
Online Mechanism Design for Scheduling Non-Preemptive
Jobs under Uncertain Supply and Demand

Philipp Ströhle∗, Enrico H. Gerding�, Mathijs M. de Weerdt◦,
Sebastian Stein�, Valentin Robu�

∗ Karlsruhe Institute of Technology, Germany, philipp.stroehle@kit.edu
� University of Southampton, UK, {eg,ss2,vr2}@ecs.soton.ac.uk

◦ Delft University of Technology, Netherlands, m.m.deweerdt@tudelft.nl

ABSTRACT
We design new algorithms for the problem of allocating un-
certain, flexible, and multi-unit demand online given uncer-
tain supply, in order to maximise social welfare. The al-
gorithms can be seen as extensions of the expectation and
consensus algorithms from the domain of online schedul-
ing. The problem is especially relevant to the future smart
grid, where uncertain output from renewable generators and
conventional supply need to be integrated and matched to
flexible, non-preemptive demand. To deal with uncertain
supply and demand, the algorithms generate multiple sce-
narios which can then be solved offline. Furthermore, we use
a novel method of reweighting the scenarios based on their
likelihood whenever new information about supply becomes
available. An additional improvement allows the selection
of multiple non-preemptive jobs at the same time. Finally,
our main contribution is a novel online mechanism based on
these extensions, where it is in the agents’ best interest to
truthfully reveal their preferences. The experimental eval-
uation of the extended algorithms and different variants of
the mechanism show that both achieve more than 85% of the
offline optimal economic efficiency. Importantly, the mech-
anism yields comparable efficiency, while, in contrast to the
algorithms, it allows for strategic agents.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Scheduling; G.3 [Probability and statistics]: Probabilis-
tic algorithms; I.2.11 [Distributed Artificial Intelligence]:
Multiagent systems

Keywords
Online Mechanism Design, Scheduling, Uncertainty

1. INTRODUCTION
The availability of electrical energy from renewable sources
such as wind and solar has been increasing rapidly in the
past years, and is expected to significantly increase even

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

further in the near future.1 However, electricity generation
from many renewable sources cannot be easily controlled and
is often difficult to predict accurately. Therefore, balancing
demand and supply in the power system becomes increas-
ingly challenging when relying on the ramping capabilities
of conventional supply only. Alternatively, this problem can
be addressed by introducing more flexibility on the demand
side and allowing loads to be deferred. Thus, a major chal-
lenge in future energy systems is to schedule flexible loads
online given both uncertain future demand as well as uncer-
tain supply of renewable energy.

To meet this challenge, we introduce and evaluate sev-
eral novel algorithms for the online scheduling of deferrable
loads, that take into account probabilistic information about
future supply and demand. Furthermore, we use a mecha-
nism design approach to incentivise agents on the demand
side to be truthful about their flexibility and the value of
the loads. Specifically, we consider the problem of scheduling
multiple non-preemptive loads (i.e., loads that, once started,
cannot be interrupted) with a fixed load profile (i.e., the
power transfer rate of a load is a function of time from the
starting point of the load) and uncertain supply from rela-
tively cheap or even free renewable energy.

Our algorithms extend existing single machine scheduling
algorithms called expectation [1] and consensus [4], which
take uncertainty about future jobs into account. These al-
gorithms generate scenarios from a probability distribution,
and the scheduling problem is solved for each of these sce-
narios using an offline scheduling algorithm. The former
approach uses the scenarios to estimate the expected utility
of scheduling a certain job first, whereas in the latter, sce-
narios vote to decide which load to schedule first. We extend
both algorithms for settings with variable, uncertain supply
where multiple, heterogeneous jobs, can run simultaneously.
Furthermore, we use the concept of precommitment to make
these algorithms into truthful mechanisms.

