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ABSTRACT
In the study of knowledge representation formalisms, there
is a current interest in the question of how different formal
languages compare in their ability to compactly express se-
mantic properties. Recently, French et al. [9] have shown
that modal logics with a modality for public announcement,
for everybody knows, and for somebody knows are all ex-
ponentially more succinct than basic modal logic. In this
paper we compare the above mentioned logics not with ba-
sic modal logic but with each other and also with modal
logics that have a modality for distributed knowledge. In-
terestingly, modal logic with such a modality is more expres-
sive than the other modal logics mentioned, but still we can
show that some of those weaker logics are exponentially more
succinct than the former. Additionally, we prove that the
opposite is also possible: indeed, we show that modal logic
with a modality for distributed knowledge is more succinct
than modal logic with a modality for everybody knows.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods
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1. INTRODUCTION
The great number of logics for agent attitudes and be-

haviour in formal approaches to agency [18], and, among
others, several description logics [4] in knowledge representa-
tion, dynamic logics [14] in computer science and, generally,
a zoo of modal logics [5] for artificial intelligence, leads us to
the natural question of how to actually compare those logics.
Of course some well-known criteria are expressivity, decid-
ability and computational complexity, but, to summarise an
argument given in [7] it is quite often the case that logics are
equally expressive, and either have similar computational
complexity properties, or their respective complexities are
so high that the difference is almost meaningless in practi-
cal situations. Hence, [7, 6] suggest another potentially very

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

important criterion, namely representational succinctness.
Intuitively, if we are interested in some particular semantic
property Q that is expressible with formulae ϕ1 and ϕ2 from
two formalisms L1 and L2 respectively, we can ask if there
is a significant difference in the lengths of ϕ1 and ϕ2, i.e.
whether one of them is more succinct than the other. In
this sense, the notion of succinctness is a refinement of the
notion of expressivity.

Of course, rather than comparing the lengths of just two
formulae that express a single property, we will be actually
interested in showing (see for example [9, Lemma 1]) that
there is an infinite sequence of properties Q1,Q2, . . . of some
class of models � such that for every n there is a ϕn in L1

that expresses Qn , in such a way that the lengths of the ϕn ’s
grow polynomially in n, while the length of any formula ψn

from L2 that express Qn is at least 2n . If this is true, we say
that L1 is exponentially more succinct than L2 on � and
write L1 �EXP

� L2.
The starting point of our investigations is modal logic, de-

noted [i ]ML, where, for each i in some index set I , the for-
mula [i ]ϕ is true in a point1 s if all points that are reachable
from s in one step along the relation Ri satisfy ϕ. [i ]ML has
many applications, so ‘reachability’ here can refer to epis-
temic indistinguishability for an agent i , a transition caused
by program i , or, in description logic, a role, like ‘has as a
friend’. In its abstract form, Ri is nothing more than a set of
pairs, and Boolean modal logic ([10]) generalises this further
by introducing formulae [∪Γ]ϕ for every Γ ⊆ I that simply
say “ϕ is true in all t such that s(

⋃
i∈Γ Ri)t”. One can easily

show that this is the same as requiring that for all i ∈ Γ the
formula [i ]ϕ is true in s. That is why this operator is some-
times written as [∀Γ]. In description logic, [∪Γ] denotes role
disjunction, e.g., one can refer to all siblings as a union of
one’s brothers and sisters. In dynamic logic, [∪Γ]ϕ denotes
demonic non-determinism: no matter which program from
the set of programs Γ is executed at s the resulting state t
will satisfy ϕ. In epistemic logic, [∪Γ]ϕ means “everybody in
the group of agents Γ knows that ϕ is true”. We use [∪]ML
to denote ML extended with formulae [∪Γ]ϕ.

Analogously, we can introduce formulae [∃Γ]ϕ to mean
“somebody in the group of agents Γ knows ϕ” by stipulat-
ing that [∃Γ]ϕ is true at a point s when there is an i ∈ Γ
such that [i ]ϕ is true at s. Indeed, this notion has natural
counterparts in description logic (denoting the individuals
of whom either all friends or all foes are male) and dynamic
logic (angelic non-determinism: there is a program in Γ,

1We use the term point as a general term for ’state’, ‘world’,
‘object’, etc.

341



that, when executed at the current point, will lead to a
point that satisfies ϕ). ML extended with formulae [∃Γ]ϕ
will be denoted [∃]ML. Note that [∪Γ]ϕ and [∀Γ]ϕ are the
same (something holds for arbitrary Γ-successors iff it holds
for each of them). However, as we will shortly see (Defini-
tion 2) [∩Γ]ϕ and ∃Γϕ are different (for something to hold
at a common Γ-successor is different from it holding in all
i-successors, for some i ∈ Γ).

Another natural operator in Boolean modal logic is the
intersection modality [∩Γ]. Intuitively, the formula [∩Γ]ϕ is
true in a point s when all points t such that s(

⋂
i∈Γ Ri)t sat-

isfy ϕ. In epistemic logic, this yields the notion of distributed
knowledge, in dynamic logic [∩Γ] formalises the notion of
parallel execution of the programs in Γ, and in description
logic it denotes role conjunction, allowing one to express for
instance disjointness of two roles R and S , as in description
logic notation 
 � ∀(R � S).⊥. Let [∩Γ]ML denote ML
extended with formulae [∩Γ]ϕ

A final construct we will study in this paper is that of do-
main restriction, which is achieved by formulae of the form
[ϕ]ψ. Intuitively, such a formula is true at a point s if after
removing all points that do not satisfy the formula ϕ, the
formula ψ is true at s in the resulting new model. This op-
erator is called public announcement in (dynamic) epistemic
logic, but in description logic it would allow for some hypo-
thetical reasoning: “assuming that all objects satisfying ¬ϕ
are removed from the domain, then ψ would be true about
the current object”. We denote ML extended with formulae
[ϕ]ψ by [ϕ]ML.

