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ABSTRACT
We consider team-work settings where individual agents incur costs
on behalf of the team. In such settings it is frequently the custom
to reimburse agents for the costs they incur (at least in part) in or-
der to promote fairness. We show, however, that when agents are
self-interested such reimbursement can result in degradation in effi-
ciency - at times severe degradation. We thus study the relationship
between efficiency and fairness in such settings, distinguishing be-
tween ex-ante and ex-post fairness. First, we analyze reimburse-
ment policies that reimburse solely based on purchase receipts (as
is customary), and show that with such policies the degradation in
both efficiency and fairness can be unbounded. We thus introduce
two other families of reimbursement policies. The first family guar-
antees optimal efficiency and ex-ante fairness, but not ex-post fair-
ness. The second family improves (at times) on ex-post fairness,
but at the expense of efficiency, thus providing a tradeoff between
the two.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent Systems

General Terms
Economics, Algorithms

Keywords
Multi-Agent Exploration, Cooperation, Teamwork, Economically-
Motivated Agents

1. INTRODUCTION
Cooperation and team work are key to many multi-agent sys-

tems. Team work has many advantages, but perhaps the most fun-
damental is efficiency - operating as a team, agents can benefit
from the work performed by others, eliminating duplicate work
and costs. Thus, a team of thirsty people in a desert can collec-
tively dig a single well, rather than each digging its own; a group
of medical students can all use the expensive book purchased by
one, rather than each having to purchase it separately; and a team of
shopbots can split the search space amongst themselves - and then
share the information, rather than each having to search the entire
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space. Thus, working as a team can significantly reduce costs, both
collective and individual. At the same time, while agents - even
self-interested agents - are frequently accepting that others bene-
fit from their work, they also expect that the distribution of costs
amongst the team members be “fair”, in the sense that costs in-
curred are (more or less) evenly distributed among the members.
Thus, continuing the above example, the student who purchased
the expensive book expects to be reimbursed for her costs. How-
ever, these two objectives - efficiency and fairness, can be at odds -
as demonstrated by the following example.

Consider again the expensive book example. Suppose there are
twenty medical students all of which require some book, say “The
Adult and Pediatric Spine” (ISBN 0781735491). One copy of the
book is sufficient for all students, so only one of them, say Alice,
buys the book. For fairness, the students agree that they will reim-
burse Alice for their share ( 19

20
) of the cost, whatever that will turn

out to be. “The Adult and Pediatric Spine” lists for $360, but can
also be found used, with some effort, for less than $70 (these are
the true figures). However, paying only 5% of the cost (i.e. at most
$18), Alice has little incentive to invest the time and effort to get
a better deal, and purchases the book at full price at the university
bookshop. The team in total thus paid $360. If, on the other hand,
fairness would not have been required and Alice would incur the
entire the cost of the book, she would invest some effort, say worth
$20, in getting the $70 deal and the total cost would be $90. Thus,
the requirement for fairness has reduced the overall efficiency by a
factor of four. In this case, fairness damaged the team as a whole,
but at least benefited Alice. But, there are also cases where insisting
on fairness can damage all. Suppose that there are twenty expen-
sive books to purchase, and each student is tasked with getting one
book. The students also agree to split all costs evenly - based on
purchase receipts - as is customary. As in the previous case, the
result is that each student has little incentive to invest any effort
in getting a good deal on its assigned book, and the team ends up
paying full price on all books. If, on the other hand, each student
would fully pay for its assigned book, then they may end up pay-
ing different amounts - which could be considered as unfair - but
each student would invest the time in getting a good deal, and the
resulting cost would be lower for each and every student.

In this paper we investigate this relationship between efficiency
and fairness in settings such as the above, and develop mechanisms
that produce a good tradeoff between the two.

The first necessary step in analyzing the tradeoff between effi-
ciency and fairness is to get a clear understanding of each of the
notions. Efficiency is rather straightforward - it concerns the over-
all cost of obtaining the goal and is measured by totaling the costs
of all team members. In the stochastic case - we take the expecta-
tion of this total.
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Fairness: Ex Ante and Ex Post.
Fairness concerns the difference in costs between team members

- dissimilar costs are considered less fair while similar costs are
considered fairer. Accordingly, we measure fairness as the ratio be-
tween the cost incurred by the agent incurring lowest cost and that
incurred by the agent incurring the highest cost. In the stochas-
tic case, it would seem that we can simply compare the expected
costs, but this is not entirely true - as similar expectations need not
result in expected similarity. Indeed, even if the expected costs of
all team members are identical, their actual costs may frequently be
very dissimilar. Furthermore, individuals often care more about the
actual fairness than about fairness in expectation. For example, the
common practice of splitting costs based on receipts is specifically
aimed at achieving actual fairness. Thus, we distinguish between
two notions of fairness: ex-ante fairness and ex-post fairness. Ex-
ante fairness considers the difference in the agents’ expected costs,
whereas ex-post fairness considers the expected actual difference
in costs.

The formal definition of the model, as well as the formal defini-
tions of efficiency and fairness are provided in Section 2.

