-
fort were not significantly different during the Practice phase
(when teams were learning Xipho or Tropos). However, we
made an important observation—the variance in time spent
was significantly larger for Control than Xipho teams, al-
though Control teams had fewer primitives to learn than
Xipho teams. We speculate that such difficulties could lead a
developer, especially a beginner, to give up modeling. Thus,
a methodology with systematic steps specific to CPAs is es-
sential for the success of model-driven development of CPAs.

314

0 20 40 60 80 100

C

X

Completeness (% ratings)

x̃X < x̃C (p = 0.206)

0 20 40 60 80 100

C

X

Comprehensibility (% ratings)

x̃X < x̃C (p = 0.029∗∗)

Figure 10: Subjective ratings for completeness and
comprehensibility.

5.3.2 Completeness and Comprehensibility
We found that the completeness ratings of Xipho and Con-

trol models did not differ significantly. The result was not
surprising, though, for two reasons. (1) Conceptually, the
modeling primitives of Tropos are sufficient to model any of
the assigned applications. Thus, neither of the groups has
an advantage from this perspective. (2) Each team, irre-
spective of the group, had an incentive (project grade) to
produce complete models (even if it took more time).

Next, we found that comprehending a Xipho model could
be significantly easier than a Control model. This is an im-
portant result since Xipho’s ability to yield comprehensible
models is a major benefit of employing it. To understand
why this is the case, we compared the modeling constructs
used by Control and Xipho teams, as shown in Table 4. We
found that compared to Control, Xipho models employed:
Shorter textual descriptions within primitives. We at-

tribute a Xipho model’s conciseness to employing the ex-
plicit context modeling semantics provided by Xipho. Fur-
ther, our results suggest that concise Xipho models are
easier to comprehend than Control models’ subjective and
verbose textual descriptions.

Fewer modeling primitives indicating that Xipho mod-
els reused contextual beliefs and resources across goals
and plans. We conjecture that employing fewer primi-
tives helps reduce information overload and leads to mod-
els that are easier to comprehend.

Fewer actors and dependencies indicating that Xipho
models delegated the concerns of context acquisition to
the middleware, whereas Control models employed addi-
tional actors (with associated, goals and plans) to acquire
context. Also, a Control developer must deal with context
acquisition for each application, whereas a Xipho devel-
oper needs to understand the middleware just once.

6. RELATED WORK
Xipho begins with cognitive notions and systematically

leads to an opportunity to exploit reusable components.
Xipho helps bridge AOSE and context-aware systems.

Context-Aware Systems
A wealth of context-aware systems research [2] focuses on
providing architectural support for developing context-aware

Table 4: Modeling primitives employed.

Primitive
Count p-value Text len. p-value
C X x̃X < x̃C C X x̃X < x̃C

Actor 6.0 3.4 0.02∗∗ 77 33 0.02∗∗

Dependency 8.2 4.2 0.02∗∗ – – –
Goal 4.4 2.6 0.57 136 58 0.13
Soft goal 5.8 0.8 0.01∗∗ 231 21 0.01∗∗

Plan 9.8 7.4 0.29 365 145 0.06∗

Belief 0.0 3.6 – 0 45 –
Resource 0.0 2.0 – 0 30 –
Overall 34.2 24 0.09∗ 809 332 0.02∗∗

applications, usually via a middleware, e.g., [11, 14, 16, 19],
to protect developers from low-level concerns of context ac-
quisition. Often, such architectures provide a generic con-
text metamodel [4], which an application developer must
tailor during development. Sollenberger and Singh [21] show
that developers employing a systematic methodology bene-
fit more from a middleware than those who do not. CPA
developers can employ Xipho with any middleware that can
elicit and reason about context instances. Bolchini et al. [5]
describe a context-aware system that centrally manages con-
textual data. In contrast, Xipho’s middleware agent man-
ages a user’s contextual data locally and advocates users to
interact for satisfying dependencies on contextual resources.