Although [ϕ]ML and ML are equally expressive and the
computational complexity of their satisfiability problems is
the same, Lutz showed in [15] that [ϕ]ML is exponentially
more succinct than ML on the class of all Kripke models.
French et al. [9] strengthened this result to showing that it
is also true on the class of �5 models, the models typically
used in epistemic logic. It was also shown in [9] that both
[∪]ML and [∃Γ]ML are exponentially more succinct thanML.

In this paper, we compare in terms of succinctness the
logics [∪]ML, [∃]ML, [∩]ML and [ϕ]ML. We would like to
stress that [∪]ML, [∃]ML, and [ϕ]ML are equally expressive
whereas [∩]ML is more expressive than these three logics.
Nevertheless, some of our results show that there are Kripke
models on which [∪]ML, [∃]ML, and [ϕ]ML are exponentially
more succinct than [∩]ML.

The rest of this paper is organised as follows. In Section 2
we formally define the logics under consideration, we give a
working definition of succinctness and present Formula Size
Games, which will be the main tool we use in the proofs
of our results. In Section 3 we briefly discuss some existing
results in this area after which we present our main contri-
bution. Section 4 shows how there results are obtained, and
in Section 5, we round off.

2. PRELIMINARIES
Let a finite index set I = {i1, i2, . . . , im} and a count-

able set of propositional symbols P = {p1, p2, . . . } be given.
From now on, we will use p to denote an arbitrary element of
P , i to denote an element of I , and Γ to denote an arbitrary
subset of I that contains at least two indices.

Modal languages

Definition 1. A modal language Φ[X ] is a set of formu-

lae over P and I and a parameter � ∈ {[i ], [∩Γ], [∪Γ], [∃Γ],
[ϕ]} generated by the following BNF

ϕ := p | ¬ϕ | ϕ ∨ ϕ | �ϕ.

Depending on our choice for �, we obtain the languages:

• Φ[i]: � ∈ {[i ] | i ∈ I }

• Φ[∩]: � ∈ {[i ], [∩Γ] | i ∈ I ,Γ ⊆ I }

• Φ[∪]: � ∈ {[i ], [∪Γ] | i ∈ I ,Γ ⊆ I }

• Φ[∃]: � ∈ {[i ], [∃Γ] | i ∈ I ,Γ ⊆ I }

• Φ[∪,∩]: � ∈ {[i ], [∪Γ], [∩Γ] | i ∈ I ,Γ ⊆ I }

• Φ[ϕ]: � ∈ {[i ], [ϕ] | i ∈ I , ϕ ∈ Φ[ϕ]ML}

The length |ϕ| of a formula ϕ is defined as follows: |p| =
1, |¬ϕ| = 1 + |ϕ| and |ϕ ∨ ψ| = |[ϕ]ψ| = |ϕ|+ |ψ|. For the
other boxes, we stipulate |�ψ| = 1 + |ψ|. We would like to
stress that we could have taken into consideration the size
|Γ| when defining the size of a box-formula that uses Γ but
this would not have changed our succinctness results. For
any �, we write �nϕ to mean the sequence consisting of n
boxes, followed by ϕ.

A logic is a tuple [X ]ML = 〈Φ[X ], |=,�〉, where Φ[X ] is a
language, � is a class of models and |= is a binary relation,
also known as truth definition, between a model from� and
a formula ϕ ∈ Φ[X ]. So we talk about the logic [i ]ML, the
logic [ϕ]ML, the logic [∪,∩]ML, etc.

Definition 2. Given I and P, a Kripke model is a triple
M = 〈M ,R,V 〉, where M is a non-empty set, R : I →
2M×M is a mapping that assigns to every index i a relation
Ri on M , and V : P → 2M is a function that gives for every
a ∈ M the atoms V (a) that are true there. The truth of a
formula is defined in a pointed model (M , s), where s ∈ M.

(M , s) |= p iff s ∈ V (p);
(M , s) |= ¬ψ iff not (M , s) |= ψ;
(M , s) |= ϕ ∨ ψ iff (M , s) |= ϕ or (M , s) |= ψ;
(M , s) |= [i ]ψ iff for all t with sRi t , (M , t) |= ψ;
(M , s) |= [∃Γ]ψ iff for some i ∈ Γ, (M , s) |= [i ]ψ;
(M , s) |= [∪Γ]ψ iff for all t with s ∪γ∈ΓRγt , (M , t) |= ψ;
(M , s) |= [∩Γ]ψ iff for all t with s ∩γ∈ΓRγt , (M , t) |= ψ;
(M , s) |= [ϕ]ψ iff If (M , s) |= ϕ, then (M |ϕ, s) |= ψ.

Intuitively, the model M |ϕ used to define the |= relation for
the formula [ϕ]ψ is the restriction of the model M to the
points in which ϕ is true. Formally, for any formula ϕ, and
any model M = 〈M ,R,V 〉, the model M |ϕ = 〈M ′,R′,V ′〉,
is such that M ′ = {v ∈ M |(M , v) |= ϕ}, and R′ and V ′ are
the restrictions of R and V to M ′. We will also use the dual
〈ϕ〉 of [ϕ], where 〈ϕ〉ψ is defined as ¬[ϕ]¬ψ: in other words,
(M , s) |= 〈ϕ〉ψ if and only if (M , s) |= ϕ and (M |ϕ, s) |= ψ.

