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ABSTRACT
This paper presents a multi-robot solution to the task of ob-
ject clustering, where the simplicity of the robots is pushed
to the extreme that (i) each robot can only detect the pres-
ence of (but not the distance to) an object or another robot
in its direct line of sight, and (ii) the robots are unable to
store previous inputs and cannot perform arithmetic compu-
tations. Controllers for the robots were synthesized through
an evolutionary robotics approach driven by physics-based
simulations. The results show that the problem can be
solved even if the robots cannot distinguish between ob-
jects and other robots; however, if they are able to make
this distinction, the clustering performance is significantly
improved. The controllers have been shown to scale well
to large numbers of robots and objects and to be robust
to noise. The sensor/controller solution was implemented
on the e-puck robotic system. Across 10 systematic exper-
iments with 5 robots and 20 objects, on average, 86.5% of
the objects were in one cluster after 10 minutes. We believe
that the sensor/controller simplicity paves the way for the
implementation of multi-robot systems at very small scales,
as required, for instance, in nanomedical applications.

Categories and Subject Descriptors
I.2.9 [Computing Methodologies]: Artificial Intelligence
Robotics

General Terms
Algorithms, Experimentation

Keywords
Swarm Robotics, Evolutionary Robotics, Object Clustering,
Minimal Information Processing, e-puck

1. INTRODUCTION
Multi-robot systems [21] have attracted much research at-

tention in the last two decades, for a number of reasons. For
instance, they are inherently robust to failures, because re-
dundancy can be introduced into the system in the form of
additional robots, and therefore the system can still achieve
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its task in the presence of a few failed units [4]. Moreover,
there are many tasks that are inherently distributed, and
can thus be performed faster by multi-robot system, which
can easily exploit this feature through parallelization [5].
Another often-cited benefit of multi-robot systems is that
they allow for the complexity of the individual robots to be
reduced, as compared to traditional, monolithic robotic sys-
tems. This simplicity can, in some cases, help to reduce the
cost of the whole system, but it can also bring about another
advantage: allowing for the robots to be scaled down in size
for applications such as nanomedicine [19].

While many researchers have successfully implemented
multi-robot systems with relatively simple units, few of these
systems are simple enough that the robots could conceivably
be implemented at scales that are smaller than the currently
available technologies. This work contributes to the under-
standing of what can still be achieved when the complexity
of the robots is reduced to a minimal extremum, hence al-
lowing them to be implemented in the future at scales where
the space and the energy available for sensing and processing
power are immensely scarce [22].

We show that the task of object clustering can be solved
by robots that (i) can only detect the presence of (but not
the distance to) an object or another robot in its direct line
of sight, and (ii) are memory-less, and cannot perform arith-
metic computations.

This simplicity comes at the cost of using a longer sens-
ing range than is traditionally assumed in swarm robotic
systems [2]; nevertheless the robots only need one sensor
(for this task) and, as long as a suitable technology can be
used to provide the necessary sensing range, the system has
the potential to be truly scalable to small scales. Further-
more, using a minimal amount of long-range information
also brings about other advantages, namely (i) the fact that
only a minimal amount of features need to be extracted from
the environment allows for system designs that can be trans-
ferred from simulation to reality with minimal effort [11];
(ii) using information that is not restricted in range allows
the system to solve problems that are otherwise unsolvable
(see [13], referred to in [12]).

A number of works have presented multi-robot solutions
to tasks that involve physical interactions with objects us-
ing simple sensors/controllers. Beckers [1] used robots with
grippers that are equipped with two infrared sensors and
a micro switch that activates when the robot’s gripper is
pushing more than a certain number of objects. Maris and
te Boekhorst [15] used robots with only two infrared sensors
that provide the distance to perceived objects or robots. In
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this work, the objects are constrained to be no larger than
the distance between these two sensors, and no clustering
behavior was observed with only one robot.