Recently, consensus was applied in a smart grid setting
with a specific focus on the context of energy allocation for
the charging of electric vehicles [12]. While that work ad-
dresses the problem of uncertain future demand, the model
is restricted to deterministic future energy supply with con-
stant marginal cost. In this paper, we specifically focus on
the problem of uncertain supply. More precisely, we as-

1In Germany, 22.9% of electricity was supplied from renew-
able sources in 2012 [11], up from 12% in 2006, while in the
UK the government has committed to ensure that 30% of
energy supply comes from renewable sources by 2020 [3].

437

sume that there are two sources of electricity: renewable
supply, which is uncertain but free, and conventional gen-
eration, which is always available but costly. Another dif-
ference to [12] is that, in their work, loads are presumed to
be preemptive, which helps to reduce the complexity of the
problem. However, in many real life settings jobs requiring
electricity are non-preemptive (i.e., they cannot be easily in-
terrupted and restarted).2 For this reason, in this paper we
focus on non-preemptive loads.

Our work is also related to [13], who consider the prob-
lem of scheduling deferrable loads. However, there are some
important differences with the model and algorithms they
consider. First of all, although they also introduce a pre-
dictive approach, they use a point prediction of renewable
supply. The disadvantage is that their approach only con-
siders the expected supply, and does not take into consid-
eration (auto-)correlations over time, which is common in
renewable supply (e.g., there can be days with high supply,
and ones with low supply, but the expected value might be
very unlikely in practice). In contrast, our consensus based
approach considers several scenarios which are sampled from
the distribution, and correlation is taken into account when
generating such scenarios. Another important difference is
that they assume loads to be preemptive, as requiring a cer-
tain total amount of energy, and as being characterised by
a flexible power consumption rate. In contrast, we assume
non-preemptive loads with a fixed load profile and require
that started loads need to be completed. Finally, unlike [13]
and similar to [12], we assume that loads have monetary val-
ues, and our aim is to maximise the difference between the
value of allocated loads and the cost of using non-renewable
energy, i.e., to maximise social welfare.

Recently, researchers in the multi-agent community have
begun looking at adapting online scheduling heuristics to
deal with strategic agents. Such agents may misreport the
value, arrival time or deadline for their jobs if, through such
a misreport, they can get a better allocation or pay less. In
order to ensure that an online scheduling heuristic is truth-
fully implementable with strategic agents a key criterion to
be satisfied is monotonicity [8]: if a job has a type that is
better in any of its dimensions than another (e.g., higher
value, lower consumption rate, shorter length, earlier arrival
or later deadline), and no worse in any other dimension, then
its allocation must not be worse.

There are two main approaches to ensuring monotonicity
of online allocations. One approach involves using of output
ironing [7, 2], or cancelling that part of the allocation that
breaks monotonicity constraints. While this is a principled
approach, often a large part of the final allocation may need
to be cancelled, and computing the ironing decisions can be
intractable in realistically-sized settings. Another approach,
which we also use in this paper, is to partially precommit
to allocate to agents of sufficiently high value in the future,
irrespective of future arrivals [12]. While this approach may
slightly reduce efficiency, because in some settings it imposes
additional constraints on future schedules, it has the advan-
tage that it prevents strategic agents from misreporting.

Specifically, our main contributions are as follows:

• We consider, for the first time, the problem of online

2Examples include washing machines, in a domestic setting,
and a variety of heavy duty electrical machinery in an in-
dustrial setting.

scheduling non-preemptive jobs and uncertain supply
of resources.

• We present and compare several variants of two new
algorithms for this setting: an extension of the consen-
sus approach [4] and an extension of the expectation
approach [1] to deal with selecting multiple jobs at each
time step and variable supply.

• We use mechanism design to produce truthful variants
of these algorithms by using the concept of precom-
mitment.

The setup of this paper is as follows. First, we formalise
the online scheduling problem. Then, we explain how we
extend both consensus and the expectation-based approach
to deal with possibly selecting multiple jobs at each time
step, followed by a description of the issues and solutions
to make these methods incentive compatible. We conclude
with an experimental validation and a discussion.