If � is a set of pointed models and ϕ is a formula of one
of the logics above, we write � |= ϕ to mean that for all
(M , s) ∈ �, (M , s) |= ϕ. Two classes of models are of
particular interest in this paper: � (the class of all Kripke
models) and �5 (the class of epistemic models, where each
Ri is an equivalence relation).
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Succinctness.
The definition of expressivity in logic is standard: Let L1 =
〈Φ1, |=1,�〉 and L2 = 〈Φ2, |=2,�〉 be two logics. We say
that L2 is at least as expressive as L1 on the class of models
�, and write L1 ≤� L2, if and only if for every formula
ϕ1 ∈ Φ1, there is a formula ϕ2 ∈ Φ2 such that for every
(M ,w) ∈ �, it is true that (M ,w) |=1 ϕ1 if and only if
(M ,w) |=2 ϕ2. We say in such a case that the formula ϕ2

is equivalent to ϕ1 on �, and write ϕ1 ≡� ϕ2.
L1 and L2 are said to be equally expressive on�, written

L1 =� L2, if both L1 ≤� L2 and L2 ≤� L1 hold. Finally,
L1 <� L2 has the obvious meaning that L1 ≤� L2 while
not L2 ≤� L1.

For a precise definition of the notion of succinctness we re-
fer the reader to [12] and [13]. Here we formulate a sufficient
condition for one logic to be exponentially more succinct
than another which is inspired by [9, Lemma 1].

Definition 3. Let L1= 〈Φ1, |=1,�〉andL2= 〈Φ2, |=2,�〉
be two logics and let f be a strictly increasing polynomial.
We say that L1 is exponentially more succinct than L2 on
�, and write L1 �EXP

� L2, if for every n ∈ �, there are two
formulae αn ∈ Φ1 and βn ∈ Φ2 satisfying the properties:

1. |αn | ≤ f (n) while |βn | ≥ 2f (n);

2. βn is the shortest formula in Φ2 with αn ≡� βn .

In this case, we will also say that Δ = {αn | n ∈ �} is more
succinct than L2 on � and write Δ �� L2.

Therefore, if we want to show that L1 is more succinct
than L2 on�, it is sufficient to show that there is a sequence
of formulae αn in Φ1 whose length grows polynomially, while
the length of formulae βn in Φ2 that are�-equivalent to αn

grows at least exponentially. Our definition is more restric-
tive than [9, Lemma 1]: in the latter, f does not need to be
polynomial, and moreover, the functions that bind αi and
which βi ‘exponentially exceeds’ need not be the same. On
the other hand, in [12, 13] and [9], the condition L1 ≤� L2

is a prerequisite for L1 �EXP
� L2 to be defined. We loosen

that: we allow cases where a logic L1 is exponentially more
succinct than L2 on a class of models � even if L1 �≤� L2:
we require that the witnesses αi ∈ L1 have an �-equivalent
in L2, but this does not necessarily have to be the case for
every ϕ ∈ L1.

The difficult part of proving a succinctness result based on
Definition 3 is often to show that βn is indeed the shortest
formula in Φ2 that is equivalent to αn on �. This point
highlights the importance of the models in �: It may well
be that for � ⊆ �, we have L1 �EXP

� L2 but not L1 �EXP
�

L2: There may be just ‘more candidates’ for formulae to be
equivalent to βn in � than there are in �. For example,
Lutz [15] showed in 2006 that Φ[ϕ]ML �EXP

� ΦML, and this

was only strengthened to Φ[ϕ]ML �EXP
�5 ΦML by French et al.

in 2013 [9].

Formula size games.
In order to deal with the difficulties stemming from the
second item of Definition 3, for every logic [X ]ML with
[X ] ∈ {[i ], [∩], [∪], [∃], [∩,∪]}, we define a suitable variant
FSG[X ]ML of Formula Size Games, first introduced in the
seminal [1] as a generalisation of Ehrenfeucht-Fräıssé games
for first-order logic. Here, we follow [9] and formulate these
games in their one-player versions (their FSG corresponds

to our FSG[i]ML). Intuitively, the only player, called Spoiler,
is presented with two sets of pointed Kripke models � and
�. Spoiler can win the FSG[X ]ML on � and � if and only
if there is a property Qϕ that is expressible with a formula
ϕ ∈ Φ[X ], i.e., ϕ is true in all models in �, and false in all
models of �. Moreover, the size of ϕ corresponds with the
number of moves needed for Spoiler to win FSG[X ]ML.

Definition 4 (Formula Size Games). The one- per-
son (called Spoiler) formula size game FSG[X ]ML on two
sets of pointed models � and � is played as follows. Dur-
ing the course of the game, a game tree is constructed in
such a way that each node is labelled with a pair 〈�,�〉 of
sets of pointed models and one symbol from the set Σ =
{p,¬,∨, [i ], [∪Γ], [∩Γ], [∃Γ]}. A node labelled with the pair
〈�,�〉 is denoted 〈� ◦�〉. The models in � are called the
models on the left, and � are called the models on the right.

A node in the tree can be declared either open or closed.
Once a node has been declared “closed”, no further game-
moves can be played at it. The game begins with the root of
the game tree 〈� ◦�〉 that is declared “open”.

Let an open node 〈� ◦�〉 be given. Spoiler can make one
of the following moves at this node:
atomic-move: Spoiler chooses a propositional symbol p
such that � |= p and � |= ¬p. The node is declared closed
and labelled with the symbol p.
not-move: Spoiler labels the node with the symbol ¬ and
adds one new open node 〈� ◦�〉 as a successor to the node
〈� ◦�〉.
or-move: Spoiler labels the node with the symbol ∨ and
chooses two subsets �1 ⊆ � and �2 ⊆ � such that � =
�1 ∪ �2. Two new open nodes are added to the tree as
successors to the node 〈�◦�〉, namely 〈�1◦�〉 and 〈�2◦�〉.
[i ]-move: Spoiler labels the node with the symbol [i ] and,
for each pointed model (D , t) ∈ �, he chooses a pointed
model (D , t ′) such that tRi t

′ (if for some (D , v) ∈ � this is
not possible, Spoiler cannot play this move). All these new
pointed models are collected in the set �1. A set of models
�1 is then constructed as follows. For each pointed model
(C , s) ∈ �, all the possible pointed models (C , s ′) such that
sRis