Melhuish et al. [16] used a similar mechanism to the one
of Beckers et al. [1] to achieve two-object segregation. The
robots in this work also have grippers, and have a micro
switch that indicates when the force on the gripper is larger
than some threshold value. Furthermore, they have four
infrared sensors, as well as an optical sensor that is used to
detect the different colors of the objects to be segregated.
In a follow-up work, Melhuish et al. [17] showed that this
behavior can also be extended to the scenario with more
than two groups of objects.

In contrast to the above works, our system makes use of
robots that have no grippers, and are only equipped with
one sensor, which is an extension of the one presented by
Gauci et al. [6], who used it to solve the task of robot ag-
gregation. This sensor can distinguish between objects and
other robots, but cannot provide distance information. The
robots can therefore only perceive one object or other robot
at a time, and, because they do not possess distance infor-
mation or force sensors, they are unable to know whether
they are in contact with the object, as opposed to the case
of [1]. Because only one sensor is used, there is no (theo-
retical) restriction on the size of the objects, as opposed to
the work of [15]. The robots are memory-less, and perform
no arithmetic computations, which to our knowledge, makes
this work the simplest sensor/controller solution to the ob-
ject clustering problem that has been presented so far.

This paper is organized as follows. Section 2 describes
the methods used, including the the objects and the robots,
the fitness measure, and the evolutionary algorithm. Sec. 3
explains how controllers were synthesized using the evolu-
tionary algorithm. Sec. 4 presents the results from simula-
tion studies about the emergent behaviors of the synthesized
controllers, their scalability with respect to the number of
robots in the environment, and their robustness with re-
spect to sensory noise. Sec. 5 explains how the sensor and
one of the controllers were ported onto a physical robotic
platform, and presents the results from 10 systematic trials.
Sec. 6 concludes the paper.

2. METHODS

2.1 Problem Definition
Consider an environment containing m ≥ 2 cylindrical

objects and n ≥ 1 differential-wheeled robots. The objective
for the robots is to bring the objects in the environment
together as quickly as possible, into one cluster that is as
compact as possible.

2.1.1 Sensor
Each robot is equipped with a line-of-sight sensor I at

its front, which indicates to the robot what it is pointing
at: I = 0 if it is pointing at nothing (or the walls of the
environment, if this is bounded), I = 1 if it is pointing at
an object, and I = 2 if it is pointing at another robot. Note
that the sensor does not provide the distance to a perceived
object or robot.

2.1.2 Controller
The robots have no memory, i.e. they are not able to

store previous inputs, and therefore, at each time step t,

they must decide on their actions based solely on the cur-
rent sensor reading, I(t). As I(t) is discrete-valued, only one
form of controller is possible: a mapping from each of the
three possible values onto a pair of angular velocities for the
robot’s wheels. Note that any other memory-less controller
(e.g. a feed-forward neural network) can be reduced to this
form.

Let v̄`, v̄r ∈ [−1, 1] represent the normalized angular ve-
locities of the robot’s wheels, where −1 and 1 correspond,
respectively, to the wheel rotating backwards and forwards
with the maximum possible velocity. The controller can now
be represented as a six-tuple:

v̄ = (v̄`,0, v̄r,0, v̄`,1, v̄r,1, v̄`,2, v̄r,2) , v̄ ∈ [−1, 1]6 , (1)

where v̄`,0 denotes the normalized angular velocity of the
left wheel when I = 0, etc.

2.1.3 Fitness Measure
Following Graham and Sloane [8], we use the second mo-

ment of the objects as a measure of their dispersion, which
we want to minimize. Let ro represent the radius of one

object. Let p
(t)
i represent the position of object i at time

t, and let p̄(t) = 1
m

∑m
i=1 p

(t)
i represent the centroid of the

positions of the objects. Then, the second moment of the
objects is given by:

u(t) =
1

4r2o

m∑
i=1

||p(t)
i − p̄(t)||2. (2)

The 4r2o in the denominator serves to normalize u(t) such
that it becomes independent of ro for geometrically similar
configurations. u(t) does not have an upper bound, because
the objects can be arbitrarily dispersed. It has a positive
lower bound, because of the physical constraint that the

objects cannot overlap with each other, i.e. ||p(t)
j − p

(t)
i || ≥

2ro, i 6= j. Graham and Sloane [8] report lower bounds

of u(t) for several values of n up to n = 499. Except for
n = 212, the packings corresponding to the lower bounds of
u(t) are optimal among hexagonal packings [3].