Contributions.
In this work we consider different possible policies1 for reim-

bursement among the agents, and analyze their performance with
respect to efficiency and fairness. Our goal is to develop policies
that are both efficient and fair, to the extent possible.

First we consider the common practice of sharing costs based
on receipts. We show that the inefficiency of this policy is un-
bounded. Furthermore, when taking the search costs into account,
the unfairness of this policy is also unbounded. We thus present
an alternative mechanism which is both fully efficient and fully
ex-ante fair. It does not, however, provide ex-post fairness. In-
deed, assuming that the actual cost of search cannot be tracked, full
ex-post fairness cannot be obtained. We show, however, that ex-
post unfairness can nonetheless be reduced. We present a family
of policies that improve ex-post fairness, providing a tradeoff be-
tween ex-post fairness and efficiency. For this family we provide a
closed form solution for the searching agent’s optimal strategy, en-
abling the system designer to evaluate a wide range of alternative
policies. Numerical illustrations are provided throughout the paper,
illustrating the effect of the model and mechanisms’ performance.

2. MODEL AND PERFORMANCE MEASURES
For exposition purposes we adopt the product purchase termi-

nology. The same results hold for other costly search settings as
well.

We consider a setting where a teamA = {A1, ..., Ak} of self in-
terested, fully-rational agents have designated one of its members,
call the buyer, to buy a specific product on behalf of the team. The
agent can buy the product from any one of n stores. The price of the
product at each store is assumed to be drawn at random from a com-
mon distribution, characterized by probability distribution function
(p.d.f.) f(x), with which all agents are familiar [33]. The actual
price at each store is known only upon “visiting” the store (either
physically or virtually), a process which is associated with some
cost c (e.g. in gas, time, effort), termed search cost. It is assumed
that at any time, the product can be purchased at any store visited
so far, including that with the lowest price.

Reimbursement Policy.
Since the agent is operating on behalf of the entire team, it is

1We use the notions policy and mechanism interchangeably.

reimbursed by the other group members, to some extent, accord-
ing to some pre-defined reimbursement policy. The policy states
how much money will be paid to the buyer by the other team mem-
bers (who share this cost equally among themselves). In determin-
ing the reimbursement amount, the policy can take into account all
available information, both a-priori and actual. We assume that the
buyer can provide evidence, e.g. in the form a receipt, for the actual
price paid for the product. Actual search costs, on the other hand,
are assumed not be provable or otherwise available to the policy.

Strategy.
The price distribution and search cost, on the one hand, and the

reimbursement policy, on the other, together determine the optimal
strategy for the buyer. The buyer’s strategy is characterized by a
stopping rule which determines if to continue searching, and incur
the associated costs, or stop searching and purchase at the lowest
price found thus far. The optimal strategy for the agent is the one
that minimizes its expected net cost, defined as the expenses in-
curred along the process (both for searching and for buying) minus
the reimbursement received. Note, that the above characterization
of the individual agent’s problem extends the standard and widely
used canonical costly search problem [10, 21, 19, 26, 29] to the
setting with reimbursement.

Measures.
Obviously different reimbursement policies result in different in-

dividual search strategies and consequently different distributions
of the total expense and its division among the group members.
Therefore, for evaluating the different reimbursement policies we
consider two measures of interest for the agents: efficiency and
fairness.

Efficiency reflects the total net cost incurred by the team as a
whole. Note that reimbursement is made internally between team
members, so the cost of the team is fully captured by the buyer’s
total expenses for searching and buying (we use the term expense
to denote out-of-pocket payment amounts, while cost denotes net-
cost, i.e. expense minus reimbursement). Therefore, we define
the efficiency of a given policy as the ratio between the minimal
buyer’s total expense, taken over all possible policies, and the ex-
pected total expense of the given policy. Formally, for a policy P ,
let expenseP(Buyer) be the expense of the buyer under this policy.
Then, the efficiency of a policy P is defined as:

efficiency(P) =
minQ{E(expenseQ(Buyer))}

E(expenseP(Buyer))

(where E is the expectation).
Fairness reflects the similarity in costs amongst the team mem-

bers. Thus, fairness is measured as the ratio between the cost in-
curred by the agent incurring lowest cost and that incurred by the
agent incurring the highest cost. As explained in the Introduction,
we distinguish between two types of fairness: ex-ante fairness and
ex-post fairness. Ex-ante fairness reflects the fairness amongst ex-
pected costs, while ex-post fairness reflects the expected fairness
amongst actual costs. Formally, let costP(Ai) be the net cost of
agent Ai under policy P (cost is taken to be 0 if the agent gains
from the protocol). Then,

Fairnessex-ante(P) =
mini{E(costP(Ai))}
maxi{E(costP(Ai))}

and

Fairnessex-post(P) = E

(
mini{costP(Ai)}
maxi{costP(Ai)}

)
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Note that both efficiency and fairness range between 0 and 1.
It is notable that a reimbursement rule that guarantees an ex-post

fairness of 1 necessarily guarantees also an ex-ante fairness of 1.
Nevertheless, for all other cases, the two are completely different.
We define inefficiency and unfairness as reciprocal functions of ef-
ficiency and fairness, respectively.