2. PROBLEM FORMULATION
Our online scheduling problem with non-preemptive loads
is characterised by demands of different values and require-
ments, which arrive online, and supply from two sources: an
uncertain future amount of low-cost power from renewables,
and costly (conventional) generation. The decision of the
scheduler concerns which of the incoming loads to schedule,
and when, in order to maximise expected social welfare (de-
fined below). We note that even the offline version of the
problem (with perfect knowledge of demand and supply) is
of combinatorial complexity, as finding the optimal sched-
ule requires a combinatorial number of subsets to be eval-
uated and compared [4]. Hence, approximation algorithms
are needed. Before we present the algorithms, we detail the
formal definition of demand, supply, and the schedule.

2.1 Demand
We consider a setting where jobs arrive over a fixed finite
time horizon (e.g., a day), modelled by a set of discrete time
steps T = {1, . . . , T }. A job j ∈ J , where J is the set of
all jobs, is characterised by a type 〈vj , rj , lj , aj , dj〉, which
comprises its value vj ∈ R+, consumption rate rj ∈ R+ (the
amount of supply needed per time step), job length lj ∈ T ,
arrival time aj ∈ T , and departure time or deadline dj ∈ T .
Given this, we denote the total amount of energy required to
serve a job as qj = lj ·rj . A job j cannot start before aj , must
end before dj , and is non-preemptive, i.e., once it is started,
it must continue running for lj time steps (which we assume
to be bounded by a constant maximum length). Thus, the
latest start time for a job is dj − lj , and the flexibility is its
difference with aj , i.e., dj − lj − aj . We assume that the set
of jobs J is not known a-priori, but is only revealed online
as jobs arrive in the system. However, the scheduler has a
probability distribution of future jobs and their properties,
such as their valuation and length.

2.2 Supply
Supply is available from two sources, renewable and conven-
tional, that exhibit different properties. Renewable sources,
such as wind or solar power, are characterised by negligible
marginal cost but also uncertain availability. For simplicity,
we assume that costs for renewable energy are zero in this
paper (although the algorithms carry over to settings where

438

the marginal cost is constant, and can easily be generalised
to other cost functions). Furthermore, we assume that the
maximum renewable power available is given by a stochas-
tic process XT = (X1, . . . , XT), whose realisation xt ∼ Xt

only becomes known at t. Importantly, the supply can be
correlated over time, which means that realisations at time
t provide information about future supply (as explained in
Section 5.1, in our experiments we model this stochastic pro-
cess using a hidden Markov model). For example, if there
is wind in the morning, it is more likely that there will be
wind during the following hours.

Conventional generation, on the other hand, is charac-
terised by unlimited output and a deterministic cost function
c which is non-decreasing in the amount of power supplied
at time t. In particular, in this paper, we take these costs to
be described by a linear function (constant marginal cost),
i.e., cc(pc) = b · pc, b > 0. Supply is perishable, i.e., elec-
trical energy that is not immediately consumed cannot be
stored and consumed in the future.

2.3 Schedule
The solution to the online scheduling problem is a schedule
s = 〈s1, s2, . . . , sT 〉, which defines for every time step t a set
of jobs st ⊆ J to start at that time. A feasible schedule s
should meet the following constraints, for all times t ∈ T
and for all jobs j started at time t, i.e., j ∈ st:

• j cannot start before its arrival, i.e., t ≥ aj ,

• j must finish by its deadline, i.e., t ≤ dj − lj ,

• j can be started at most once, i.e., ∀t, t′ ∈ T : if j ∈
st′ and j ∈ st then t = t′.

We use s = 〈〉 to denote the empty schedule, i.e., where
st = ∅ for all t ∈ T . Furthermore, given a schedule s and a
time t, we denote the set of running jobs by Rt(s) = {j | j ∈
st′ , t

′ ≤ t, t′+ lj > t}. The net profit (or social welfare) w(s)
of a schedule s is then defined by the value of all scheduled
jobs minus the cost,

w(s) =
∑
t∈T

∑
j∈st

vj − c
(

max
{ ∑

j∈Rt(s)

rj − xt, 0
}) (1)

which is the value we aim to maximise. To illustrate the
problem, consider the following example.