Eq. 2 measures the dispersion of the objects at one point
in time. We use the following equation to measure the object
clustering performance of a controller v̄ when employed on
a number of robots for T time steps, t ∈ {0, 1, . . . , T − 1}:

U (v̄) =

T−1∑
t=0

t u(t). (3)

Eq. 3 is designed to reward both a low dispersion at the
end of the time interval, as well as the speed with which the
robots cluster the objects. It penalizes large values of u(t) at
every time instant (except for the very first one), but gives

increasing importance to small values of u(t) for increasing
values of t.

2.2 Objects and Robots
For the objects, we used cylinders made of expanded poly-

styrene (EPS), shown in Fig. 1. These cylinders have a di-
ameter and a height of 10 cm. Their mass is approximately
35 g, and their coefficient of static friction with the floor of
our arena is approximately 0.58.

We use the e-puck robotic platform [20], which is shown in
Fig. 1. The e-puck is a miniature, differential wheeled mobile
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Figure 1: Left: A cylindrical object made of ex-
panded polystyrene (EPS). The object’s diameter
and height are both 10 cm. The object is wrapped
in red paper in order to make it visually distinguish-
able to the robots. A red marker is also attached to
its top, in order to facilitate the tracking of its po-
sition by an overhead camera. Right: An e-puck
robot fitted with a green ‘skirt’ that makes it visu-
ally distinguishable to the other robots.

robot. Its diameter and height are approximately 7.4 cm and
5.5 cm, respectively, and its weight is approximately 150 g.

The e-puck is equipped with a directional camera located
at its front, which has been used in this study to realize
the line-of-sight sensor in the physical implementation (see
Sec. 5). The e-puck’s processor is a Microchip dsPIC micro-
controller with 8 KB of RAM and 144 KB of flash memory.

2.3 Simulation Platform
The simulations presented here were performed using the

open-source Enki library [14], which is used by WebotsTM [18]
in 2-D mode. Enki is capable of modeling the kinematics and
the dynamics of rigid bodies in two dimensions, and has a
built-in model of the e-puck. In Enki, the body of an e-puck
is modeled as a disk of diameter 7.4 cm and mass 152 g. The
inter-wheel distance is 5.1 cm. The velocities of the left and
right wheels along the ground1 can be set independently in
[−12.8, 12.8] cm/s. The objects were modelled as disks of
diameter 10 cm, mass 35 g, and a coefficient of friction with
the ground of 0.58. The line-of-sight sensor of the robots
was realized by projecting a line from the robot’s front and
checking whether it intersects with the body of an object or
another robot (and if it intersects with both, checking with
which it intersects first). The length of the control cycle
was set to 0.1 s, and the physics were updated at a rate of
10 times per control cycle (i.e. 100 times per second).

2.4 Evolutionary Algorithm
In order to find controllers that optimize the fitness mea-

sure defined by Eq. 3, we use the Covariance Matrix Adap-
tation Evolution Strategy (CMA-ES) [10], which is an algo-
rithm for optimization on real-valued decision vector spaces,
Rd. The main feature of CMA-ES is the non-random adap-
tation of the variance of each decision variable, as well as
all the covariances among these variables. CMA-ES is quasi
parameter free, because all its internal parameters can be
set according to theoretically-justified formulae [9, 10]. The
user only needs to specify three exogenous parameters: a

1This refers to the instantaneous linear velocity of the robot
at the point at which the wheel makes contact with the
ground. It is equal to the wheel’s angular velocity multiplied
by the wheel’s radius.

starting point for the decision vector, m(0); the initial step
size, σ(0); and the population size, λ. CMA-ES is also scale-
invariant, because in its selection mechanism, it does not
take into account the actual fitnesses of the candidate solu-
tions, but rather selects the µ best solutions from the λ can-
didate solutions. This is a desirable feature for evolutionary
robotics applications, because it ensures that the outcome of
the evolution is not overly sensitive to the precise choice of
the fitness measure. For a detailed explanation of CMA-ES
and all its features, we refer the interested reader to [9, 10].
Below, we will outline the details that are specific to our
implementation.