The definition of efficiency has the minimal possible expense,
taken over all possible policies, in the numerator. Luckily, there is
one simple policy where this minimum is always obtained. Namely,
the policy P∅ in which the buyer is not reimbursed at all.

PROPOSITION 1. The policy P∅ guarantees the minimal possi-
ble expected buyer’s total expense, i.e.

E(expenseP∅(Buyer)) = min
Q
{E(expenseQ(Buyer))}

PROOF. By definition, the expense of the buyer under P∅ is also
its net cost. By assumption the buyer employs the strategy that
minimizes its net cost. Thus, no strategy can obtain a lesser net-
cost and hence also no lesser expense.

Thus, to compute efficiency we use the buyer’s expected expense
under P∅, denoted by expense∅, in the numerator.

3. RECEIPT SPLITTING POLICIES
The optimal strategy under P∅ can be found in classic economic

search theory [25]: the buyer should set a reservation value (i.e., a
threshold) r, calculated as the solution for the following equation:

c =

∫ r

y=−∞
(r − y)f(y)dy (1)

The buyer should check prices in stores (in a random order, as they
are all a priori alike) and terminate once running into a price lower
than the reservation value r (or running out of stores to check). In-
tuitively, r is the value where the buyer is precisely indifferent: the
expected marginal benefit from visiting another store exactly equals
the cost incurred. It is notable that the decision rule is myopic, i.e.,
the value of r does not depend on the number of stores that can still
be potentially explored [25].

In order to formulate the buyer’s expected expense when using
the above search strategy we first calculate the expected price at
which the product is eventually purchased, denoted EV . This will
also be the basis for the reimbursement policies developed later on.
In order to calculate EV we first calculate the probability that the
minimum price obtained throughout search, when using the reser-
vation value r, is lesser than x, denoted F̄ (x), calculated according
to:

F̄ (x)=

{
1−(1− F (x))n x > r

1−
(

(1−F (r))n+ 1−(1−F (r))n

F (r)
(F (r)−F (x))

)
x ≤ r

The case where x > r requires that all n stores checked yield
a price greater than x. The case x ≤ r is calculated using the
complementary probability, i.e., the probability that the best value
obtained is greater than x. This corresponds to two possible scenar-
ios. The first is where all n explored stores result in a price greater
than r, i.e., with probability (1−F (r))n. The second, is where the
search terminates right after visiting the jth store, upon revealing
a price y such that x < y ≤ r (as otherwise, if y > r the search
should resume) and all the former j − 1 stores checked returned a
price greater than r (as otherwise the jth store is not reached). The
probability for this latter case (for all values of j ≤ n) can be cal-
culated using the geometric series

∏n
j=1(F (x)− F (r))F (r)j−1.

The first order derivative of F̄ (x) is the probability distribu-
tion function of the minimum price, denoted f̄(x), and is given
by f̄(x) = d(F̄ (x))

dx
. This enables the calculation of EV as:

EV =

∫ ∞
y=−∞

yf̄(y)dy (2)

Using the above, the buyer’s expected expense underP∅, is given
by:

expense∅ = c · 1− (1− F (r))n

F (r)
+ EV (3)

where the first term is the expected cost incurred throughout the
search, calculated as: c

∑n
j=1(1 − F (r))j−1 = c 1−(1−F (r))n

F (r)
,

as the number of stores checked is a geometric random variable
bounded by n, with a success probability F (r). The second term
is the actual expense of buying the product.

When adding a reimbursement policy P , there is no guarantee
that the buyer’s optimal search strategy is reservation-value based.
Instead, it can take various forms (e.g., be based on several ranges
of values for which additional stores are checked). Still, for some
reimbursement policies we can prove the validness of the reservation-
value based strategy structure. In particular, consider the common
reimbursement policy, denotedPsplit, where the agents equally split
the item’s cost as indicated by the receipt, i.e., the buyer is reim-
bursed for k−1

k
of the cost of the item. The buyer’s optimal strategy

for this reimbursement is given in the following proposition.

PROPOSITION 2. The buyer’s optimal strategy underPsplit is to
use a reservation-value based strategy where the reservation value
r is the solution to:

c =
1

k
·
∫ r

y=−∞
(r − y)f(y)dy (4)

