
Modeling Uncertainty in Leading Ad Hoc Teams

Noa Agmon
Bar-Ilan University, Israel
agmon@cs.biu.ac.il

Samuel Barrett
The University of Texas at

Austin, USA
sbarrett@cs.utexas.edu

Peter Stone
The University of Texas at

Austin, USA
pstone@cs.utexas.edu

ABSTRACT

Ad hoc teamwork exists when a team of agents needs to
cooperate without being able to communicate or use coordi-
nation schemes that were designed a-priori. Sometimes ad
hoc teamwork amounts to acting so as to bring out the best
in your teammates by “leading” them to the optimal joint
action. Doing so can be challenging even when their behav-
ior is fully known. In this paper, we take the challenge to
the next level by considering the situation in which there
is uncertainty about the teammates’ behaviors. We discuss
the problem of recursive modeling of the teammate’s uncer-
tain behavior in two-agent teams and conclude not only that
the depth that is useful to model is bounded, but also the
number of models useful to consider is linear in the num-
ber of actions (and not exponential, as expected). We then
show that adopting a naive perspective might lead to neg-
ative long-term results in large teams, and thus introduce
REACT, an algorithm for determining the action an agent
should perform in order to maximize the team’s expected
utility. Finally, we show empirically that in randomly gen-
erated utility matrices, using REACT to select actions out-
performs making incorrect assumptions about the identities
of teammates.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms

Algorithms

Keywords

Agent Cooperation::Teamwork, coalition formation, coor-
dination ; Economic paradigms::Game theory (cooperative
and non-cooperative)

1. INTRODUCTION
In ad hoc teamwork [16, 18, 19], a group of agents needs

to cooperate as a team without having the opportunity to
coordinate their behaviors a priori, or use explicit commu-
nication for coordination during task execution. Ad hoc

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

teamwork is a new, developing area that emerged due to
the growing use of cooperating agents in different domains,
such as e-commerce and robotic search and rescue. In such
cases, the agents—that were not necessarily designed or pro-
grammed similarly—share a joint goal, and each action re-
sults in different joint utility of the team. The goal of each
agent is, therefore, to choose an action that yields optimal
joint utility, given the actual (not necessarily ideal) team-
mate’s behavior.

Sometimes ad hoc teamwork amounts to trying to bring
out the best in your teammates by “leading” them to the
optimal joint action. In the problem of leading teams in
ad hoc settings, one agent (or more) is designed as an ad
hoc (ah) agent, that has better awareness of the team’s pos-
sible actions and knowledge of the resulting joint utilities.
The other team members act as best response (br) agents,
i.e., they choose their next action based on their current
view of the world, assuming the world and specifically the
other agents, will continue performing the same actions that
are currently performed. The behavior of the teammates
(specifically, their best response reactions) are given and
cannot be controlled. The only control we have on the sys-
tem is via the ad hoc agent. The ad hoc agent aims to use
its knowledge to lead the team members into choosing ac-
tions that result in higher team utility compared to what
could be achieved without its intervention. The problem is
designed as a simultaneous repeated game, where at each
time step all agents choose their next action based on their
world view.

Leading teams in ad hoc settings can be challenging even
when teammate behaviors are fully known, as studied in
[18, 2]. There, the research concentrated on determining
the optimal set of actions an ad hoc agent should perform
in order to lead the team to the reachable cyclic set of joint
actions with maximal utility. In this paper, we take the
challenge of leading teams in ad hoc settings to the next level
by considering the situation in which there is uncertainty
about the teammates’ behaviors.

Modeling an unknown behavior of a teammate is com-
monly done using recursive modeling, e.g. [6, 13], where
the depth of the recursion determines the level of conscious-
ness of the teammate’s perception of the world we want to
model, and—in our case—of the ad hoc agent. We there-
fore examine the influence of the depth and the width of the
recursion on the state space of the possible actions in two
agent teams where the teammate can be either an ad hoc or
a best response agent, and show that these are bounded in
such cases.

397

We demonstrate that when leading teams with uncertain
behaviors, assuming a naive teammate (br agent) can have
crucial negative consequences to the team’s utility when they
are actually ah. We therefore introduce Reducing Expected
Action Costs for Teamwork (REACT), an algorithm for de-
termining the optimal actions for the ad hoc agent, that
takes into account both long-term utility (set of reachable
joint actions) and immediate cost (cost of reaching that op-
timal long-term solution). REACT can be applied to any
possible type of teammate. Finally, we show that misiden-
tifying teammate types can have arbitrarily high costs for
long-term utility and empirically evaluate REACT in a va-
riety of situations, including ones in which it must consider
uncertainty over several types of teammates.

2. BACKGROUND
In this section we briefly describe the problem of leading

ad hoc teams, along with the graphical representation of the
domain that aids in solving the problem of leading teams ef-
ficiently. The problem of leading in ad hoc teamwork was
initially presented by Stone et al. [18], as a simultaneous re-
peated game between two agents: the ad hoc agent (agentA)
and the other agent (agent B), which acts as a best response -
br agent. Agent A has x possible actions {a0, . . . , ax−1}, and
agent B has y possible actions {b0, . . . , by−1}. The shared
joint utilities gained by the team for joint actions is rep-
resented by a utility matrix M , where M(i, j) is the joint
utility achieved when A and B perform actions ai and bj
(respectively). The maximal possible joint utility is denoted
by m∗, and without loss of generality m∗ = M(x− 1, y− 1).
In addition, it is assumed that the system is initialized with
A performing a0 and B performing b0. The br agent B views
the current state of the world, specifically the previous ac-
tion performed by its teammate, and chooses an action that
maximizes the joint utility of the team assuming its team-
mate continues performing its current action. The cost of
performing a joint action (ai, bj) is defined as m∗ −M(i, j).
In a 2-agent team, it is trivially possible to lead the br

agent into performing by−1, yielding maximal utility m∗,
simply by A choosing action ax−1 and B adapting to the
optimal action. The set of joint actions leading from the
initial state to m∗, in this case, is {(a0, b0) → (ax−1, b0) →
(ax−1, by−1) = m∗}. However, it could be possible to lead B
into performing by−1 along a set of joint actions with lower
cost compared to the trivial set. The question posed by
Stone et al. was how to lead the team to m∗ with minimal
cost?