AOSE Methodologies
AOSE promotes development activities to capture high-level
abstractions, e.g., agents and goals over low-level abstrac-
tions, e.g., classes and methods. Xipho extends Tropos to
explicitly deal with the cognitive notion of context.

Ali et al. [1] capture context-based scenarios as variation
points and employ them to analyze requirements. Whereas
their focus is to analyze a contextual goal model to de-
tect conflicts and inconsistencies among requirements, Xipho
deals with context in requirements as well as in design and
implementation. Zacarias et al. [23] describe a context-
aware agent-oriented ontology for modeling human agents
in an enterprise setting. Whereas they provide a metamodel
(ontology) to describe the dynamic and situated human be-
havior, Xipho provides systematic steps to exploit such a
metamodel for developing CPAs.

Xipho’s context analysis, modeling, and specification steps
are generic, and can be employed in other AOSE method-
ologies. Prometheus [22] can be extended to incorporate
context as percepts and external data used to describe the
environment. Xipho can be incorporated into ADELFE [3]
to characterize the environment, where ADELFE’s active
and passive entities correspond to Xipho’s context instances
and open abstractions. Rahwan et al. [17] describe a social
modeling extension to the ROADMAP methodology. Xipho
brings together a social model, users’ activities, and spatial
attributes into a context model, which can be linked a role’s
responsibilities, generalizing Rahwan et al.’s extension.

Other Methodologies
Ceri et al. [7] employ WebML to model context and context-
triggered adaptive actions in a user-independent manner.
Serral et al. [18] employ a domain-specific PervML to model
context followed by auto generation of code that represents
and handles context. Henricksen and Indulska [10] employ

315

CML (Context Modeling Language) to model context and
preference modeling to rank context-based choices of a user.
These methodologies describe how to model context, assum-
ing that a developer knows what aspects of context to model
and why. Xipho helps a developer not only to model con-
text, but also to arrive at meaningful context abstractions
and instances specific to an application scenario.

7. CONCLUSIONS AND DIRECTIONS
This paper has shown how an agent-oriented methodology

can be enhanced to engineer CPAs, an important problem
that has not been adequately addressed in the literature.
Our findings about the benefits of Xipho bear important
implications for its practical adoption. A huge market for
CPAs already exists in the form of smart phone applications
(such as RMA). Further, we conjecture that applications
produced using Xipho offer a more natural user experience
than those built conventionally. We are considering ways to
design a tractable study to evaluate this claim.

Xipho provides a key component of our overall vision of
developing CPAs. On the one hand, Xipho extends the ben-
efits of a goal-based methodology (specifically, Tropos) to
CPAs—context is arguably naturally understood via cog-
nitive notions. On the other hand, Xipho builds a CPA
on a reusable middleware, separating the concerns of con-
text acquisition from CPA development. Our implementa-
tion of the middleware elicits a user’s context instances and
learns to recognize them from sporadic sensor data via semi-
supervised machine learning [9]. Our ongoing work seeks to
reduce user effort in context elicitation via active learning.

Systematically contextualizing cognitive notions such as
privacy and trust is largely unexplored. A contextual ap-
proach to privacy and trust could facilitate applications with
multiple interacting CPAs. Such an extension could build on
existing approaches for finding social relationships between
agents sharing a context [15], and coordinating agents by
transparently propagating the context information [14].

Acknowledgments
We thank the National Science Foundation for support un-
der grant 0910868, and Fatma Başak Aydemir, John My-
lopoulos, and the anonymous reviewers for helpful comments.

8. REFERENCES
[1] R. Ali, F. Dalpiaz, and P. Giorgini. Reasoning with

contextual requirements: Detecting inconsistency and
conflicts. Inf. Softw. Technol., 55(1):35–57, Jan. 2013.

[2] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey
on context-aware systems. Int. J. Ad Hoc Ubiquitous
Comput., 2(4):263–277, June 2007.