PROOF. We first prove the reservation-value nature of the op-
timal strategy. Since recall is allowed then if the buyer prefers
terminating search given the best known price v and n′ remain-
ing uncertain stores, it will also prefer terminating when the best
known value is v′ < v (and n′ remaining uncertain stores). The
proof that the value of the reservation value does not depend on
the number of remaining uncertain stores is inductive, showing
that if with any number of remaining uncertain stores smaller than
n′ the optimal choice is to use reservation value r then so is the
case with n′ remaining uncertain stores. The reservation value
when only one uncertain store is available derives from equating
the search cost c with the expected improvement obtained by the
additional search, i.e., the search resumes for any v for which c <∫ v
y=−∞ (v−y)f(y)dy

k
, resulting in a reservation value r according

to Equation 4. Now assume that the optimal reservation value to
be used with any n′′ < n′ uncertain stores is r and consider the
agent’s decision regarding checking one more store, if the best
value it obtained so far is x and the number of uncertain stores
is n′′. If x < r and the buyer checks one additional store, then
regardless of the price obtained next the buyer will definitely ter-
minate the search after the additional search (as it already has a
price lower than r). This is equivalent to resuming the search when
the best price obtained thus far is x and only one uncertain store
is available. The latter choice however is not optimal according to
the assumption that a reservation value r is used for any n′′ < n′

uncertain available stores. Similarly, notice that the expected re-
duction in the agent’s cost when resuming search with n′ uncertain
stores is greater than with n′′ < n′ uncertain stores. Therefore,
if resuming search is optimal for x > r, for n′′, according to the
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inductive assumption, then so should be the optimal choice when
with n′.

Note that a totally analogous proof actually shows that a similar
behavior is obtained whenever the reimbursement is determined as
a fraction of the item’s actual cost. For any α, let Pα be the pol-
icy where the buyer is reimbursed with an α fraction of the item’s
actual cost (Psplit = P k−1

k
). The buyer’s optimal strategy under

Pα is reservation based with a reservation value as in (4) with 1
k

replaced by 1− α.
From (4) we obtain that, as expected, the reservation value used

by the buyer increases when the number of agents in the group,
k, increases. More generally, as the portion α that the buyer is
being reimbursed increases, the buyer’s reservation value increases.
This is because the buyer’s decision is based on comparing the cost
of further search with the expected individual saving due to the
increase in the receipt’s amount. When being reimbursed a greater
portion, the marginal savings from each improvement in purchase
price decreases, hence the buyer is more reluctant to resume search.
Furthermore, for k = 1 (or α = 0) the agent’s considerations are
the same as with no reimbursement at all, and indeed Equation 4 is
the same as (1).

Using the same analysis methodology given in former paragraphs,
the expected expense of the buyer, under the P = α rule, is given
by:

E(costPsplit(Buyer)) = c
1− (1− F (r))n

F (r)
+ (1− α) · EV (5)

where r is calculated according to (4), replacing 1/k by 1−α. The
first term in (5) is the expected cost incurred throughout the search
carried out by the buyer. The second term is the buyer’s share in
the expense of buying the product (i.e., after reimbursed by the
group), whereEV is calculated according (2) using the appropriate
reservation value. The expected reimbursement will be α · EV .

The above enables us to illustrate the problematic nature of the
common “splitting-receipts” policy, and more generally Pα poli-
cies. This approach results both in a non-efficient and unfair out-
comes. Figure 1 depicts the three performance measures (effi-
ciency, ex-ante fairness and ex-post fairness) as function of α for
a setting of 5 stores, where product prices derive from the uniform
distribution function over (0, 1) and search cost is c = 0.02, for
different number of agents k. In order to calculate the ex-post
fairness, we first calculated the optimal buyer’s strategy and then
used simulation, averaging over 1 million results for each setting.
As observed from Figure 1(a), efficiency decreases as the percent-
age of reimbursement increases. Furthermore, the maximum effi-
ciency is achieved with no reimbursement, i.e., when α = 0. Un-
like with the efficiency, as the figure depicts, the maximum ex-ante
fairness (graph (b)) and the maximum ex-post fairness (graph (c))
are achieved with some positive, however different than the natu-
ral split (marked with dotted vertical lines), reimbursement. It is
notable that in this specific case the number of agents in the team
does not affect efficiency (unlike with the fairness measures), be-
cause the buyer is being reimbursed according to α rather than k.
Also, as expected, the ex-post fairness does not reach 1, as this
would mean an equal division of the expense in each instance.

Interestingly, we can prove that both the inefficiency and un-
fairness resulting from P = α-like reimbursement rules are un-
bounded.

PROPOSITION 3. The inefficiency and unfairness in Psplit are
unbounded.

PROOF. We begin with inefficiency. Consider the case where
f(x) is uniform between 0 and 1 (i.e., f(x) = 1, ∀0 ≤ x ≤ 1,

otherwise f(x) = 0) and the buyer is not bounded by the number
of stores (i.e., n → ∞). In this case the minimum buyer expense
is achieved when the buyer uses r′ =

√
2 · c, according to (1).

Since the distribution of prices is uniform, we obtain EV = r′/2
(for any r′ ≤ 1) and the expected number of stores visited is 1/r′.
Therefore expense∅ = r′/2 + c/r′ which, after substituting r′ =√

2 · c turns into expense∅ =
√

2 · c. Similarly, under the Psplit
reimbursement policy the buyer’s reservation value r′′ is given by
r′′ =

√
2 · k · c. Thus we obtain:

E(expensePsplit(Buyer)) = r′′/2 + c/r′′ =
k · c+ c√

2 · k · c

Therefore the inefficiency measure is:
k·c+c√
2·k·c√
2·c =

√
k/2 + 1/

√
4k,

hence we can increase the inefficiency indefinitely by increasing
k.2

Next, we show that the ex-ante unfairness is unbounded, using
the exact same setting as above. For a sufficiently large c value, we
obtain r′ > 1. In this case EV = 1/2, E(costPsplit(Buyer)) =

1/(2k) + c and E(costPsplit(Ai)) = 1/(2k) ∀Ai 6= Buyer.
Therefore:

Fairnessex-ante(Psplit) =
1/(2k) + c

1/(2k)
= 1 + 2kc

Therefore we can increase the ex-ante unfairness indefinitely by
increasing k.