10

a 0 a 1c 0 c 1

b 0

b 1 1b

0b

1c0c

15

20

148

4

5 10

2

000 001

010 011

100 101

110 111

10

4

15

10

15

6

6

0

0

6
10

10

12

12
18

Figure 1: Example of utility matrices representing a 3-agent
team with the corresponding graphical representation: A is the
ah agent with actions a0, a1, B and C are br with actions b0, b1
and c0, c1 (respectively)

In an N -agent team, where the team consists of one ah

agent and N − 1 br agents, it was shown that m∗ may be-
come unreachable [2]. In addition, they have shown that the
optimal behavior includes a cyclic set of joint actions, and
this cyclic set was denoted by the optimal steady cycle (osc):
a cyclic set of joint actions with minimal average cost. The
question, in this case, is how to lead the team to the osc?.
Note that this problem is solved in two steps: Finding the
osc (minimizes the average cost) and finding the set of joint
actions leading to the osc (minimizing the sum of costs).

The method used for solving the problem was by trans-
ferring the utility matrices into a graphical representation,
where each vertex v in the weighted directed graph G =
(V,E) corresponds to a joint action, each edge (u, v) ∈ E(G)
corresponds to a possible transition between the actions (by
the br assumption), and the cost of (u, v) ∈ E(G) is the
cost of the joint action corresponding to v. Finding an osc

is equivalent to finding a Minimum Cycle Mean in G, thus
can be solved in polynomial time in the size of G [11]. An
example for a utility matrix and its corresponding graphical
representation is shown in Figure 1.

Note that the problem considered in this paper, as well as
the problems investigated by Stone et al. [18] and Agmon
and Stone [2], can be seen as a Partially Observable Markov
Decision Process (POMDP). However, as opposed to solv-
ing a POMDP that might be intractable, the complexity of
finding an optimal solution in this scenario is polynomial
(as described later in the paper), based on the modeling we
suggest and the bounds on the growth of the environment.
This problem can also be considered as a special case of an
Interactive POMDP (I-POMDP), which models adversarial
interactions of agents by examining the beliefs of an agent on
other agents’ beliefs, and their beliefs on other agents (e.g.
[9]). While the I-POMDP framework could have been used
also here, it suffers from the same intractability problem in
finding the optimal solution that exists with POMDPs.

In this paper we concentrate on leading teams in ad hoc
settings, where the teammates could be either ah or br agents.
We restrict ourselves to the case in which no coordination
was done a-priori, and the agents cannot communicate ex-
plicitly in order to verify their true identity. However, if
noticing that a teammate has diverged from the expected
br behavior, then clearly it is an ah agent. The question
here is how to lead the team to the osc with minimal cost,
while taking into account the possible types of the unknown
agent(s)? This question is much more representative of the
true ad hoc setting compared to past work in this area.

3. RECURSIVE MODELING
A common method for modeling an opponent in adver-

sarial environments that was shown to be effective in many
cases is recursive modeling (e.g. [6]), which simulates the
opponent’s search of actions in order to exploit it. Other
environments that benefit from opponent modeling include
negotiation and economics. Constructing a recursive model
(RM), commonly represented as a decision tree, has two
components: the width of the tree, influenced by the num-
ber of possible actions (or choices) of the opponent, and the
depth of the tree. In a RM of depth one, the only assumption
our agent makes is that the other agent will perform some
action or be of some type. In a RM of depth two, agent
A will include the understanding of the other agent B has
of itself (agent A), and so on. This RM representation tree

398

includes an exponential number of components in terms of
the input size.
In [2], the authors suggest a limited RM of depth two,

resulting in three possible scenarios: 1) Agent A believes
that B is a br agent, 2) A believes that B is ah believing that
A is ah, or 3) A believes that B is ah believing that A is br.
In this section we discuss the general problem of recursive
modeling, concentrating on the two main characteristics of
the RM representation: How wide should we spread, and
how deep should we go? Fortunately, we are able to show
that the results are promising in both directions, specifically
that both the width and the depth of the recursion are linear
in the number of actions.
Recall that in a 2-agent team, agent A is the ah agent

and agent B is the agent with uncertain type. The agents
have possible actions {a0, . . . , ax−1}, {b0, . . . , by−1} (respec-
tively), where without loss of generality m∗ = (ax−1, by−1),
and the agents start at joint action (a0, b0). We define the
recursive beliefs as follows. Let T = {T1, . . . , Tm} be a set
of teammate types (in our case T = {ah, br}). If Agent A
believes that B is of type Ti, it is noted as A(B = Ti). In
recursion of depth two: A believes that B is of type Ti that
believes that A is of type Tj is noted as A(B = Ti(A = Tj)).
Similarly for deeper recursion levels, A believes that B is of
type Ti that believes that A is of type Tj that believes that
B is of type Tk that believes that A is of type Tl and so on,
is noted as A(B = Ti(A = Tj(B = Tk(A = Tl . . .))))
In Lemma 2 we prove that in a recursion of any depth, if

the agents believe their teammate is ah, then the outcome is
the same: The agents choose (ax−1, by−1).