Example 1. Consider a setting with two time steps t1
and t2 and two agents {a1, a2}, each requiring exactly one
unit of energy. The value of a1’s job is v1 = 7, and it
can run during either t1 or t2, while a2 has a job which has
value v2 = 5, but only during t1. At t1 one unit of renewable
supply is available with associated costs c = 0. For t2, the
mechanism expects one unit of renewable supply to be avail-
able, but there is a very small chance that this is not realised
and then the alternative from conventional generation will
be very expensive, i.e., c = 10. Moreover, the mechanism
expects, with high probability, no further arrivals, but there
is a small chance agent a3 with a high value (7 < v3 < 10)
will enter the market at t2. At t1 the expected optimal al-
location is to allocate a2 (who has an earlier deadline), and
postpone a1. Now assume that a3 enters the market at t2.
This leads to a1 being discarded at t2, and a3 being allocated.
With hindsight (i.e., offline optimal), however, it would have
been better to discard a2, allocate a1 at t1, and a3 at t2.

1 Algorithm: Offline (J, x, s, t)

2 J ′ ← {j ∈ J | j 6∈ s, dj ≥ t+ lj}
3 for j ∈ Sort(J ′) // by decreasing value density

4 do
5 tmin, cmin ← CostMinimalStartTime(j, x, s, t)
6 if cmin < vj then
7 stmin ← stmin ∪ {j}
8 return s

Algorithm 1: Greedy offline scheduler.

2.4 Strategic behaviour
When designing the algorithms, we also need to consider
strategic behaviour on the demand side. Since the types
of the jobs constitute private information, we would like to
incentivise agents to reveal their types truthfully. Other-
wise, agents could speculate and the scheduler might take
suboptimal decisions based on incorrect/manipulated infor-
mation. Specifically, the aim is to design a mechanism, i.e., a
scheduling algorithm and corresponding payments, which is
dominant-strategy incentive compatible, i.e., reporting truth-
fully maximises an agent’s utility, regardless of the behaviour
of other agents. To guarantee this property, we assume that
each job is owned by a different agent. Additionally, we
guarantee individual rationality, which means that the pay-
ment is never more than the job’s value, and is zero if a job
is not run. In Section 4 we return to these issues in detail,
focusing first on the online scheduling problem.

3. MODEL-BASED ONLINE SCHEDULING
In this section, we present our extensions of the online algo-
rithms from [4]. Similar to that work, our algorithms deal
with uncertainty by sampling multiple future scenarios using
an appropriate model of the system (in our case, sampled
realisations of the future supply of renewable energy). Then,
at each time step, an offline algorithm is used to solve each
of these scenarios, and the resulting schedules are combined
to yield the best decision to take in the current time step.
Unlike previous work, however, our algorithms are able to
schedule multiple jobs per time step (rather than a single
one), deal with uncertain future supply (rather than assum-
ing this to be deterministic), and incorporate costs of ex-
ceeding the available supply (by using conventional energy).

As our algorithms rely on solving instances of an offline
version of the scheduling problem, we first detail an algo-
rithm for this in Section 3.1. Then, we provide a generic on-
line algorithm that all our approaches follow, and conclude
this section with two novel online scheduling algorithms: m-
Consensus, and m-Expectation.

3.1 Offline Scheduling Algorithm
In the offline variant of our scheduling problem, we assume
that all jobs J and the realisation of the supply x are known
in advance. However, finding an optimal schedule even in
this case is known to be computationally hard, as it is a
generalisation of the NP-hard parallel machine scheduling
problem [9]. For this reason, we use a greedy scheduling
heuristic and refer to this as Offline (Algorithm 1).