Since the ex-ante unfairness measure is unbounded, then neces-
sarily the ex-post unfairness measure is unbounded too.

4. FULL EFFICIENCY POLICIES
Since the buyer can supply evidence only for the actual expense

of purchase (i.e., the receipt amount), fully ex-post fairness can not
be achieved. This is because, given the probabilistic nature of the
search, each receipt amount can be associated with a wide range
of possible accumulated search cost. Therefore, a reimbursement
policy that relies only on the receipt amount as a decision param-
eter will necessarily fail to result in an equal cost for the buyer
and the remaining of the agents for at least one possible outcome
of accumulated search cost. Therefore, in this section we discuss
reimbursement policies that guarantee ex-ante full fairness while
keeping a fully efficient search. We first show two reimbursement
policies that guarantee both full efficiency and full ex-ante fairness.
Each policy influences differently the ex-post fairness. Hence, nei-
ther dominates the other. These two policies are then generalized
into a single parametrized policy that corresponds to a class of poli-
cies aiming to balance costs in order to achieve high ex-post fair-
ness.

The first policy, Pfixed(s), is characterized by the buyer being
paid some fixed amount s, regardless of the outcome of the search
process. In fact, this amount can be paid in advance, prior to car-
rying out the search process. The following proposition determines
that the Pfixed(s) is efficient and determines the s which provides
full ex-ante fairness.

PROPOSITION 4. For s = expense∅ · (k − 1)/k, the policy
Pfixed(s) is fully efficient and fully ex-ante fair.

PROOF. Since the buyer is payed a fixed amount, it accounts
for whatever expense incurred beyond that amount. Therefore, its
search optimization problem is identical to minimizing the total

2We can always find c small enough such that (1) will result in a
reservation value r′′ < 1, hence EV = r′′/2.
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Figure 1: The effect of α in the P = α reimbursement policy on: (a) efficiency; (b) ex-ante fairness; and (c) ex-post fairness for different number of
agents. The setting used is: n = 5, c = 0.02 and f(x) uniformly distributed between 0 and 1.

expense, i.e., similar to the one used with P∅. Hence by Propo-
sition 1, Pfixed(s) is fully efficient. It remains to determine that for
s = expense∅ · (k − 1)/k, the policy Pfixed(s) is fully ex-ante fair.
This is straightforward — since the buyer uses the same strategy as
with P∅, its expected expense will be expense∅, and consequently
its expected cost is expense∅/k, which equals the equal share of
each of the other agents in the reimbursement.

The policy Pfixed(s) is characterized by a fixed cost for the non-
searching team members and a variable cost to the buyer (due to
its variable search and purchase expenses). In fact, in this case,
the uncertainty associated with the search is captured entirely by
the buyer’s cost, hence affecting ex-post fairness. In an attempt
to obtain more balance between the two, we introduce a second
policy, denoted Pbonus(s). Under Pbonus(s) the reimbursement is
composed of two parts:

• Sharing: the buyer gets (k − 1)/k of actual amount paid for
the good.

• Bonus: an amount s is added as a bonus if the actual price
paid for the good is no more than the reservation price r, as
determined in (1).

The following proposition shows that by choosing s appropriately
we can guarantee full efficiency and fairness.

PROPOSITION 5. Setting s = c(k−1)
F (r)k

provides that Pbonus(s)

is fully efficient and fully ex-ante fair.

PROOF. In order to prove efficiency, we prove that the buyer’s
strategy in this case is reservation value, and the optimal reservation
value, denoted r′, satisfies r′ = r according to (1). The proof is the
same as the one given for Proposition 2, except that the expected
benefit from resuming search, if the best known price is v > r, is

given by
∫ r′
y=−∞ (r′−y)f(y)dy

k
+ s · F (r), and

∫ r′
y=−∞ (r′−y)f(y)dy

k
otherwise (v ≤ r), resulting in:

c =

∫ r′
y=−∞ (r′ − y)f(y)dy

k
+
c(k − 1)F (r)

F (r)k
, v > r (6)

When v < r, further search is necessarily not beneficial, as c is

greater than
∫ r′
y=−∞ (r′−y)f(y)dy

k
according to (1). Notice that (6)

can be represented as:

ck =

∫ r′

y=−∞
(r′ − y)f(y)dy + c(k − 1)

which after some mathematical manipulations becomes identical to
Equation 1, hence the same reservation value will be used (r′ = r).