′ are added to �1. If for some (C , s), the point s does
not have an Ri -successor, nothing is added to �1 for the
pointed model (C , s). A new open node 〈�1 ◦�1〉 is added
as a successor to the node 〈� ◦�〉. In this case, we also say
that Spoiler has played an index-move.
[∪Γ]-move: Spoiler labels the node with the symbol [∪Γ] and
for each pointed model (D , t) ∈ �, he chooses a pointed
model (D , t ′) such that tRi t

′ for some i ∈ Γ (if there is a
(D , t) ∈ � for which this is not possible, then Spoiler cannot
play this move). All these new pointed models are collected
in the set �1. A set of models �1 is then constructed as
follows. For each pointed model (C , s) ∈ �, and for each
i ∈ Γ, all the possible pointed models (C , s ′) such that sRis

′

are added to �1. A new open node 〈�1 ◦�1〉 is added as a
successor to the node 〈� ◦�〉. In this case, we also say that
Spoiler has played a [∪Γ]-move.
[∩Γ]-move: Spoiler labels the node with the symbol [∩Γ] and,
for each pointed model (D , t) ∈ �, he chooses a pointed
model (D , t ′) such that tRi t

′ for all i ∈ Γ (if for some
(D , t) ∈ � this is not possible, Spoiler cannot play this
move). All these new pointed models are collected in the set
�1. A set of models �1 is then constructed as follows. For
each pointed model (C , s) ∈ �, all the possible pointed mod-
els (C , s ′) such that sRis

′ for all i ∈ Γ are added to �1.
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If for some (C , s), the point w does not have a successor
for all i ∈ Γ, nothing is added to �1 for the pointed model
(C , s). A new open node 〈�1 ◦�1〉 is added as a successor
to the node 〈� ◦�〉. In this case, we also say that Spoiler
has played an [∩Γ]-move.
[∃Γ]-move: Spoiler labels the node with the symbol [∃Γ] and,
for each pointed model (D , t) ∈ � and each i ∈ Γ, he chooses
a pointed model (D , t ′) such that tRi t

′ (if for some (D , t) ∈
� this is not possible, Spoiler cannot play this move). All
these new pointed models are collected in the set �1. A
set of models �1 is then constructed as follows. For each
pointed model (C , s) ∈ �, Spoiler chooses an i ∈ Γ and all
the possible pointed models (C , s ′) where sRis

′ are added to
�1. If for some (C , s), Spoiler has chosen an i ∈ Γ such
that the point s does not have an i-successor then nothing is
added to �1 for the pointed model (C , s). A new open node
〈�1 ◦�1〉 is added as a successor to the node 〈� ◦�〉. In
this case, we also say that Spoiler has played an [∃Γ]-move.

The game in which only atomic-, not-, or-, and [i ]-moves
are allowed is denoted FSG[i]ML, extending this with [∪Γ]-
moves we obtain FSG[∪]ML and analogously, we use the no-
tation FSG[∩]ML, FSG[∃]ML and also FSG[∩,∪]ML, all with
obvious meaning.

Definition 5 (Winning Condition of FSG[X ]ML).

Spoiler wins the FSG[X ]ML starting at 〈� ◦ �〉 in n moves
if and only if there is a game tree T with root 〈� ◦ �〉 and
precisely n nodes such that every leaf of T is closed.

Theorem 6. Spoiler can win the FSG[X ]ML starting at
〈� ◦�〉 in n moves if and only if there is a formula ϕ ∈ ΦX

such that � |= ϕ, � |= ¬ϕ, and |ϕ| = n.

For a proof of this theorem in the case of FSG[i]ML, we
refer the interested reader to [9]. Extending the proof to the
cases [∩]ML, [∪]ML, [∃]ML and [∩,∪]ML is straightforward.

Theorem 6 will be used as follows. In order to prove that
L1 �EXP

� L2, we will, for every n, construct two sets of
pointed models �n ⊆ � and �n ⊆ � such that �n |= αn

and �n |= ¬αn for some formula αn from L1; moreover, we
show that

• the length of the formulae in the sequence α1, α2, . . .
is bounded from above by a linear function in their
indices;

• the least number of moves that Spoiler needs to win
the FSGL2 starting at 〈�n ◦�n 〉 is 2n .

Of course, we are facing the problem of proving a lower
bound on the number of steps that Spoiler needs in or-
der to win FSGL2 . Here is one way of doing this that is
best explained via an example for FSG[i]ML. Suppose that
Spoiler has to play an FSG[i]ML that starts with a node
η = 〈({C , c), (D ,d)} ◦ {(E , e)}〉. If, in order to win, he
must play a [i ]-move, but, when played at η such a move
inevitably leads to a node 〈({C1, c1), (D1, d1)} ◦ {(E1, e1)}〉,
where one of the pointed models on the left satisfy the same
Φ[i] formulae as the model on the right (E1, e1), then obvi-
ously, Spoiler cannot win the game from this node, because
there is no formula α that is true in both (C1, c1), (D1, d1)
and false in (E1, e1). (A sufficient condition for Kripke mod-
els to satisfy the same formulas is that they are bisimular,
see for instance [5]).