2.4.1 Constraint Handling
In its standard form, CMA-ES operates across the entire

real space, Rd; however, in our case, the decision variables
need to be constrained within the interval [−1, 1], as ex-
plained in Sec. 2.1. In order to achieve this, we let CMA-ES
operate in its unconstrained form; however, before evaluat-
ing a candidate solution, we map it to the feasible region by
applying the following sigmoid-based function to each of the
decision variables:

sig(x) =
1− e−(x)

1 + e−(x)
∀x ∈ R. (4)

2.4.2 Parameter Settings
We set the starting point for the decision vector, m(0), to

the zero vector, and the initial step size, σ(0), to 0.72. Monte
Carlo simulations show that with this setting, the initial
population will be approximately uniformly distributed in
[−1, 1]d, when it is mapped onto this region by the function
of Eq. 4.

For the population size, we use λ = 10, based on the
‘default’ setting suggested in [9, 10] of λ ≈ b4+3 ln dc (here,
d = 6).

3. CONTROLLER SYNTHESIS
We wish to study the importance of the robots being able

to detect the presence of other robots, and distinguish them
from the objects in the environment. For this reason, we
performed 3 sets of evolutions, with 25 evolutions per set,
using the following settings:

1. In the first set of evolutions, the robots’ sensors work as
described in Sec. 2.1, i.e. they can distinguish between
pointing at nothing, an object, or another robot2. We
term this setting Robots as Robots.

2. In the second set of evolutions, the robots are unable to
detect the presence of other robots. Therefore, when
their line-of-sight sensor is pointing at another robot,
it gives a reading of I = 0 rather than I = 2. Conse-
quently, only the first four parameters of the controller
of Eq. 1 are utilized. We term this setting Robots as
Nothing.

3. In the third set of evolutions, the robots are able to
detect the presence of other robots; however, they are

2Note that in the simulations presented in this paper, no
limit was imposed on the range of the sensors. However, the
good results obtained in the physical experiments (Sec. 5.3)
demonstrate that the system’s performance is not under-
mined if the sensor has a finite, but reasonably long range.
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Figure 2: Evolution Fitness Dynamics.

not able to distinguish them from the objects. In other
words, their line-of-sight sensor returns I = 0 if it is
pointing at nothing, and I = 1 if it is pointing at an
object or another robot. As in the previous case, only
the first four parameters of the controller of Eq. 1 are
utilized. We term this setting Robots as Objects.

Each evolution was run for 1000 generations. Note that
for the sake of fairness, all the evolutions operated in a 6-
dimensional space (i.e. d = 6). In the evolutions for the
cases Robots as Nothing and Robots as Objects, the last two
parameters of the controller of Eq. 1 were simply not used
by the robots, and therefore had no impact on the selection
of the candidate solutions.

3.1 Evaluation of Candidate Solutions
In each generation, each of the λ = 10 candidate solutions

(i.e. controllers) was evaluated by running it for 100 s on
n = 2 robots in an environment containing m = 5 objects.
The objects and the robots were initialized with a uniform
distribution in a virtual square of sides 111.80 cm, such that
on average, the area per object was 2500 cm2. Additionally,
the initial orientation of each robot was chosen randomly
in [−π, π]. Each candidate solution was evaluated 10 times
with different initial configurations of the objects and the
robots, and the mean value of U (see Eq. 3) across these
10 runs was assigned as its fitness measure. Note that the
set of initial configurations was identical for each candidate
solution within each generation, but a new set was chosen
in every new generation.