Using the same methodology as in former section, the expected
buyer’s expense in this case is given by:

E(costPbonus(s)(Buyer)) = c · 1− (1− F (r))n

F (r)

+

∫∞
y=−∞yf̄(y)dy

k
− s · F̄ (r) =

expense∅
k

and the expected cost of any of the remaining agents is:

E(costPbonus(s)(Ai))=

∫∞
y=−∞yf̄(y)dy

k
+
s · F̄ (r)

k − 1
=

expense∅
k

hence, the cost of all agents is equal.

One inherent shortcoming of the Pbonus(s) policy, from the ex-
post fairness point of view, is that the buyer is being reimbursed
for the search cost portion of its expense only in cases where it
has actually managed to find a price below the reservation value
according to (1). This suggests that in some cases it will be reim-
bursed only (k− 1)/k of the receipt amount, while in others it will
be reimbursed substantially more than what it has actually spent (to
compensate for all the times it has not been reimbursed its search
cost). For example, consider the case of two agents and only one
store that can be checked, where there is a probability of 0.5 for a
price 0 and a probability 0.5 for a price 1000. The search cost is
c = 500. In this example, in half of the cases the buyer’s cost will
be 1000 and the other agent’s cost will be 500. In the remaining of
the cases, the buyer’s cost will be 0 and the other agent’s cost will
be 500. Both cases are highly unequal and thus highly unfair.

In order to assure a more balanced reimbursement for the costs
of the searcher, we introduce a third policy, Pcombined(s1, s2, β),
according to which some portion of the reimbursement is fixed (as
in the first policy), and some portion is given based on success (as
in the second policy). Notice, however, that if some portion of
the reimbursement provided upon “success” in the former policy,
as given in Proposition 5, is traded for an initial independent re-
imbursement, then an efficient search cannot be guaranteed (the
benefit from further search when obtaining a price r will not worth
the cost of such search). Therefore, a greater incentive should be
provided for the buyer to keep searching even when finding a price
close to r. We manage to achieve this goal by reimbursing the
agent less than the reimbursement used by Pbonus(·) for the receipt
amount. This way, the saving from further search, from the buyer’s
point of view, is greater. Specifically, under Pcombined(s1, s2, β),
the buyer is reimbursed:

• Fixed: a fixed amount of s1.
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• Sharing: the buyer gets a β fraction of actual amount paid
for the good.

• Bonus: an amount s2 is added as a bonus if the actual price
paid for the good is no more than the reservation price r, as
determined in (1).

The following proposition provides the proper choices of s1 and s2

(given β) which guarantee full efficiency and ex-ante fairness.

PROPOSITION 6. Setting:

s1=
(
c·1−(1−F (r))n

F (r)
+(1−β)·

∫ ∞
y=−∞
yf̄(y)dy−s2·F̄ (r)

)
−

expense∅
k

and

s2 =
c · β
F (r)

Pcombined(s1, s2, β) is fully efficient and fully ex-ante fair.
PROOF. For the same considerations given in the proof for Propo-

sition 5, the buyer will use a reservation-value rule where the opti-
mal reservation value satisfies c = (1−β)·

∫ r′
y=−∞(r′−y)f(y)dy+

s2 · F (r), where r′ is its cost-minimizing strategy. Substituting
s2 = c·β

F (r)
, obtains:

c = (1− β) ·
∫ r′

y=−∞
(r′ − y)f(y)dy + c · β

which after some mathematical manipulations becomes identical
to Equation 1, hence the reservation value used by the buyer, r′,
satisfies r′ = r and achieves the maximum efficiency. In this case
the expected cost of the buyer is:

E(costPcombined(s1,s2,β)(Buyer)) = c · 1− (1− F (r))n

F (r)
(7)

+ (1− β) ·
∫ ∞
y=−∞

yf̄(y)dy − s2 · F̄ (r)− s1

and after substituting s1 in (7):

E(costPcombined(s1,s2,β)(Ai)) = expense∅/k

hence achieving full ex-ante fairness.

We note that the first two policies given in this section are actu-
ally specific cases of the third. The first uses β = 0 and reimburse
the agent regardless of “success”. The second uses β = (k − 1)/k
and reimburse the agent only upon “success”.

Figure 2 depicts the results of ex-post fairness, achieved with
the generalized policy described above, as a function of the value
β used, for different number of search costs in a setting with two
agents and 5 stores (i.e., k = 2, n = 5) (graph (a)) and for different
number of stores in a setting with two agents and a search cost 0.01
(i.e., k = 2, c = 0.01) (graph (b)). The vertical dotted lines repre-
sent the two specific variants of the policy for which β = 0.5 and
β = 0. In both cases prices of the product derive from the uniform
distribution function over (0, 1). The figure was generated using a
simulation of 1 million instances for each data point, as with Fig-
ure 1. As observed from the figure, while the specific case where
β = 0.5 yields for some settings the maximum ex-post efficiency,
in others the maximum is achieved using a different β value. We
note that the low efficiency achieved for relatively high and low β
values is explained in this example in the fact that these are asso-
ciated with a substantial pre-payments, either positive (for β = 0)
or negative (for β = 1) hence in many cases (specific instances
played) either of the agents incur a “negative” cost (meaning that
the agent “gains” from the policy), in which case the fairness is by
definition 0.