1 For example, if
A(B = ah(A = ah(B = ah))) (recursion of depth 3), then the
optimal action of A is equivalent to A(B = ah) (recursion of
depth 1). Practically, the lemma restricts the width of the
RM. We start with a trivial proposition:

Proposition 1. Once an agent assumes the other is br,
the recursion stops.

The proposition follows directly from the fact that by the
definition of a br agent, it does not have any beliefs of its
teammate other than the fact that its next action is con-
sistent with its previous one(s). Therefore, once one agent
assumes the other is br the recursion stops, hence the only
appearance of a belief in a br teammate is at the bottom of
the recursion, for example: A(B = ah(A = br)).

Lemma 2. For a recursion of depth N , if the beliefs of the
agents are restricted to being ah, then ∀N > 0 the optimal
decision of agent A remains the same as its decision in a
recursion of depth one.

The following theorem concludes that the depth of the re-
cursion worthwhile to examine is bounded. The rationale
behind the proof is that when going deeper into the recur-
sion the agents improve their actions resulting in a shorter,
better, path towards m∗ until there is no room for improve-
ment.

Theorem 3. The optimal path towards m∗ is fixed in all
recursions of depth N ′ ≥ Ñ , where Ñ is linear in min{x, y}.
Moreover, the path towards m∗ is equivalent ∀N ′′ = N ′ +
2i, i ≥ 0.

1The proofs of all lemmas and theorems are available as
appendices in the extended version [1].

33a

3ba3

3ba3b12a

b33a1ba2

3a b3 a3 3b3ba3b12aa1

a0 0b

b00a

a0 0b

b00a

0b0ba0

Depth 1

optimal path to m*

optimal path to m*

Depth 2

0a

a1

2a

a3

b3b21bb0

8 8

176

1

1 1 1 10

9

1

4568

optimal path to m*

Depth 5

Depth 4

optimal path to m*

optimal path to m*

Depth 3

A (B=ah (A = ah (B = ah (A = ah (B = br)))))

A (B=ah (A = ah (B = ah (A = br))))

A (B=ah (A = ah (B = br)))

A (B=ah (A = br))

A (B=ah)

b

A (B=br)

Figure 2: Illustrating the influence of the recursion depth on the
optimal action of the ah agent A.

We demonstrate in Figure 2 the influence of the depth of
the recursion on the optimal action of the ah agent. In the
first level either A(B = ah), in which case they both reach
m∗ immediately; or A(B = br), in which case the shortest
path is as calculated by [2, 18]. In the second level (depth =
2), A(B = ah(A = br)). Starting the interpretation bottom-
up, B = ah(A = br)). Therefore B will assume that A’s
first action would be a1, thus to optimally lead A to m∗, B
will choose to perform first action b1 (again, at this point we
assume B calculates the shortest path as suggested in [18]).
A, being an ah knowing that B’s first action would be b1,
will adapt its action to lead the team with lower cost to m∗,
thus will choose to perform a2. By our basic assumption,
this choice will reveal to B that A is not br (but an ah), thus
they will reach m∗ immediately after that. For depth=3
(again, working bottom-up), A thinks that B is br, thus will
choose initially action a1 (as in depth 1). B is an ah agent,
thus knowing so will maximize the team’s utility by choosing
to perform b1. A, in the next level, knows that B will choose
b1 thus will choose to perform a2, leading directly after that
to m∗. In this example, in the next step of the recursion the
agents will transfer directly from a0, b0 to m∗.

4. LEADINGWITHUNCERTAINAGENTBE-

HAVIOR
In the previous section we have established the options for

modeling a teammate’s behavior. Now, given these models
(or others, as shown in Section 5.4), the main question is how
should the ad hoc agent decide what next action to perform?

4.1 The risk in assuming worst case
When an agent does not have enough information about

the environment in order to plan its actions optimally, a
common method for solving the problem is to assume a worst
case scenario. By doing so, it is possible to guarantee a lower
bound on the performance of the system, since if the agent is
actually faced with better conditions, its performance could
only increase. This method is commonly used in adversarial
planning (e.g., [14]), but also in other problems involving
single agent planning such as robotic navigation [12].

However, assuming the worst case when leading ad hoc
teams with uncertainty might lead to an unbounded util-
ity loss. When leading a team to an optimal behavior, the
process is divided into two steps: determining the optimal
behavior, in our case the reachable osc (the set of joint ac-
tions yielding maximal team utility), and finding the set of
joint actions leading to the osc with minimal cost. An agent

399

could always assume the worst teammate, in our case a br

agent, and if actually facing an ah agent, it will adjust its
actions to jointly lead the team to the reachable osc. In 2-
agent teams [2] and in 3-agent teams (Lemma 4), the osc will
remain reachable, and in the worst case - the cost of reach-
ing it will increase. However, in the general case of N -agent
teams, the consequences of assuming a br agent might cause
the team to be unable to reach the osc, thus forcing them
into choosing an osc with lower team utility. This results
in a long-term negative consequence of sub-optimal

behavior. Note that here we consider just two possible
teammate types, br and ah (and not deeper RMs).

Lemma 4. Given a 3-agent team consisting of one ah agent
and two teammates: one br and the other that could be either
a br or an ah agent. If the ah agent assumes both agents are
br, then if the other agent is ah, m∗ remains reachable.