In order to avoid such a loosing position, Spoiler needs
to first ‘split’ (C , c) and (D ,d) (i.e., he needs to play an
or-move) which will lead to adding two new branches to
the game tree, namely one branch starting from the node
η and going through the node 〈{(C , c)} ◦ {(E , e)}〉 and an-
other branch starting again from η and going through the
node {(D , d)} ◦ {(E , e)}〉. This means that we have shown
a lower bound of 2 on any closed game tree with root 〈� ∪
{(C , c), (D , d)}◦{(E , e)}∪	〉. Of course, going back to our
example, having played the or -move Spoiler can choose the
one node from the nodes 〈({C , c)}◦{(E , e)}〉 and 〈{(D , d)}◦
{(E , e)}〉 whose successor is not a losing position when the
necessary [i ]−move is played at it. This intuition was for-
malised in [9] as follows. Let T (〈� ◦ �〉) be the set of all
closed game trees for FSG[X ]ML with root 〈�◦�〉. A branch
B in a closed game tree T ∈ T (〈� ◦ �〉) is a path leading
from the root of the tree to a closed leaf. Let Br(T ) be
the set of branches of a closed game tree T . Two branches
B1 = η0, η1 . . . ηk and B2 = η′0, η

′
1, . . . , η

′
l in T are called iso-

morphic if k = l and for every i ≤ k , the labelling of ηi and
η′i with a symbol from {p,¬,∨, [i ], [∩Γ], [∪Γ]} is the same. If
B1 and B2 are isomorphic, we write B1

∼= B2.
The next theorem was proven in [9] (it is true for game

trees, and does not depend on the specific FSG[X ]ML).

Theorem 7 (Principle of Diverging Pairs). [9, The-
orem 2] Let T ∈ T (〈� ◦ �〉). If �1, �2, . . ., �k are sub-
sets of � and �1, �2, . . . ,�k are subsets of � and for ev-
ery k trees T1 ∈ T (〈�1 ◦ �1〉), T2 ∈ T (〈�2 ◦ �2〉), . . .,
Tk ∈ T (〈�k ◦ �k 〉), there are k branches B1 ∈ Br(T1),
B2 ∈ Br(T2), . . ., Bk ∈ Br(Tk ) such that Bi � Bj for all
1 ≤ i < j ≤ k, then T contains at least k different branches.

3. RESULTS

Overview of Some Known Succinctness Results.
We begin by saying a few words about the expressivity of the
logics defined above. Since [∪Γ]ϕ is equivalent to

∧
i∈Γ[i ]ϕ,

and, likewise, [∃Γ]ϕ is equivalent to
∨

i∈Γ[i ]ϕ, we have that
[i ]ML =� [∪]ML =� [∃]ML: those logics are equally expres-
sive on �, and hence, on any � ⊆ �.

Although the logic [ϕ]ML has a different ‘feel’ than that of
modal logic that stems from its ability to make restrictions
to sub-models, Plaza proved in [16] that occurrences of the
[ϕ]-operator can be ‘pushed-inside’ the formula following it,
and once reaching an atom, it can be eliminated. This is
shown in the equivalences below:

(M ,w) |= [ϕ]p iff (M ,w) |= ϕ→ p;
(M ,w) |= [ϕ](ψ1 ∨ ψ2) iff (M ,w) |= [ϕ]ψ1 ∨ [ϕ]ψ2;
(M ,w) |= [ϕ]¬ψ iff (M ,w) |= ϕ→ ¬[ϕ]ψ;
(M ,w) |= [ϕ][i ]ψ iff (M ,w) |= ϕ→ [i ][ϕ]ψ;
(M ,w) |= [ϕ1][ϕ2]ψ iff (M ,w) |= [ϕ1 ∧ [ϕ1]ϕ2]ψ.

Therefore, we have [ϕ]ML =� [i ]ML =� [∪]ML =� [∃]ML
for any� ⊆ �. However, we are in a different situation with
respect to [∩]ML, i.e., [∩]ML is strictly more expressive than
[i ]ML ([5]) and hence than any other of the above mentioned
logics.

We are now in a position to summarise some of the al-
ready known succinctness results that are relevant to our
exposition. The reader finds proofs for the following in [17]
and [9].
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Theorem 8.

1. ([17]) Suppose that |P | ≥ 1 and |I | ≥ 2. Then

[∃]ML �EXP
� [∪]ML & [∪]ML �EXP

� [∃]ML.

2. ([9]) If |P | ≥ 3 and |I | ≥ 4, then

[∃]ML �EXP
�5 ML; [∪]ML �EXP

�5 ML; [ϕ]ML �EXP
�5 ML.

The first item shows that it is possible for two logics to be
more succinct than each other. This may seem surprising
at first sight but it simply means that some properties are
more succinctly expressed by using a modality for existential
quantification, while others are expressed more succinctly by
using the union of the accessibility relations. The results of
the second item are strong in a sense that they are proven
with respect to the class of models �5. This fact makes
them significant for epistemic logic where �5 is the domi-
nant semantics. As an aside, note that there are some mild
restrictions on the number of atoms and indices needed: as
shown in [9] for item 2 of Theorem 8, the restrictions can be
weakened for the semantics �, and it is not known whether
they are tight in all cases. It is worth pointing out that the
results of item 2 remain true for weaker semantics, e.g., �
or the class of models ��45 which is used as a standard
interpretation for belief.

We now list our main technical contribution.

Theorem 9. The following items are true:

1. [ϕ]ML �EXP
� [∩]ML;

2. [ϕ]ML �EXP
� [∪]ML;

3. [ϕ]ML �EXP
� [∃]ML;

4. [∩]ML �EXP
� [∪]ML;

5. [∪]ML �EXP
� [∩]ML;

6. [ϕ]ML �EXP
� [∩,∃]ML;

7. [∪]ML �EXP
� [∩,∃]ML;

We present the proof of this theorem in the next section.
Because of the fact that [∩]ML and [∩, ∃[ML are equally
expressive on Kripke models, we have some dependencies
in the above theorem: in particular, item 6 of Theorem 9
implies item 1 and item 7 implies item 5, which is easily
checked using Definition 3.

4. PROOF OF THEOREM 9

The formulae and the models.
We begin our proof of Theorem 9 by first defining the se-
quence of formulae and the sets of models we need in order to
apply Definition 3. Since our results presuppose signatures
that contain at least two relational indices and at least one
propositional symbol, we fix one such signature S = (I ,P),
where I = {a, d} and P = {b}, and all formulae we con-
sider are formulae in the signature S . The reader can find
the following mnemonic useful:

a stands for “solid arrow”;
d stands for “dashed arrow”;
b stands for “black node”.