This algorithm has two more arguments, s and t, which
are used by our online algorithms later to encode past (and
fixed) scheduling decisions (s) as well as the current time
(t), which is the earliest time at which new jobs may be

439

scheduled.3 The algorithm first sorts the available jobs J by
decreasing value density vj/qj . For each job in this order,
the function CostMinimalStartTime then computes the
starting time tmin ∈ T, tmin ≥ t, that minimises the addi-
tional cost incurred by adding job j to st. If the associated
minimum cost, cmin, is less than the value of the job, it is
included in the schedule s. The scheduler thus effectively
performs two operations for each job, deciding whether to
start it and if so, at what time. For n jobs, the run time of
this scheduler is O (n logn) for sorting, plus O (nT) for find-
ing the best start times for all jobs, so bounded by O (nT)
because T is typically much larger than logn.

3.2 Online Scheduling Algorithms
In online settings, new information is revealed over time,
requiring sequential decision making. We consider two algo-
rithms that are executed in the following context.

First, a set of N scenarios is created. Each scenario
i ∈ {1, ..,N} consists of the tuple 〈J i, xi〉, where J i is a
randomly sampled realisation of future demand which we
refer to as the set of “virtual jobs”, and xi is a sampled real-
isation of supply based on a probabilistic supply model (or
historical data).

Then, at every time point t, one of the two online al-
gorithms is invoked with the following arguments: the cur-
rently startable jobs (not scheduled so far) Jr, the realisation
of the renewable supply x up until and including t, as well
as the schedule so far. The scenarios include future demand
and supply, i.e., J i(t) = {j|j ∈ J i where aj ≥ t + 1} and
xi(t) = 〈xt, xit+1, x

i
t+2, . . . , x

i
T 〉. Each scenario i is assigned

a weight L(xi(t)|x) in the online algorithms depending on
how likely the scenario’s prediction is given the probabilistic
supply model and observed supply until t. The online algo-
rithm then returns the next set of jobs to start, st, which
iteratively defines the full schedule s. We call the two new
online algorithms for selecting a set of non-preemptive jobs
multi-machine consensus and multi-machine expectation.

Multi-Machine Consensus.
Our first online algorithm, the multi-machine consensus or
m-Consensus algorithm, is given in Algorithm 2.

The algorithm solves the offline problem (line 5) for each
scenario and then schedules the job that is selected to be
started immediately in the likelihood-weighted largest num-
ber of scenarios (or none, if more scenarios do not start a
new job). This is repeated iteratively, adding one additional
job to the schedule at a time, until no more jobs are started.
This repetition occurs at most n times (but usually much
less frequently), 4 and so including the O (nT) per call to
the offline algorithm, the computational complexity of m-
Consensus (for a single time step t) is O

(
n2NT

)
.

Multi-Machine Expectation.
Multi-machine m-Expectation also relies on sampled sce-
narios, but uses these to explicitly compute each job’s mar-
ginal welfare. This promises an economic advantage over
m-Consensus, as the expected welfare directly represents
the value we wish to maximise (unlike the weighted votes in
m-Consensus). However, it also incurs a higher computa-

3For now, these are set to s = 〈〉 and t = 1.
4In addition, the offline scheduling problem gets smaller by
1 job in every iteration.

1 Algorithm: m-Consensus (Jr, x, s, t)

2 repeat
3 Reset counters f (with −ε for f(⊥))

4 foreach scenario 〈J i, xi〉 do
5 s′ ← Offline(J i(t) ∪ Jr, xi(t), s, t)
6 if s′t = st then
7 f(⊥)← f(⊥) + L(xi(t)|x)
8 else
9 for j ∈ Jr ∩ s′t do

10 f(j)← f(j) + L(xi(t)|x)

11 j∗ ← arg maxj∈Jr f(j)
12 if j∗ 6= ⊥ then
13 Jr ← Jr \ {j∗}; st ← st ∪ {j∗}
14 until j∗ = ⊥
15 return s

Algorithm 2: Schedule the jobs from Jr at t that occur in
the most scenarios. Scheduling nothing is denoted by ⊥.