As stated above, in the general N -agent case the situation
changes. Here, the power of the ah agent is relatively limited,
so every mistake counts: if assuming an uncertain agent to
be br, it might divert the system from possibly reaching m∗,
even if the uncertain agent is discovered eventually to be an
ah agent. An example for a 4-agent team can be viewed in
Figure 3. In this example, there are 4 agents: A,B,C,D,
where A is our ah agent, B is unknown (either ah or br),
and C and D are known to be br. Agents A and B have
two possible actions each: a0, a1 and b0, b1, respectively.
Agents C and D have 5 possible actions each, c0, . . . , c4
and d0, . . . , d4, respectively. If A knows for sure that B
is br, then the possible set of joint actions leading to m∗ is
(a0, b0, c0, d0) → (a1, b1, c1, d1) → (a1, b1, c4, d1) = m∗, with
cost 19 + 14 + 0 = 33. On the other hand, if A knows for
sure that B is ah, then it would continue performing a0,
leading to the joint actions (a0, b0, c0, d0) → (a0, b0, c1, d1)
→ (a0, b0, c4, d1) = m∗, with cost 19 + 13 + 0 = 32. If A
assumes the worst case perspective (a br teammate), but
is teamed with an ah agent, then B would perform b1, yet
A will choose a0. The result would be a set of joint ac-
tions never leading to m∗: (a0, b0, c0, d0) → (a0, b1, c1, d1) →
(a0, b1, c2, d2) → (a0, b1, c3, d3). From this point, no matter
what A and B do, C and D will continue playing c2, c3
and d2, d3, respectively. Thus the team will stay at the
osc consisting of the latter two states, with joint utility of
(1 + 6)/2 = 3.5 instead of m∗ = 20.

0d d1 2d d3 4d

0c

c1

2c

c3

4c

d0 1d 3d d4d2

c4

3c

c2

1c

c0

0ba11b

c4

3c

c2

1c

d43dd21dd0a0

c00c

b00a 0d d1 2d d3 4d

c1

2c

c3

4c 1111

1

1 1

1 1 1

11

1 1 1

1111

11

1

1 1

1

1

1 1

1

1

1

111111 1 1 1 1

111

1 11

1 1

111

10

1 111

111

1 1 1 1

1

1

111

3

20

2

2

2 6

4

47

76

62 5

2

a1

6

109

983

32

20

2

73

113

b

1

1

Figure 3: Payoff matrices representing a case in which the
“worst case” perspective can lead to sub optimal joint utility (m∗

states are shaded).

This example shows the importance of having an accurate
teammate model, but more than that: if an accurate model
does not exist, relying on assuming a naive (br) teammate
might harm the team in a way that might not be reversible.
Therefore another method for choosing actions, that is more
sophisticated than simply assuming a br agent, is required.

4.2 How to Lead a Team with Uncertainty
In the previous sections we have shown that it is worth-

while to examine a bounded recursive model of the unknown

teammate and established the fact that assuming the naive
teammate as a strategy can be very harmful from the team’s
perspective. But the question remains: what action should
the ad hoc agent take in order to best suit the team’s ob-
jectives, i.e., maximize the team’s utility? In this case, we
adopt a risk-averse strategy, in which we prioritize the pos-
sible consequences of each choice of action: first by the joint
utility of the osc, then by the cost of reaching that point.
This prioritization is chosen because getting to the wrong
steady cycle has long-term negative consequences with ef-
fectively infinite cost, while getting to the right steady cycle
the wrong way has finite, one-shot consequences. Happily,
as shown in the previous section, the number of options of
the teammate’s type we have to consider is limited due to
the bound on the recursive model. It is important to note
that the algorithm described in this section is general and
can be applied to any teammate type, as shown in 5.4.

We use the graphical model introduced in [2] in order to
identify the points where the actions taken by our agent
might change the outcome, considering the cost of the opti-
mal steady cycle. These points in the graph will be denoted
as pnr: Point of No Return. Upon reaching a pnr, the ah

agent will choose (if possible) an action that will lead it to a
steady cycle with higher utility, with higher probability (the
expected utility is computed with respect to the utility of
the steady cycle, not the cost of reaching it). Decisions in
other vertices along the way will be made according to the
cost of reaching the steady cycle.

In the example presented in Figure 3, a pnr will exist in the
vertex corresponding to state (a0, b0, c0, d0). If, for example,
the probability of B being ah is 0.8 and the probability of
it being br is 0.2, then the expected long-run steady cycle
utility for agent A from choosing action a0 is 0.8 ∗ 20+0.2 ∗
3.5 = 16.7, while its expected utility from choosing a1 is
0.2 ∗ 20 + 0.8 ∗ 3.5 = 6.8. Thus A should choose to perform
action a0. Note that if the expected utility from a0 and a1

were the same, then the decision on which action to choose
would have been based on the expected cost towards the osc.

To address this problem, we introduce the Reducing Ex-
pected Action Costs for Teamwork (REACT) algorithm. Al-
gorithm 1 describes the working of REACT, specifically the
calculation of the pnr, along with the decision on what action
to choose at each step. The number of possible identities for
the uncertain agent is denoted by r. The inputs to the algo-
rithm are as follows: The directed graph G corresponding to
the best response actions of the teammates, along with all its
possible actions as an ah agent; the set of paths O calculated
as optimal for each of the r identities—as well as the osc for
that option (denoted by osci); the probability distribution
P over the r different identities of the teammates.