3.2 Post-Evaluations
The selection of the controller for the three cases Robots as

Robots, Robots as Nothing and Robots as Objects, was per-
formed as follows. Each of the controllers in the last gen-
eration of the respective 25 evolutions was post-evaluated
using the same mechanism used within the evolutions (see
Sec. 3.1), with the difference that each controller was evalu-
ated 100 times (rather than 10 times) with different initial
object/robot configurations. The controller with the high-
est mean fitness (see Eq. 3) across the 100 runs was selected
to be used in the experiments presented in the rest of this
paper.

Fig. 2 shows the fitness dynamics of the three ‘best’ evolu-
tions, i.e. the ones that led to the best controllers. For this
plot, the controllers generated by these three evolutions in
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Figure 3: Evolution Parameter Dynamics.

each generation were post-evaluated in the same way as the
controllers of the last generation. Fig. 3 shows the dynam-
ics of the parameters in these evolutions (the parameters v̄`,2
and v̄r,2 are not shown in Figs. 3b and 3c, as they are irrel-
evant). Note that in each of the three cases, the dynamics
of the evolutions have reached steady state well before the
last generation.

The evolution with Robots as Robots led to the best fitness
at the last generation (see Fig. 2), followed by Robots as
Nothing and Robots as Objects. From Fig. 3, we see that the
first four parameters of the controller (see Eq. 1) in the last
generations are very similar across the three evolutions.
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baseline fitness measure (i.e. the fitness if robots do
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4. SIMULATION EXPERIMENTS

4.1 Controller Analysis
It turns out that each of the three controllers leads, in

a qualitative sense, to the same emergent behavior. Fig. 4
shows snapshots of 50 robots and 20 objects over 1000 sec-
onds where the robots employ the Robots as Robots con-
troller (these settings are scaled up by a factor of 10 from
the ones used within the evolutions). The robots first find
their way to the periphery of (most of) the objects. Follow-
ing this, they move in a circular formation around the ob-
jects, with each robot pushing each object slightly inwards
on each contact. Sometimes, some objects are initially not
included within the robots’ circle, but at some point, the
robots branch out from their circular formation to encircle
these stray objects as well.

This emergent behavior is robust, as we have observed
with many different parameter settings (e.g. number of
objects/robots, initial dispersion, and initial configuration).
The robots always manage to find their way to the periph-
ery of most of the objects, and after some time, most of the
objects end up in one cluster (although sometimes, some ob-
jects that are initially very far from the rest are missed, po-
tentially due to the discrete nature of the sensor/controller
cycle). Interestingly, the behaviour also works if there is
only one robot in the environment.

4.2 Scalability Study
In this section, we study the effect of the number of robots

relative to the number of objects on the clustering perfor-
mance, for each of the three controllers.

We ran simulations using m = 50 objects and lasting for
1000 seconds. With each controller, we ran 100 simulations
with each number of robots in the set n = {10, 20, . . . , 50},
and for each simulation, we recorded the fitness measure
given by Eq. 3. Fig. 5 shows a box plot3 of the results, where

3The box plots presented here are all as follows. The line
inside the box represents the median of the data. The edges
of the box represent the lower and the upper quartiles (25-th
and 75-th percentiles) of the data, and the whiskers repre-
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Figure 6: Noise Study. The dotted black line shows
the mean of the baseline fitness measure (i.e. the
fitness if robots do not move throughout the run).

the blue, red, and green boxes correspond to the Robots as
Robots, Robots as Nothing and Robots as Objects controllers,
respectively. The dotted line indicates the expected value of
the baseline fitness measure, i.e. the fitness measure if the
robots do not move throughout the run (found by perform-
ing a Monte Carlo simulation with 100 evaluations; note that
this does not depend on the number of robots).