Let the sets of formulae Γ ⊂ Φ[∪]ML and Δ ⊂ Φ[ϕ]ML consist
of the formulae γi and δi defined in Table 1.

We make the following observations about Γ and Δ. In-
tuitively, each formula γi ∈ Γ says that there is a point v
satisfying b that is n steps away from the current point
and lies on a path consisting of only a and d steps. It

Γ Δ

γ1 ¬[∪{a,d}]¬b δ1 〈a〉b ∨ 〈d〉b
γ2 ¬[∪{a,d}][∪{a,d}]¬b δ2 〈δ1〉(〈a〉b ∨ 〈d〉b)
...

...
γn ¬ [∪{a,d}] . . . [∪{a,d}]︸ ︷︷ ︸

n times

¬b δn 〈δn−1〉(〈a〉b ∨ 〈d〉b)

...
...

Table 1: The sets of formulae Γ and Δ.

is easy to see that for each γi , there is an equivalent ML-
formula αi defined recursively as follows α1 = 〈a〉b ∨ 〈d〉b
and αi+1 = 〈a〉αi ∨ 〈b〉αi . Clearly the length of each αi

is at least 2i . We are going to show that there are no
shorter ML-formulae that are equivalent to the formulae
from Γ. Similarly, using the translation from the previous
section, we see that for every δi ∈ Δ, there is an equivalent
ML-formula βi defined recursively as follows β1 = δ1 and
βi+1 = βi ∧ (〈a〉(b ∧ βi) ∨ 〈d〉(b ∧ βi )). Again we are going
to show that none of the formulae in Δ has an equivalent in
ΦML that is shorter than the respective formula βi . To this
end, we define a suitable set of models below.

Definition 10 (The models �
n
and �

n
). For every

natural number n ≥ 1, the sets of pointed models �n (con-
taining 2n different models) and �n (containing a single
model) are defined as follows.

(n = 1) The set �1 consists of the two pointed models
(A 1

a , α
1
a) and (A 1

d , α
1
d ) shown on the left of the dotted line

in Figure 1. The set �1 contains only one pointed model
namely, (B1, β1) that is shown on the right of the dotted
line.

(A 1
a , α

1
a)

β0α0

(A 1
d , α

1
d)

α0β0

(B1, β1)

β0

Figure 1: The sets of pointed models �1 and �1.

The black nodes satisfy the proposition b whereas the white
nodes do not. The subscripts in the names of the pointed
Kripke models encode the way a black node can be reached
from the uppermost node which is denoted by α with the
relevant subscripts and superscripts in the case of the models
in �1 and by β with a superscript in the case of the model
in �1. For example, in the model (A 1

a , α
1
a ), a black node

(namely, α0) can be reached from α1
a by making one step

along the relation Ra represented by the arrow connecting
these two nodes. In the model (A 1

d , α
1
d ), a black node can

be reached from the node α1
d by making one step along the

relation Rd represented by the dashed arrow connecting the
two nodes.

(n +1) The set �n+1 consists of all the models built from
the models in �n ∪ �n as shown in the Figure 2 below on
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the left of the dotted vertical line.

(A n+1
aw , αn+1

aw )

(Bn, βn)(A n
w , αn

w)

(A n+1
dw , αn+1

dw )

(A n
w , αn

w)(Bn, βn)

(Bn+1, βn+1)

(Bn, βn)

Figure 2: The sets of models �n+1 and �n+1.

For any pointed model (A n
w , α

n
w ) ∈ �, the pointed model

(A n+1
aw , αn+1

aw ) is obtained by taking a black node, denoted
by αn+1

aw , and connecting it to the point αn
w in A n

w and the
point βn in the model Bn as shown. The pointed model
(A n+1

dw , αn+1
dw ) is constructed in a similar fashion. The set

�
n+1 contains only the model (Bn+1, βn+1) shown on the

right of the dotted line.

Intuitively, the subscript w and the superscript n in the
pointed model (A n

w , α
n
w ) ∈ �n say that there is a sequence

of relation steps of length n encoded by w (a word over the
alphabet {a, d}), leading from the uppermost point of A n

w ,
i.e., αn

w , to the only lowermost node satisfying the proposi-
tion b. Since there are 2n different words w of length n over
the alphabet {a, d} and for every such w , there is a corre-
sponding pointed model in �n , this means that �n contains
2n different pointed models.

Example 11. The models (A 2
aa , α

2
aa) and (B2, β2) are

shown in Figure 3 below. Note how the pointed models A 1
a

and B1 are used in the construction of A 2
aa .

(A 2
aa, α

2
aa)

β1α1
a

A 1
a B1 B1

α0 β0 β0

(B2, β2)

β1

β0

Figure 3: The models (A 2
aa , α

2
aa ) and (B2, β2).

Intuitively, the second item from the next theorem says that
[∃{a,d}] or [∩{a,d}]- moves are powerless on these sets of
pointed models.

Theorem 12. The following are true.

1. �n |= γn & �n |= δn whereas �n |= ¬γn & �n |= ¬δn .

2. Spoiler cannot play a [∃{a,d}] or [∩{a,d}]-move at a
node of the form 〈(A n

w , α
n
w ) ◦ (Bn , βn)〉 or 〈(Bn , βn ) ◦

(A n
w , α

n
w )〉 without losing the game.

Proof. The first item can be checked by using the re-
marks at the beginning of this section. The proof of the sec-
ond item is best understood when given about the pointed

models for n+1 ( see Figure 2). Let us suppose that we have
a node with (Bn+1, βn+1) on one side and (A n+1

w , αn+1
w ) on

the other. If Spoiler plays a [∃{a,d}] or a [∩{a,d}]-move, he
will need to select (Bn , βn) as a successor to the pointed
model (A n+1

w , αn+1
w ) and the same pointed model, namely,

(Bn , βn ) as a successor of the pointed model (Bn+1, βn+1)
thus reaching a node in the game tree with two bisimilar
models, one on the left and one on the right. However, this
is a losing position for Spoiler.