Figure 2: The effect of the percentage β out of the purchase price in
the reimbursement of the non-searching agents on ex-post fairness for
different: (a) search costs, where the setting used is: n = 5, k = 2; and
(b) number of stores, where the setting used is: c = 0.01, k = 2. In
both cases f(x) is uniformly distributed between 0 and 1.

5. TRADING EFFICIENCY WITH FAIRNESS
A further improvement in the ex-post fairness can be achieved

if one is willing to compromise on efficiency. In this section we
present a family of policies that can improve ex-post fairness, but
may degrade the efficiency, thus presenting a tradeoff between ef-
ficiency and ex-post fairness.

The main challenge in the design and analysis of reimbursement
rules with no maximum efficiency guarantee is the derivation of the
optimal search strategy for the buyer. With general reimbursement
rules, the buyer’s optimal strategy may be complex and hard to
analyze. Luckily, the following Theorem establishes that for a large
family of natural reimbursement policies the buyer’s optimal search
strategy is reservation-value based, and shows how this reservation
value can be calculated.

THEOREM 1. For a function g : R → R, let Pfunction(g) be
the reimbursement policy wherein the buyer is reimbursed a sum
of g(x), upon presenting a purchase receipt of x. Provided that
dg(x)/dx ≤ 1, the buyer’s optimal search strategy is reservation
value based, where the optimal reservation value r satisfies:

c =

∫ r

y=−∞
(r − g(r)− (y − g(y)))f(y)dy (8)

PROOF. The proof generally resembles the one given for Propo-
sition 2 thus we include only the differences. First, we prove the
optimality of the reservation value strategy. The searcher’s over-
all expense is divided into the expense it incurs for purchasing the
product and the accumulated expense due to the search. Given the
reimbursement policy Pfunction(g), the portion of the cost associ-
ated with paying the store becomes x−g(x). Since dg(x)/dx ≤ 1
then d(x − g(x))/dx ≥ 0. Therefore, given a known price x, the
searcher’s benefit from improving the price to any value z < x
increases as x increases. Hence if it is optimal to resume search
given that the best price is x then so is the optimal choice when
the best price is x′ > x. The remaining of the proof remains un-

changed except for switching the benefit
∫ r
y=−∞(r−y)f(y)dy

k
with∫ r′

y=−∞(r′−g(r′))−(y−g(y)))f(y)dy whenever applicable.

Based on the above, we can formulate the expected cost of the
buyer, when using the reservation value r:

E(costP(Buyer)) = c
1− (1− F (r))n

F (r)
+

∫ ∞
y=−∞

(y−g(y))f̄(y)dy

The remaining agents will incur a cost of:

E(costP(Ai)) =
1

k
·
∫ ∞
y=−∞

g(y)f̄(y)dy
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Figure 3: Trading Efficiency with Fairness: (a) efficiency; and (b)
ex-post fairness; using non-efficiency-maximizing policies (marked as
curves 1 and 2) and the best β-based efficiency-maximizing policy
(curve 3). The setting used is: n = 5, k = 2 and f(x) = 1, ∀0 ≤ x ≤ 1,
otherwise f(x) = 0. The functions g(x) used for the first two policies
are given in the body of the paper.

Theorem 1 allows us to define and analyze a large set of reim-
bursement policies - including ones with less than full efficiency,
and choose the one exhibiting the most preferred performance trade-
offs. It is interesting to note that all the policies presented in the
previous section (Pfixed(·),Pbonus(·) and Pcombined(·, ·, ·)) are spe-
cial cases of the Pfunction(g) family.

Figure 3 depicts performance (efficiency and ex-post fairness)
exhibited by with three Pfunction(g) policies:

1. Pfunction(g1) with g1(x) = (0.6 + 0.5 · c) · x.

2. Pfunction(g2) with

g2(x) =

{
e−4·x x>r

(x+c·(1−(1−r)n)/r)·(k−1)
3.8

otherwise

where r is the reservation value calculated according to (1).

3. Pfunction(g3) which is Pcombined(s1, s2, β) such that for each
cost c we take the β value that results in the maximum ex-
post fairness for this class of policies and s1 and s2 are com-
puted according to Proposition 6.

As can be observed from the figure, the new reimbursement rules
improve the ex-post fairness for a substantial portion of the settings
(graph (b)). This however comes on the expense of the efficiency
measure (graph (a)), therefore the system designer should consider
the tradeoff between the two and choose accordingly.