The time complexity of Algorithm 1 is composed of two
factors: (1) The complexity of determining an osc and the
path leading to it for each of its individual possible behav-
iors, which by [2] is polynomial in the number of actions,
and (2) the complexity of determining the set of actions
yielding maximal expected utility given those paths. This is
also polynomial in the number of actions, since determining
the pnr vertices and the optimal expected utility is by going
over all vertices in the graph and comparing the possible
next edges of the shortest paths determined in the previous
step. If there are multiple uncertain identities, i.e., in an
N -agent team, the ah agent is uncertain about the behav-
ior of M ≤ N − 1 teammates, then such a graph should

400

Algorithm 1 REACT(G,O = {O0, . . . , Or−1}, P =
{P0, . . . , Pr−1})

1: for every vertex v ∈ V do

2: for every Oi ∈ O do

3: Store cost of travel Ci(v) to the osc along with the utility of
the osci, U(i)

4: end for

5: end for

6: for every vertex v ∈ V (G) do

7: if ∃u ∈ V (G) s.t. (v, u) ∈ Oi&&(v, u) /∈ Oj , i 6= j then

8: for every u ∈ V (G) s.t. (v, u) ∈ E(G) do

9: Compute expected utility: EU (u) =
∑r−1

i=0
PiUi

10: end for

11: if ∃u∗ ∈ V (G) with maximal EU (u∗) then

12: Set next vertex in the shortest path to u
13: else

14: Compute expected cost of travel ET (u) =
∑r−1

i=0
PiCi

from the set of vertices with maximal utility
15: Set next vertex in the shortest path to û maximizing

ET (û)
16: end if

17: end if

18: end for

be constructed for each combination of identities, i.e., the
method is exponential in the number of uncertainties. We
leave the exploration of reduction in the number of graphs
(thus, perhaps, leading to a polynomial time solution) to
future work.

5. EMPIRICAL ANALYSIS
The previous section introduced the idea of the Point of

No Return (pnr), explained how to handle these points, and
analyzed a single hand-generated payoff matrix. However,
it is important to see that pnrs are not limited to carefully
handcrafted examples. This section establishes that pnrs
do occur in randomly generated payoff matrices and that
the long term cost of not reasoning about pnrs can be un-
bounded. It should be noted that the frequencies of these
occurrences and their costs in random matrices may not be
representative of the matrices that an ad hoc agent encoun-
ters in practice: the actual values will depend heavily on the
specific problem domain. Nonetheless, these results show
that even without limiting the generation of the matrices,
pnrs do occur. In addition, this section presents results on
more types of teammates and considers the case in which
the agent must select from several possible behaviors that
its teammates may be following. Run times of REACT were
on average 0.58sec on a high end computing cluster, largely
consisting of 2.83Ghz Xeon processors.

5.1 Occurrences in Random Matrices
In this work, we analyze 10 million randomly generated

matrices with values in [0, 1] with different settings of the
number of agents and the number of actions per agent. In
every matrix, the agents start by taking the joint action
(0, 0, . . . , 0). We consider the case where every agent has
the same number of actions, and the agents follow the be-
haviors (ah, unknown, br, br, . . . , br). In other words, all of
the agents’ types are known except for that of the second
agent. The agent starts with uniform beliefs over the differ-
ent behaviors the second agent may be employing.
The results in Figure 4 show the number of occurrences of

pnrs that prevent the worst case assumption from reaching
the osc using the black line with units given on the right y-
axis. The cost per step lost in the suboptimal steady cycles
averaged across the ten million random matrices is shown
by the bars with units given on the left y-axis. The costs

of the REACT algorithm are calculated using an agent that
reasons about the pnrs and minimizes the long term expected
cost of its actions when it reaches the pnrs. The costs are
given using a logarithmic scale; when the cost for REACT is
not shown, its cost was 0.

These results indicate that REACT’s method of consid-
ering weighted costs of the reachable steady cycles allows
the agent to lead the team to better cycles on average.
The differences in results are statistically significant for four
agents with either two or three actions using the Mann-
Whitney U-test (for data that is not normally distributed)
with p < 0.001. The other results are not significant due to
the low numbers of pnrs.

N=4
a=2

N=4
a=3

N=4
a=4

N=5
a=3

N=6
a=3

Numbers of agents and actions

10
−18

10
−17

10
−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

A
v
g
.

C
o
s
t
/
S

te
p

Assume Worst

REACT

Occurrences

10
0

10
1

10
2

10
3

10
4

N
u
m

.
O

c
c
u
rr

e
n
c
e
s

Figure 4: Occurrences and average costs per step of reaching
a steady cycle with a lower utility when assuming that an un-
known teammate is br, when in fact it is ah. Results are reported
for 10 million randomly generated matrices. When the cost for
REACT is not shown, the cost is zero.

A randomly generated matrix is unlikely to have a pnr,
largely due to the high connectivity of a randomly gener-
ated matrix. In most cases, the ad hoc agent is able to lead
its teammates to nearly every cell of the matrix, therefore
allowing it to lead its teammates to the optimal joint util-
ity. The connectivity of the resulting graph increases as the
number of actions per agent increases and as the number of
agents increases. Therefore, the frequency of pnrs similarly
decreases as the number of actions and agents increase, for
randomly generated graphs.

In addition, while the average cost of ignoring the pnr is
low per time step, the loss will be infinite given an infinite
repeated game. Furthermore, the randomly generated ma-
trices may not be representative of the cost matrices that
are encountered by ad hoc agents, and the cost of ignoring a
pnr is unbounded per step. Given a payoff matrix of values
varying between 0 and 1, it is possible to trivially transform
any matrix with a pnr to have a cost of ≈ 1 if the ad hoc
agent ignores the pnr. This transformation can be performed
by scaling every value of the matrix between 0 and ε, except
for cells on the osc which are set to 1. This transformation
raises the cost of ignoring the pnr to 1− ε per time step.