With the Robots as Objects controller, the performance
degrades as the number of robots is increased, until with
40 robots it is not significantly different from the baseline
(paired Wilcoxon signed-ranked test, p < 0.02). With the
Robots as Robots and Robots as Nothing controllers, the per-
formance has a bowl-shaped profile with respect to the num-
ber of robots, with the optimum occurring at n = 30 (with
the resolution used). However, for each value of n, the per-
formance of the Robots as Robots controller is significantly
better than that of the Robots as Nothing controller.

4.3 Noise Study
In this section, we investigate the effect of sensory noise

using the Robots as Robots controller. We chose this con-
troller as it is the best-performing one, as shown in the previ-
ous section, and as we also use it in our physical experiments
(see Sec. 5).

We use the following sensory noise model, which we have
found to be realistic from experiments with our physical
setup. The sensor always gives the correct reading of I = 0
when it is pointing towards nothing (in our physical setup,
the walls of the arena). When the sensor is pointing at ei-
ther an object or another robot, its reading is corrupted with
some probability p. In this case, with equal probability, the
sensor either misses the object or robot, giving a reading of
I = 0, or registers the wrong type of item (i.e. a robot if
there is actually an object, and vice-versa).

We performed simulations with p ∈ {0, 0.1, . . . , 1}. For
each value of p, we performed 100 runs with 50 objects and
20 robots, with each run lasting for 1000 seconds. In each
run, we recorded the fitness measure given by Eq. 3. Fig. 6
shows a box plot of the results, where the dotted line in-
dicates the expected value of the baseline fitness measure,

sent the lowest and the highest data points that are within
1.5 times the inter-quartile range from the lower and the
upper quartiles, respectively. Circles represent outliers.
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initial after 25 seconds after 50 seconds after 75 seconds

after 100 seconds after 150 seconds after 200 seconds after 250 seconds

Figure 4: Emergent Behavior. The robots (blue) first find their way to the periphery of (most of) the objects
(red). Following this, they move in a circular formation around the objects, with each robot pushing each
object slightly inwards on each contact.

i.e. the fitness measure if the robots do not move through-
out the run (found by performing a Monte Carlo simulation
with 100 evaluations). Up until p = 0.4 the performance
is significantly better than the baseline (paired Wilcoxon
signed-rank test, p < 0.02). Interestingly, with p = 0.5,
0.6, and 0.7, the fitness is significantly worse than the base-
line, meaning that the robots disperse the objects more than
they were at the start. With p = 0.8 and p = 0.9, the fitness
is still statistically significantly different from the baseline,
but the difference is minimal. With p = 1, the fitness is not
significantly different from the baseline.

5. PHYSICAL EXPERIMENTS

5.1 Sensor and Controller Implementation
The sensor was implemented using the e-puck’s directional

camera. For this reason, the objects were wrapped with
red paper, and the robots were fitted with green ‘skirts’,
in order to make them distinguishable from each other and
from the white walls of the arena (see Fig. 1). The e-puck’s
camera is a CMOS RGB color camera with a resolution of
640 (horizontal) by 480 (vertical) pixels, with corresponding
viewing angles of 56◦ and 42◦, respectively. Note that the
amount of RAM available on the e-puck’s micro-controller
is not large enough to even store a single raw color image
from the camera, which comes to illustrate the importance of
keeping the amount of information processing to a minimum
on small-scale robotic systems.

In principle, using one pixel of the camera is sufficient for
implementing the line-of-sight sensor. However, in order to
account for misalignments among the robots’ cameras, as
well as the presence of noise in a real-world environment,
we used the following method in order to achieve a more ro-
bust implementation of the sensor. Firstly, the image from
the camera is sub-sampled to obtain a 40× 15 pixel image,
spanning the whole of the original image. Then, a 10 × 10
pixel window from the center of this sub-sampled image is
used to implement the sensor, as follows. Each pixel is com-
pared against a threshold to decide whether it is white, red

or green. If there are less than 2 green pixels, and less than
2 red pixels, then the sensor gives a reading of I = 0, indi-
cating that it is pointing at a wall. Otherwise, the majority
of the colored pixels decides whether the robot gives a read-
ing of I = 1 or I = 2, indicating that it is pointing at a
red object or a green robot, respectively (if the number of
green and red pixels is equal, green is given precedence).
The implemented sensor has been found to provide reliable
readings for up to a range of around 150 cm (with some mis-
perceptions).