1 Algorithm: m-Expectation (Jr, x, s, t)

2 repeat
3 Reset counters f (with −ε for f(⊥))

4 foreach scenario 〈J i, xi〉 do
5 f(⊥)← f(⊥)+

w(Offline(J i(t) ∪ Jr, xi(t), s, t+ 1)) · L(xi(t)|x)
6 for j ∈ Jr do
7 s′ ← s ; s′t ← s′t ∪ {j}
8 f(j)← f(j)

+w(Offline(J i(t) ∪ Jr \ {j}, xi(t), s′, t))
·L(xi(t)|x)

9 j∗ ← arg maxj∈Jr f(j)
10 if j∗ 6= ⊥ then
11 Jr ← Jr \ {j∗}; st ← st ∪ {j∗}
12 until j∗ = ⊥
13 return s

Algorithm 3: Schedule the jobs from Jr at t that have the
highest added value.

tional cost, as we now evaluate each scenario |Jr|+ 1 times
(once for each available job, and once to evaluate the case
where no job is started). Algorithm 3 presents the details of
this algorithm, which is largely similar to m-Consensus.

4. ONLINE MECHANISM DESIGN
In order to cope with individual agents’ incentives we depart
from the scheduling paradigm and introduce an incentive-
compatible (IC) mechanism. A mechanism can only be IC
if allocation is monotonic, in the sense that it should not
be possible that an agent5 reporting a lower type (i.e., a
lower valuation, later arrival, earlier departure, or longer
job requirement) is allocated instead of an agent reporting
a higher type [8].

In order to ensure monotonicity, in this paper we take the
approach first proposed in [12], which involves splitting the
mechanism at each time step into two phases: precommit-
ment and allocation. Informally, during the precommitment
stage, the mechanism checks which agents contribute to a
schedule’s welfare given the current commitments, and cur-
rent and future arrivals. If an agent is judged of sufficiently
high value, then the mechanism commits to allocating elec-

5The terms ’agent’ and ’job’ are used synonymously.

440

tricity to it before its deadline, regardless of the values and
demands of future arrivals. Thus, intuitively, an agent has
no motivation to misreport its type, e.g., via an earlier dead-
line or later arrival, because once precommitted, the mech-
anism guarantees it to be allocated in the future.

During the allocation stage, the actual execution schedule
is computed. The focus of this phase is on efficiency only, be-
cause incentives issues have already been dealt with during
the precommitment phase. Note that, although for comput-
ing the allocation we can use the algorithms presented in
the preceding section, all resulting schedules must respect
the constraints from the precommitment decisions. So, for
example, jobs which have been pre committed and are flexi-
ble can be delayed, but once their deadline approaches, they
must be scheduled, regardless of subsequent arrivals. In the
following, we discuss these phases in separate sections.

4.1 Precommitment
In the precommitment stage, the mechanism needs decide
which of the jobs to commit to from those that have already
arrived, and whether to keep spare capacity for potential
future arrivals. In order to ensure monotonicity (and hence
IC), jobs that are precommitted must be scheduled before
their deadline, regardless of future arrivals, thus precommit-
ments may reduce flexibility of future allocations.

Example 2. Assume the situation described in Example 1
and also assume that either the high-value agent a3 arrives
or supply is not realised. Then, a1 will not be allocated at t2
and monotonicity of the allocation would be violated, because
if a1 reported an earlier deadline (i.e., only being available
at t1) he would always be allocated, whereas if he reports his
availability throughout both t1 and t2 truthfully, then there is
a chance of non-allocation. The mechanism will precommit
to allocate a1 at t2, irrespective of the realisation of future
supply or future arrivals. In these cases, with small prob-
ability, the allocation may be inefficient or the mechanism
could make a loss, but, more importantly, monotonicity is
guaranteed and incentive compatibility achieved.