5.2 Analyzing an Example
To better understand the pnrs in randomly generated pay-

off matrices, we now describe a single example in the four
agent, three action setting. The payoff matrix is given in
Table 1, and the various paths that the ad hoc agent would
take are illustrated in Figure 5. These paths represent the
joint actions that will be selected based on the ad hoc agent’s
assumptions about its teammates and their actual behavior.
The red dashed line shows the joint actions selected if the ad

401

hoc agent correctly knows that the second agent is using the
ah behavior. The blue dotted line shows the joint actions
that will be chosen if the ad hoc agent correctly knows that
the second agent is a br agent. Finally, the solid magenta
line shows the actions taken if the ad hoc agent assumes
that its teammate is br, when it is in fact ah. The ad hoc
agent realizes its mistake at the starred node, but can only
reach the nodes marked with a white circle. In this case, it
can no longer reach the optimal payoff that was reachable if
it had known its teammate was ah and must make do with
the indicated cycle, losing 4.66e-3 per step compared to the
optimal given a teammate of type ah.

a0 b0 d0 d1 d2 a0 b1 d0 d1 d2 a0 b2 d0 d1 d2

c0 0.690 0.363 0.061 0.854 0.002 0.280 0.061 0.276 0.815
c1 0.653 0.709 0.564 0.167 0.140 0.588 0.845 0.516 0.803
c2 0.672 0.540 0.775 0.161 0.589 0.491 0.682 0.754 0.952

a1 b0 a1 b1 a1 b2

c0 0.340 0.464 0.891 0.613 0.592 0.434 0.983 0.749 0.707
c1 0.232 0.855 0.246 0.979 0.819 0.808 0.871 0.880 0.879
c2 0.107 0.918 0.475 0.058 0.692 0.090 0.300 0.281 0.541

a2 b0 a2 b1 a2 b2

c0 0.421 0.198 0.466 0.264 0.413 0.110 0.175 0.164 0.580
c1 0.450 0.518 0.301 0.869 0.415 0.248 0.567 0.748 0.849
c2 0.634 0.870 0.258 0.050 0.421 0.104 0.409 0.071 0.334

Table 1: An example of a randomly generated matrix that con-
tains a pnr.

5.3 Existence in Larger Matrices
Due to the high connectivity of randomly generated matri-

ces, the frequency of pnrs decreases as the number of agents
and actions increases. However, we can show by induction
that pnrs can exist in matrices of any size, even though their
frequency is low. Consider the case where there is a pnr in
a matrix with n agents. Suppose that an (n + 1)th agent
is added where the payoff for all agents is 0 unless the new
agent selects action 0. Then, the same steady cycles will
remain, with the new agent selecting action 0 at every step.
Similarly, look at agent ai, which currently has m actions. If
instead, it has an additional action m+1, where the payoffs
are 0 if it selects the new action. Then, agent ai will never se-
lect action m+1, leaving the steady cycles unchanged. Thus
pnrs can exist in matrices of any size and that the cost of
mispredicting the teammates’ behaviors can be unbounded.

5.4 Additional Teammate Types
While the theoretical analysis in Section 4 focuses on the

case when the agent may encounter only br and ah team-
mates, these results extend to any deterministic type of
teammates. Therefore, we now introduce two additional
types of behaviors:

• av1 – Never selects action 1, but selects the best re-
sponse from the remaining options. This teammate
represents an agent that may have incomplete infor-
mation or less ability than its teammates.

• 2br – Selects the second best response. This type of
behavior represents the case in which an teammate
may have different agendas than its teammates.

Using these new teammate types, the analysis can proceed
as in Section 5.2, focusing on the case with four agents and
three possible actions for each agent. Then, we consider the
case in which the agent is uncertain of one of its teammate’s
behavior. In this setting, the worst case type of teammate is
easy to identify as there is an ordering in the performance of
the agent types, specifically that ah ≥ br ≥ av1 ≥ 2br. The
results in Figure 6 show that assuming the worst case about

its teammate’s type can lead to suboptimal performance.
The differences between the approaches is statistically sig-
nificant using the Mann-Whitney U-test with p < 0.001 in
all of the settings.

These results show that for some types of teammates,
making incorrect assumptions more frequently leads to sub-
optimal performance. The results come from teams of 4
agents, each with 3 actions, on ten million randomly gen-
erated matrices. In addition, the cost of these mistakes in-
crease for these cases. These higher rates of occurrence and
higher costs arise from the fact that the teammate is more
restricted in the br, av1, and 2br cases. Therefore, it is less
able to help the team recover from any mistakes, resulting
in more cases of poor performance. As in Section 5.1, the
results show that the REACT algorithm outperforms the
naive approach of assuming the worst case.

ah
br

ah
av1

ah
2br

br
av1

br
2br

av1
2br

Real and assumed types

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

A
v
g
.

C
o
s
t
/
S

te
p

Assume Worst

REACT

Occurrences

10
2

10
3

10
4

10
5

N
u
m

.
O

c
c
u
rr

e
n
c
e
s

Figure 6: Occurrences and costs of reaching a steady cycle with
lower utility when assuming the worst case with more teammate
types. Results are reported for 4 agents with 3 actions over 10
million randomly generated matrices.

5.5 Multiple Types Simultaneously
The previous section introduced several new types of team-

mates and analyzed the performance of the agent with teams
including these new types of teammates. However, the agent
was only ever deciding between two possible types at any
given time. In general, it is desirable for the ad hoc team
agents to be able to consider teammates of many different
types simultaneously. In this general setting, the ad hoc
agent needs to be able to reason about the strengths of these
various models and must consider what models can be elim-
inated by observing its teammates’ actions.