We are now set to demonstrate how we employ the prin-
ciple of diverging pairs.

Theorem 13. For every n, Spoiler needs at least 2n moves
to win the game FSG[∩,∃]ML (and hence the games FSG[∩]ML

and FSG[∃]ML) starting at a node 〈�n ◦�n〉.
Proof. �

n contains 2n different pointed models corre-
sponding to the 2n different words w over the alphabet
{a, d}. Thus, we have 2n different pairs 〈(A n

w , α
n
w ), (B

n , βn )〉.
Let us consider an arbitrary T ∈ T (〈{(A n

w , α
n
w )}◦{(Bn , βn)}〉).

For a branch B in T let [i1][i2] . . . [ik ] be the possibly empty
sequence of index moves that occur along B when we tra-
verse the branch from the root 〈{(A n

w , α
n
w )} ◦ {(Bn , βn )}〉

to its leaf. Let I (B) denote the sequence i1, i2, . . . ik , i.e.,
the sequence of indices from [i1][i2] . . . [ik ]. Therefore, I (B)
is a word over the alphabet {a, d}. The proof of the theo-
rem will follow from Theorem 7 if we show that T contains
a branch Bw such that I (Bw ) = w , because if w1 �= w2

then two branches Bw1 and Bw2 such that I (Bw1) = w1 and
I (Bw1) = w2 cannot be isomorphic.

We proceed by induction on n to prove the following state-
ment. Any closed game tree for the game FSG[∩,∃]ML start-
ing at a node 〈(A n

w , α
n
w ) ◦ (Bn , βn)〉 or a node 〈(Bn

w , β
n) ◦

(A n , αn
w )〉, contains a branch B such that I (B) = w .

Let us first consider a game starting at 〈(A 1
a , α

1
a )◦(B1, β1)〉

(the case for 〈(A 1
d , α

1
d ) ◦ (B1, β1)〉, or 〈(B1

a , β
1) ◦ (A 1, α1

a )〉
and, hence, for 〈(B1

d , β
1) ◦ (A 1, α1

d )〉 are analogous). It is
obvious that Spoiler cannot begin the game with an atomic
move so he can start by playing a number of not and or-
moves This, however, will lead to at least one branch that
consists of a number of nodes of the form 〈(A n

w , α
n
w )◦(Bn , βn)〉

or 〈(Bn , βn)◦(A n
w , α

n
w )〉. Since neither of these nodes can be

closed, at some point, Spoiler will need to play an [i ], [∩{a,d}]
or [∃{a,d}] move. We already know from Theorem 12 that
Spoiler cannot play one of the latter two moves. He will not
play a [d ]-move either, because in the successor node in the
branch, he would have two bisimilar models. So the only
first move involving any index will be an [a]-move. Assume
the statement is true for n and let us consider a game start-
ing at 〈(A n+1

w , αn+1
w ) ◦ (Bn+1, βn+1)〉 (the remaining cases

are similar). Suppose that w = aw ′ (the case w = dw ′ is
analogous). As in the case for n = 1, Spoiler can begin by
playing a number of not- and or-moves, but, again as above,
this will lead to at least one branch that consists of a number
of nodes 〈(A n+1

w , αn+1
w ) ◦ (Bn+1, βn+1)〉 or 〈(Bn+1, βn+1) ◦

(A n+1
w , αn+1

w )〉. Therefore, at some point, he will need to
play an [i ], [∩{a,d}] or [∪{a,d}] move. But, as in the case
for n = 1, the only possible such move is [a]. However,
Spoiler cannot play an [a]-move at a node 〈(A n+1

w , αn+1
w ) ◦

(Bn+1, βn+1)〉 because this will lead to the occurrence of
two bisimilar models, one on the left and the other on the
right in the successor node. Hence, Spoiler must play a [a]-
move at a node of the form 〈(Bn+1, βn+1) ◦ (A n+1

w , αn+1
w )〉.

His only choice is to select the pointed model (A n
w′ , αn

w′) on
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the right and (Bn , βn) on the left.We apply the induction
hypothesis which completes the proof.

Corollary 14. Let 
 = ∪n(�
n ∪ �n ). Then it fol-

lows from Theorem 12 and 13 that Δ �EXP
� [∩]ML, that

Δ �EXP
� [∃]ML, and that Γ �EXP

� [∩]ML. Moreover, we
also have Γ �EXP

� [∩,∃]ML and Δ �EXP
� [∩, ∃]ML. In turn,

these claims prove items 1, 3, 5, 6 and 7 of Theorem 9,
respectively.

In order to prove the items 2 and 4 of Theorem 9 we continue
by defining two new sets of formulae and a suitable set of
pointed models as follows.

Let the set of formulae Ψ ⊂ Φ[∩]ML and Ω ⊂ Φ[ϕ]ML be
defined recursively as shown in Table 2

Ψ Ω

ψ1 [∩{a,d}]b ω1 [a]b ∨ [d ]b
ψ2 [∩{a,d}][∩{a,d}]b ω2 〈ω1〉(〈a〉b ∧ 〈d〉b)
...

...
ψn [∩{a,d}] . . . [∩{a,d}]︸ ︷︷ ︸

n times

b ωn 〈ωn−1〉(〈a〉b ∧ 〈d〉b)

...
...

Table 2: The sets of formulae Ψ and Ω.

The reader can easily check that for every i , the ML-
formula ζi defined as ζ1 = ω1 and ζi+1 = ζi ∧ (〈a〉(b ∧ ζi) ∧
〈d〉(b ∧ ζi)) is equivalent to the formula ωi .

Following the conventions we used in Definition 10, for
any n ∈ �, we construct two sets of pointed models �n and
�

n .