6. RELATED WORK
Historically, efficiency has been the main objective of teamwork

and multi-agent systems [34]. Recently, as agents frequently repre-
sent human individuals, the importance of fairness, as an indepen-
dent goal, has gained recognition within the MAS literature (see
[13, 9], and in particular the review given in [14]). Many works
use the “cake cutting” setting as a model for considering fairness
in multi-agent systems (see [27] for a recent survey). The cake cut-
ting model, introduced in [32], postulates a continuously-divisible
good (a.k.a. “the cake”) to be divided among a group of agents.
Different agents may place different values on the different pieces
of the cake, and the goal is to divide the cake among the agents in
a fair way - under some suitable definition of fairness. For the cake
cutting model, the tension between fairness and efficiency has been
studied through the notion of the “price of fairness”, which is de-
fined as the ratio between the maximal possible social welfare if no
fairness is required and maximal possible welfare when fairness is
also required (this is analogous to our notion of inefficiency). It has
been established that the price of fairness in cake cutting can be, at

times, unbounded, depending on the exact model and the fairness
criteria [6, 1]. Accordingly, an important line of research has been
in devising algorithms that provide fairness, while optimizing wel-
fare [11, 4]. Another line of research has considered the problem
of devising truthful cake cutting algorithms, in cases where agents
may misrepresent their true valuation functions [8]. The cake cut-
ting literature assumes, for the most part, a non-transferable utility
setting, wherein agent cannot pay each other.

The cake cutting model assumes a continuously-divisible good.
Fair allocations of indivisible goods has also been considered, pro-
viding both algorithms and hardness results [3, 23]. Other works
consider mediated negotiation procedures that support negotiating
agents in reaching Pareto efficient and fair agreements, e.g., in bi-
lateral multi-issue negotiation [22] and computational models which
allow agents to find the most desirable solution according to certain
definitions of fairness or optimality [15].

While the definition of fairness in the above body of literature
is mostly similar to the goal our research attempts to achieve, our
work studies the problem of a team search, where fairness does not
depend on the way resources are allocated, but rather on the amount
of effort an agent will put in the search process. The analysis we
provide relies heavily on understanding the optimal search strat-
egy that will be used by an agent under different reimbursement
policies, and the resulting effect over the fairness achieved. To the
best of our knowledge, no prior work has considered this important
problem in that sense.

Costly search of the kind used in this paper is a prevalent theme
in MAS [18, 19, 30, 21]. The idea is that agents need to consume
some of their resources to disambiguate the uncertainty associated
with the different alternatives and options available to them. In
some sense, the basic sequential search model can be seen as part
of the field of planning under uncertainty, hence related to Markov
decision processes (MDP) and decentralized Markov decision pro-
cesses [2], as the goal is to maximize the expected cumulative re-
ward, which is also the objective in costly search. However, the
analysis provided by “search theory” using threshold-based solu-
tions, whenever proved to be optimal, is simpler and can be derived
with a substantially lesser complexity compared to solving MDPs.
Alongside models of a single agent search, several models of group
or team search have been introduced [28]. Most of the work in this
area has focused on a representative agent, operating on behalf of
the team [31, 17, 24, 7, 5]. These however assumed that the desig-
nated agent is fully cooperative, and as such focused in maximizing
efficiency, i.e., attempted to extract an optimal search strategy. As
such, fairness was not a consideration in these works at all.

Fairness is a major topic of interest in the economics literature,
which is out of the scope of this paper to review (see [12, 16, 20]).
In the economic-search literature, however, we are not aware of
consideration of fairness.

7. DISCUSSION
In this work we considered efficiency and fairness in team search,

and the possible tradeoffs between the two. We distinguished be-
tween two separate notions of fairness - ex-ante and ex-post. The
first measures the similarity between the expected costs, while the
second measures the expected similarity in actual costs. We believe
this is an important distinction, as humans frequently care more
about ex-post fairness - while ex-ante fairness is algorithmically
easier to obtain.

We consider the case where a single buyer needs to purchase a
good on behalf of the entire team, and analyze the efficiency and
fairness resulting from different reimbursement policies. We show
that the common policy of splitting costs based on purchase receipts
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- primarily aimed at ex-post fairness - may result in severe degrada-
tion in efficiency. We thus present two alternative families of reim-
bursement policies. The one family guarantees full efficiency and
full ex-ante fairness, but may lack in ex-post fairness. This family
uses a mix of fixed sum and receipt sharing reimbursement, to-
gether with a possible bonus if a certain price level is achieved. By
choosing the right parameters for each of these three types of reim-
bursement we can strike the proper balance - incentivising the buyer
to search for a good price, while also maintaining fairness. The sec-
ond family of policies allows more complex reimbursement poli-
cies, including variable percentage sharing of the purchase price
and multiple bonus levels. With this type of policies, we can fur-
ther improve ex-post fairness, at times - at the expense of efficiency.
Thus, we allow the MAS designer to trade efficiency for fairness,
as appropriate for each setting.

This work considered a concrete MAS setting where fairness is a
frequent requirement in practice. We demonstrated the substantial
impact fairness can have on efficiency, and the intricate tradeoffs
and relationships between the two. We believe that such trade-
offs may also arise in many other MAS settings, and should be ac-
knowledged and analyzed. On a more general level, we believe that
as MAS systems become more integrated with human interaction,
fairness should become a more central and driving notion in the
planning of such systems. Humans are very sensitive to fairness,
and failing to take it into account may result in poor performance
of such systems in practice.
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