[3] C. Bernon, V. Camps, M.-P. Gleizes, and G. Picard.
Engineering adaptive multi-agent systems: The
ADELFE methodology. In B. Henderson-Sellers and
P. Giorgini, eds., Agent-Oriented Methodologies, ch. 7,
pp. 107–135. Idea Group, Hershey, PA, 2005.

[4] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska,
D. Nicklas, A. Ranganathan, and D. Riboni. A survey
of context modelling and reasoning techniques. Perv.
Mob. Comput., 6(2):161–180, Apr. 2010.

[5] C. Bolchini, G. Orsi, E. Quintarelli, F. A. Schreiber,
and L. Tanca. Context modeling and context

awareness: Steps forward in the Context-ADDICT
project. IEEE Data Eng. Bull., 34(2):47–54, 2011.

[6] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia,
and J. Mylopoulos. Tropos: An agent-oriented
software development methodology. JAAMAS,
8(3):203–236, May 2004.

[7] S. Ceri, F. Daniel, M. Matera, and F. M. Facca.
Model-driven development of context-aware web
applications. ACM TOIT, 7(1), Feb. 2007.

[8] A. K. Dey, G. D. Abowd, and D. Salber. A conceptual
framework and a toolkit for supporting the rapid
prototyping of context-aware applications.
Hum.-Comput. Interact., 16(2):97–166, Dec. 2001.

[9] C.-W. Hang, P. K. Murukannaiah, and M. P. Singh.
Platys: User-centric place recognition. In AAAI
Workshop on Activity Context-Aware Systems, 2013.

[10] K. Henricksen and J. Indulska. Developing
context-aware pervasive computing applications:
Models and approach. Perv. Mob. Comput.,
2(1):37–64, Feb. 2006.

[11] J. Hong, E.-H. Suh, J. Kim, and S. Kim.
Context-aware system for proactive personalized
service based on context history. Expert Syst. Appl.,
36(4):7448–7457, May 2009.

[12] N. Juristo and A. M. Moreno. Basics of Software
Engineering Experimentation. Kluwer, 2001.

[13] K. Krippendorff. Reliability in content analysis.
Human Comm. Res., 30(3):411–433, 2004.

[14] M. Mamei and F. Zambonelli. Programming pervasive
and mobile computing applications: The TOTA
approach. ACM TOSEM, 18(4):15:1–15:56, July 2009.

[15] P. K. Murukannaiah and M. P. Singh. Platys Social:
Relating shared places and private social circles. IEEE
Internet Computing, 16(3):53–59, May 2012.

[16] P. K. Murukannaiah and M. P. Singh. Platys: An
empirically evaluated middleware for place-aware
application development. TR 2014-2, North Carolina
State University, Feb. 2014.

[17] I. Rahwan, T. Juan, and L. Sterling. Integrating social
modelling and agent interaction through goal-oriented
analysis. Comput. Syst. Sci. Eng., 21(2), 2006.

[18] E. Serral, P. Valderas, and V. Pelechano. Towards the
model driven development of context-aware pervasive
systems. Perv. Mob. Comput., 6(2):254–280, 2010.

[19] Q. Z. Sheng, S. Pohlenz, J. Yu, H. S. Wong, A. H. H.
Ngu, and Z. Maamar. ContextServ: A platform for
rapid and flexible development of context-aware web
services. In Proc. ICSE, pp. 619–622, 2009.

[20] M. P. Singh. Self-renewing applications. IEEE
Internet Computing, 15(4):3–5, July 2011.

[21] D. J. Sollenberger and M. P. Singh. Kokomo: An
empirically evaluated methodology for affective
applications. In Proc. AAMAS, pages 293–300. 2011.

[22] M. Winikoff and L. Padgham. Developing Intelligent
Agent Systems: A Practical Guide. Wiley, Chichester,
UK, 2004.

[23] M. Zacarias, H. S. Pinto, R. Magalhães, and
J. Tribolet. A ‘context-aware’ and agent-centric
perspective for the alignment between individuals and
organizations. Info. Syst., 35(4):441–466, June 2010.

316