Tables 2 and 3 show results when the agent must decide
between all four possible types, given a prior that all types
are equally likely. The agent in this case has a much harder
task, as it must reason about all four models, planning how
each action may affect the ability to reach a good steady
cycle for each of the types. In addition, these results inves-
tigate the case where the agent assumes that its teammate is
better than it really is (for example, assuming that the team-
mate is ahwhen it is in fact br). Similar to above, the results
show that the REACT algorithm works better than making
an incorrect assumption about the teammate’s type. The
improvement is smaller than above given the harder nature
of the task, but REACT still reduces the expected cost com-
pared to making even the best incorrect assumptions, and
far outperforms making the worst assumptions. The differ-
ences between making any of the incorrect assumptions and
using the REACT algorithm are statistically significant us-
ing the Mann-Whitney U-test with p < 0.001 except for the

402

Figure 5: Possible paths through the example random matrix. If the ah agent incorrectly assumes that all teammates are br, it will
reach the starred node and follow the optimal path (solid line).

case where the real type is ah and the assumed type is br.
In the results in Figure 4, REACT was significantly better
than using the incorrect assumption for this case, but the
increased difficulty of choosing between four possible models
reduces the improvement of the REACT algorithm in this
case. Note that the computation for these results is signifi-
cantly harder than in the two-model cases because there are
many more pnrs to consider between each pair of models.

Assumed Type
ah br av1 2br REACT

T
ru
e
T
y
p
e ah 0 1.41e-07 2.22e-07 6.37e-07 1.13e-07

br 9.53e-05 0 9.61e-05 1.17e-04 3.17e-05
av1 2.09e-04 2.29e-04 0 2.69e-04 6.41e-05
2br 2.92e-05 2.68e-05 3.03e-05 0 1.71e-05

Table 2: Average cost per step after reaching a steady cycle
compared to reaching the osc when the true behavior is known
for 10 million randomly generated matrices.

Assumed Type
ah br av1 2br REACT

T
ru
e
T
y
p
e ah 0 88 142 461 88

br 27,618 0 32,730 39,097 9,709
av1 54,072 58,990 0 73,932 16,829
2br 4,861 4,408 5,065 0 3,059

Table 3: Number of instances out of 10 million randomly gen-
erated matrices in which the team did not reach the osc due to
the agent’s lack of knowledge of its team.

6. RELATEDWORK
The formalism of ad hoc teamwork was initially introduced

by Stone et al. [16]. In this setting, agents are engaged in
teamwork behavior without prior coordination. This paper
concentrates on one aspect ad hoc teamwork in which one or
more agents lead the team of agents, with no a-priori coor-
dination or explicit communication, to the optimal possible
joint-utility, in a repeated simultaneous-action setting with
unknown teammate identity.
The problem of leading teammates in ad hoc settings was

introduced in [18] for a team of two agents, where the leading
agent is an ad-hoc agent, and its teammate is a best response

agent. The problem was later extended by Agmon and Stone
[2] to leading a team of multiple robots, where they described
the graphical representation used as a basis for our work. In
both cases, the identity of the teammates is known, and in
this work we work towards removing this assumption.

Recent work involving ad hoc teams [4, 19] concentrates
on action selection for optimizing the team’s utility. They
do not assume that the ad hoc agent has more information
about the environment, nor that it attempts to lead the team
in any way, but rather acts as a team member while adjust-
ing to the teammates’ behavior. The subject of uncertainty
concerning the agents’ behavior is addressed using learning
methods [4, 3, 8] or online planners [19].

Stone et al. [17] formulated a sequential decision making
problem in ad hoc settings of 2-agent teams (A and B) in a
k-armed bandit formulation. The question they asked was:
Assuming that agent B observes the actions of agent A and
its consequences, what actions should agent A select (which
arm to pull) in order to maximize the team’s utility. In our
work we also control the actions of agent A, but the payoff
is determined by the joint actions of the team players, not
by individual actions of each teammate.

Bowling and McCracken [5] examined the problem of in-
corporating a single agent into an unknown team of existing
agents. In their work, they are concerned with the task al-
location of the agent (which role should it choose, and what
is its teams’ believed behavior), where their agent might
adapt its behavior to what it observes by the team. Jones
et al. [10] examined the problem of team formation and co-
ordination without prior knowledge, and suggested an ar-
chitecture based on role selection using auctions for team
coordination. In contrast to these approaches, in our work
we examine how our agent can influence the behavior of the
team by leading the team to an optimal behavior.

Leading in ad hoc teamwork settings can be seen as a
restrictive case of the environment design problem. Zhang et
al. [21] described the problem of designing the environment
(modeled as an MDP) such that it influences the behavior
of an agent. As opposed to their work, where they change
the MDP for optimally leading the agent, our work can be

403

considered as if we are given the MDP and based on it, we
seek an optimal policy for the leading agent.
Young [20] introduced the notion of adaptive games, where

N agents base their current decisions on a finite (small)
horizon of observations in repeated games and search for
agents’ actions yielding a stochastically stable equilibrium
using shortest paths on graphs. In our work, we do not as-
sume the agents play long enough to allow adjustment to a
strategy, but we aim to guarantee that our agent leads the
team to the optimal possible joint action(s) while minimiz-
ing the cost paid by the team along the way.
Numerous research studies exist in the area of normal form

games, where the agents’ payoffs are described in a matrix
(similar to our case) and depend on the chosen joint actions
(e.g., [15, 7]) . Our work is inherently different from these
approaches, since in our case the agents are collaborating
as a team, hence they aim to maximize the joint payoff and
not the individual payoff, which raises different questions
and challenges as for the optimality of the joint action and
the way to reach this optimal joint action. In particular,
our setting does not require safeguarding against adversarial
actions by other agents.