As discussed in [12], in order to guarantee monotonic-
ity, additional constraints need to be imposed on the allo-
cation in the precommitment stage. The most important
such constraint (and the only one which is relevant to the
discrete-time model used in this paper) is serialisation: jobs
are first ordered by a monotonicity-respecting criteria, and
the precommitment decision is taken by considering jobs se-
quentially, following this order. Specifically, possible orders
that ensure monotonicity in this setting include: decreas-
ing value, increasing length, increasing arrival time (i.e.,
earlier jobs first), decreasing deadline (i.e., later departures
get priority), an increasing rate, as well as combinations of
these, such as value density (value divided by length times
rate). Tie-breaking rules must also use criteria that guaran-
tee monotonicity.

Essentially, the mechanism considers each job, taken in
this order, and considers whether it can fit in a schedule
or not, given the previously precommitted jobs. The proce-
dure is formally defined in Algorithm 5: We use decreasing
value density, and in case of ties, increasing arrival time.
Each unscheduled active job in this order is precommitted
if the likelihood-weighted sum of scenario weights in which
the job is scheduled, is greater or equal to 1

2
. The schedul-

ing algorithm used is an adaption of the offline scheduler

1 Algorithm: Offline-PC (P, J, x, s, t)

2 for j ∈ Sort(P) // by decreasing l*r

3 do
4 tmin, cmin ← CostMinimalStartTime(j, x, s, t)
5 stmin ← stmin ∪ {j}
6 J ′ ← {j ∈ J | j 6∈ s, dj ≥ t+ lj}
7 for j ∈ Sort(J ′)// by decreasing value density

8 do
9 tmin, cmin ← CostMinimalStartTime(j, x, s, t)

10 if cmin < vj then
11 stmin ← stmin ∪ {j}
12 return s

Algorithm 4: Heuristically schedule all precommitted jobs
(P) and then those unscheduled future jobs (J ′) that add
value, under full knowledge.

1 Algorithm: m-Consensus-Precommitment(Jr, x, s, t)

2 for j ∈ Sort(Jr) // by decreasing value density

3 do
4 f ← 0

5 foreach scenario 〈J i(t), xi(t)〉 do
6 s′ ← Offline-PC(P, J i(t) ∪ Jr, xi(t), s, t)
7 if j ∈ s′ then
8 f ← f + (L(xi(t)|x)/

∑
k∈{1,..,N} L(xk(t)|x))

9 if f ≥ 1
2

then
10 P ← P ∪ {j}
11 return P

Algorithm 5: Decide to commit to jobs that were included
in schedules for at least half of the scenarios.

called Offline-PC (Algorithm 4). This algorithm guaran-
tees that all precommitted jobs (denoted by argument P)
are scheduled.

Theorem 1. The allocation procedure defined in Algo-
rithm 4 and 5 is monotonic, given an assumption of “no
early arrivals or late departure”’ misreports.

The proof of monotonicity from [12] applies, with some
modifications. Informally, the proof considers each dimen-
sion making up a job’s type, and shows that an agent’s allo-
cation is not worse than under another type which is identi-
cal in all dimensions, but is strictly worse in that dimension.
So, for example, the allocation of a job with a given value,
required amount of electricity and arrival time, but with a
later deadline cannot be worse than the allocation of a job
with exactly the same parameters, but reporting an earlier
deadline.

4.2 Payments
Critical value payments are used to ensure truthfulness of
the agents. The critical value of a job in an online mech-
anism is the minimum value necessary for precommitment
given the set of jobs active over the active period of the re-
spective job j [6, p.418]. For a job j with value vj which is
precommitted, its payment p(j) is thus defined as follows.

p(j) = min{vj′ | j′ ∈ schedule s′},

where s′ is the schedule produced by the same algorithm
in case j is replaced by j′ (with value vj′).

6 The payment

6Note that truthfulness entails p(j) ≤ vj .