Definition 15 (The models �
n
and �

n
). The sets of

pointed models �n and �n , containing 2n different models
each, are built recursively as follows.

(n = 1) The set �1 consists of the two pointed models
(O1

a , o
1
a ) and (O1

d , o
1
d ) shown on the left of the dotted line in

Figure 4 below. The set �1 contains the models (P1
a , ρ

1
a)

and (P1
d , ρ

1
d ) shown on the right of the dotted line.

(O1
a , o

1
a)

ρ0o0

(O1
d , o

1
d)

o0ρ0

(P1
a , ρ

1
a)

ρ0 o0

(P1
d , ρ

1
d)

o0 ρ0

Figure 4: The models �1 and �1.

(n + 1) The sets �n+1 and �n+1 are built as shown in
Figure 5. We follow an algorithmic pattern analogous to the
one we used in the construction of the models in �n+1 and
�

n+1 from Definition 10. It should be clear that each of the
sets �n and �n contains 2n different pointed models - one
for each subscript w of length n.

(O2
da, o

2
da)

o1aρ1a

o0

P1
a O1

a

ρ0 o0 ρ0

(P2
da, ρ

2
da)

ρ1ao1a

ρ0

P1
aO1

a

o0 ρ0 o0

Figure 6: The models (O2
da , o

2
da) and (P2

da , ρ
2
da).

As before, for any pair of pointed models (On
w , o

n
w ) and

(Pn
w , ρ

n
w ), we have that the subscript w encodes a sequence

of n relation steps that lead from on
w to a black point o0;

the same sequence w leads from ρnw to a white point ρ0.

Example 16. The pair of models (O2
da , o

2
da) and (P2

da , ρ
2
da)

are shown in Figure 6 below. The subscript “da” and the
superscript “2” in (O2

da , o
2
da) mean that starting at o2

da and
making one step along the relation Rd (represented by the
dashed arrow) followed by a step along Ra (represented by
the solid arrow), we arrive at a black point, i.e., a point
satisfying the proposition b. The same sequence of relation
steps “da” leads to a white point, i.e., a point that does not
satisfy the proposition b from ρ2da in the Kripke model P2

da .
Note that (O2

da , o
2
da) and (P2

da , ρ
2
da ) are bisimilar with respect

to a, i.e., the relation Ra represented by the solid arrow.

Analogously to Theorem 12, we have the next Theorem
where the second item says that [∪Γ] moves will not help
Spoiler win a FSG[∪]ML.

Theorem 17. The following are true.

1. �n |= ψn ∧ ωn whereas �n |= ¬ψn ∧ ¬ωn .

2. Spoiler cannot play a [∪{a,d}]-move at a node of the
form (On

w , o
n
w )◦(Pn

w , ρ
n
w ) or (Pn

w , ρ
n
w )◦(On

w , o
n
w ). with-

out losing the game.

Proof. The proof of both items is similar to the proofs
of the analogous items from Theorem 12.

Before continuing, we would like to point out that, for any
formula ωi , there is an equivalent on �n ∪�n formula ηi ∈
ΦML defined as follows. η1 = [a]b ∨ [d ]b and ηi + 1 =
[a]ηi ∨ [d ]ηi . The proof of the next theorem mimics the
proof of Theorem 13.

Theorem 18. For every n, Spoiler needs at least 2n moves
to win the FSG[∪]ML, starting at a node 〈�n ◦�n〉.

Corollary 19. Let 
 = ∪n (�
n ∪ �n). Then it follows

from Theorem 12 and 13 that Ω �EXP
� [∪]ML, and that

Ψ �EXP
� [∪]ML. In turn, these claims prove items 2, and 4

of Theorem 9, respectively.

5. CONCLUSION
We have demonstrated succinctness results that compare

a number of modal logics. Most of them were equally ex-
pressive as pure modal logic [i ]ML, but we also considered
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(On+1
aw , on+1

aw )

(Pn
w, ρ

n
w)(On

w, o
n
w)

(On+1
dw , on+1

dw )

(On
w, o

n
w)(Pn

w, ρ
n
w)

(Pn+1
aw , ρn+1

aw )

(Pn
w, ρ

n
w)(O

n
w, o

n
aw)

(Pn+1
dw , ρn+1

dw )

(On
w, o

n
w) (P

n
w, ρ

n
w)

Figure 5: The sets of models �n and �n where n > 1.

a logic, [∩]ML, that is more expressive than all the oth-
ers. Interestingly, we showed that, although [∩]ML is more
expressive than [∪]ML, some properties are more succinctly
expressed in the weaker logic, and others are more succinctly
expressed in the stronger one.

Avenues for further research are plenty. All the relative
succinctness results we presented are for �. (The proofs
show that they in fact hold for a smaller class: models with
at most two successors for each i). It is an open question
how easy they generalise to more specialised models, like
�5. In fact, all the models we presented in this paper are
generated models, which made reasoning in the FSGs easier,
because the result of playing a modal-move kept the models
of interest on both sides of the node in a game tree ‘synchro-
nised’. However, if the accessibilities in the models receive
more properties, things become more difficult: playing a [i ]-
move for instance forces us to take into account that the
successor point in the next node may be the same (if Ra

is reflexive) or goes back ‘higher up in the model’ (if Ra is
symmetric).

Also, note that none of our results provides a system that
is more succinct than [ϕ]ML. Although it is possible to de-
fine FSG[ϕ]ML, such games are difficult to employ on concrete
sets of models, because the attention not only goes to the
current point and possible successors, but to arbitrary points
in the model satisfying ϕ–moreover, Spoiler can choose the
ϕ at will. Indeed, there are also many other modal log-
ics where settling succinctness questions may need richer
or indeed other tools than FSGs. An important example
that comes to mind is where quantification over coalitions
is introduced, like in epistemic logic [3] but also coalition
logic [2].
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