7. CONCLUSIONS AND FUTUREWORK
In this paper, we examined the problem of leading teams

in ad hoc settings where uncertainty exists regarding their
true behaviors. We have shown that if using a recursive
model of the teammate’s behavior in a two-agent team, then
the depth of the recursion as well as its width worthwhile
considering are bounded linearly in the number of team-
mates actions. We then demonstrated why it might be prob-
lematic to prepare for the naive teammate, showing that it
might affect not only the cost of reaching the optimal set of
joint actions, but the reachable set of joint actions itself. We
therefore introduce REACT to select the best action the ad
hoc agent should take, based on the possible consequences of
each choice (in terms of the reachable set of joint actions). In
addition, we show that using REACT outperforms making
incorrect assumptions about your teammates in several sce-
narios. Furthermore, we show that this approach extends to
a variety of different types of teammates, and the empirical
results show that the potential savings of reasoning about
uncertainty are quite large.
The subject of leading teams in ad hoc settings is a new,

emerging, research area, thus it leaves various directions for
future work. For example, an important, practical, direction
includes uncertainty in the utility matrix: examining the
consequences of the ad hoc agent’s uncertainty of the joint
utility resulting from each joint action, or it has perception
noise, causing it to have uncertainty of the actual action
taken by the teammate.

Acknowledgments
This work has taken place in the Learning Agents Research Group

(LARG) at UT Austin. LARG research is supported in part by NSF

(CNS-1330072, CNS-1305287) and ONR (21C184-01).

8. REFERENCES
[1] N. Agmon, S. Barrett, and P. Stone. Modeling

uncertainty in leading ad hoc teams: Extended
version. Technical Report UT-AI-TR-14-01, The
University of Texas at Austin, Department of
Computer Science, AI Laboratory, February 2014.

[2] N. Agmon and P. Stone. Leading ad hoc agents in
joint action settings with multiple teammates. In Proc.
of AAMAS, 2012.

[3] S. Albrecht and S. Ramamoorthy. Comparative
evaluation of MAL algorithms in a diverse set of ad
hoc team problems. In Proc. of AAMAS, 2012.

[4] S. Barrett, P. Stone, and S. Kraus. Empirical
evaluation of ad hoc teamwork in the pursuit domain.
In Proc. of AAMAS, 2011.

[5] M. Bowling and P. McCracken. Coordination and
adaptation in impromptu teams. In Proc. of AAAI,
pages 53–58, 2005.

[6] D. Carmel and S. Markovitch. Incorporating opponent
models into adversary search. In Proc. of AAAI, 1996.

[7] D. Chakraborty and P. Stone. Online multiagent
learning against memory bounded adversaries. In
Machine Learning and Knowledge Discovery in
Databases, volume 5212 of Lecture Notes in Artificial
Intelligence, pages 211–26, September 2008.

[8] D. Chakraborty and P. Stone. Cooperating with a
markovian ad hoc teammate. In Proc. of AAMAS,
2013.

[9] P. Doshi and P. J. Gmytrasiewicz. Approximating
state estimation in multiagent settings using particle
filters. In Proc. of AAMAS, pages 320–327, 2005.

[10] E. Jones, B. Browning, M. Dias, B. Argall, M. Veloso,
and A. Stentz. Dynamically formed heterogeneous
robot teams performing tightly-coordinated tasks. In
Proc. of ICRA’06, pages 570 – 575, 2006.

[11] R. Karp. A characterization of the minimum cycle
mean in a digraph. Discrete Mathematics, 23, 1978.

[12] S. Koenig and R. Simmons. Solving robot navigation
problems with initial pose uncertainty using real-time
heuristic search. In Proc. of AIPS, 1998.

[13] R. E. Korf. Generalized game trees. In Proc. of IJCAI,
pages 328–333, 1989.

[14] P. Paruchuri, M. Tambe, F. Ordonez, and S. Kraus.
Security in multiagent systems by policy
randomization. In Proc. of AAMAS, 2007.

[15] R. Powers and Y. Shoham. Learning against
opponents with bounded memory. In Proc. of IJCAI,
pages 817–822, 2005.

[16] P. Stone, G. Kaminka, S. Kraus, and J. Rosenschein.
Ad hoc autonomous agent teams: Collaboration
without pre-coordination. In Proc. of AAAI, 2010.

[17] P. Stone, G. A. Kaminka, S. Kraus, J. R. Rosenschein,
and N. Agmon. Teaching and leading an ad hoc
teammate: Collaboration without pre-coordination.
Artificial Intelligence, 203:35–65, October 2013.

[18] P. Stone, G. A. Kaminka, and J. S. Rosenschein.
Leading a best-response teammate in an ad hoc team.
In Agent-Mediated Electronic Commerce (AMEC),
2010.

[19] F. Wu, S. Zilberstein, and X. Chen. Online planning
for ad hoc autonomous agent teams. In Proc. of
IJCAI, pages 439–445, 2011.

[20] P. Young. The evolution of conventions. Econometrica,
61(1):57–84, 1993.

[21] H. Zhang, Y. Chen, and D. C. Parkes. A General
Approach to Environment Design with One Agent. In
Proc. of IJCAI, pages 2002–2009, 2009.

404