The Robots as Robots controller was implemented on the
e-pucks without any modifications. As the sensor and the
controller structure are extremely simple, the evolved con-
troller is not very sensitive to the nuances of the environ-
ment. This helps to bridge the so-called “reality gap”, which
is often an issue when making use of evolutionary robotics
approaches.

5.2 Experimental Setup and Procedure
The arena used for the experiments is a rectangle of size

400 cm×225 cm. It has a light gray floor, and is surrounded
by white walls that are 50 cm in height. Its floor is marked
with a grid of 15× 8 = 120 points, spaced 25 cm from each
other and from the walls. For each trial, 25 of these points
were chosen randomly to serve as the initial positions of the
objects and the robots. With the objects and the robots
positioned on these points, an infrared signal was issued
to instruct each robot to turn on the spot through a ran-
domly generated portion of a revolution, such that robots
now faced in random directions. Another infrared signal
was then issued to instruct the robots to start executing
the controller. The robots were programmed to stop auto-
matically after 600 s. We performed 10 trials with m = 20
objects and n = 5 robots. Each trial was recorded by an
overhead camera. All the 10 videos are available in the on-
line supplementary material [7].
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Figure 7: Physical Dynamics.

5.3 Results
Fig. 9 shows a sequence of snapshots from one of the tri-

als. We observe the same emergent behavior as that in sim-
ulation (see Sec. 4.1), and in this particular trial, the robots
have gathered the objects into one cluster after around 300 s.
Fig. 8 shows the final configurations (i.e. after 600 s) of the
the objects and the robots in the 10 trials. On average, at
the end of the trials, the largest cluster of objects4 contains
86.5% of the objects.

Fig. 7 shows plots of the clustering dynamics. Fig. 7a
shows dynamics of the second moment of the objects (see
Eq. 2), while Fig. 7b shows the dynamics of the proportion
of objects in the largest cluster. In both plots, the different
colored curves correspond to the 10 individual trials, while
the dashed black curve represents the mean measure across
the 10 trials. In Fig. 7a, the horizontal dotted black line
shows the theoretical lower bound of the second moment for
20 objects, as given in [8].

6. CONCLUSION
This paper has presented the simplest solution so far to

the problem of clustering objects with a swarm of robots.

4A cluster is defined as a maximal connected subgraph of the
graph defined by the objects’ positions, where two objects
are considered to be adjacent if another object cannot fit in
between them (in other words, objects i and j are adjacent

if ||pj
(t) − pi

(t)|| < 4ro).

Figure 8: The Final Configurations of the Objects
and the Robots in the 10 Physical Trials.

The robots are memory-less and are unable to perform arith-
metic computations. They are only able to detect the pres-
ence of an object or another robot in their line of sight. As
they do not possess any distance information about a per-
ceived object (nor any force sensors), they are unable to tell
whether they are manipulating it. Despite these limitations,
we identified a controller that is capable of consistently gath-
ering the objects into a single cluster. Simulation results
have shown that the ability of the robots to distinguish be-
tween objects and other robots is beneficial; indeed, if the
robots can only perceive other robots as objects, the behav-
ior does not scale well with increasing numbers of robots.
Simulations have also shown that the controller is fairly ro-
bust with respect to sensory noise. The sensor/controller
solution was implemented on a physical system of 5 e-puck
robots, and favourable results have been obtained in system-
atic experiments with 20 objects, with 86.5% of the objects
being gathered into one cluster after 10 minutes (average
across 10 trials). In the future, we intend to implement a
solution of the object clustering task with robots at the sub-
millimeter scale.
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