441

1 Algorithm: m-Consensus-Allocation(P, x, s, t)

2 repeat
3 Reset counters f (with −ε for f(⊥))

4 foreach scenario 〈J i(t), xi(t)〉 do
5 s′ ← Offline-PC (P, J i(t), xi(t), s, t)
6 if s′t = st then
7 f(⊥)← f(⊥) + L(xi(t)|x)
8 else
9 for j ∈ P ∩ s′t do

10 f(j)← f(j) + L(xi(t)|x)

11 j∗ ← arg maxj∈P f(j)
12 if j∗ 6= ⊥ then
13 P ← P \ {j∗}; st ← st ∪ {j∗}
14 until j∗ = ⊥
15 return s

Algorithm 6: Schedule the precommitted jobs P at t that
occur in the most scenarios, under the condition that they
all are eventually allocated.

1 Algorithm: m-Expectation-Allocation(P, x, s, t)

2 repeat
3 Reset counters f (with −ε for f(⊥))

4 foreach scenario 〈J i(t), xi(t)〉 do
5 f(⊥)← f(⊥)+

w(Offline-PC(P, J i(t), xi(t), s, t+1))·L(xi(t)x)
6 for j ∈ P do
7 s′ ← s ; s′t ← s′t ∪ {j}
8 f(j)← f(j) + w(Offline-PC(P \ {j}, J i(t),

xi(t), s′, t)) · L(xi(t)|x)

9 j∗ ← arg maxj∈P f(j)
10 if j∗ 6= ⊥ then
11 P ← P \ {j∗}; st ← st ∪ {j∗}
12 until j∗ = ⊥
13 return s

Algorithm 7: Schedule the precommitted jobs P at t that
give the highest added value, under the condition that they
all are eventually allocated.

thus is not just based on demand and supply at the moment
of precommitment, but also at later times (until its latest
starting time). This is done, since otherwise an agent could
report a later arrival time and reduce its payment. A con-
sequence of this approach is that under specific conditions
there is a chance that the received payments are not suf-
ficient to cover the cost of conventional generation (i.e., in
case not much renewable supply is available, the prediction
was optimistic, and there is not much competition among
jobs) incurred by the mechanism. This cannot be remedied
without harming the efficiency of the schedule.

4.3 Allocation
As long as all precommitted jobs are scheduled, we are free to
use any algorithm in the allocation phase. In this paper, we
stay close to the online algorithms we described in Section 3.
To force scheduling of all jobs in P in Algorithms 6 and 7,
we replace the offline scheduler by Offline-PC, and only
select jobs from P to schedule at t.

While the introduction of a precommitment phase was
done to make the mechanism IC, it does not necessarily lead
to worse results. This is illustrated in the following example.

Example 3. We consider a situation without flexibility
and compare the choices made by the mechanism to those by
multi-machine consensus (Algorithm 2). Suppose t = 0, the
following three active jobs have the current time as arrival
time, a consumption rate of 1, and the following lengths lj
and values vj. (The deadline then is exactly equal to the
length lj.)

jobs scenarios
j vj lj vj/lj
1 9 3 3
2 1 1 1
3 3 2 3/2

i t = 0 t = 1 t = 2
1 2 2 0
2 2 2 0
3 2 2 1
4 2 2 2

Suppose there are four scenarios, which all include the
current supply of 2, and in some cases slightly different fu-
ture supplies. Additionally, each scenario includes a virtual
job (j = 4) of value 4 and length 2, to be expected at t = 1.
We assume the cost of conventional generation is 10 per time
slot for a production rate of 1.

The decision for m-Consensus is made by repeatedly sche-
duling all jobs in all scenarios (with a greedy heuristic, based
on value density), and then starting the job that occurs in
most schedules. In this example, j = 1 is scheduled in sce-
narios 3 and 4, j = 2 is scheduled in scenario 1,2, and 4
(the latest because the virtual job can then be included), and
j = 3 is scheduled in scenario 1,2, and 3. Therefore jobs
2 and 3 are scheduled by m-Consensus, for a total value
of 4 and an expected value of 6 (there is a 50% chance that
virtual job 4 can be executed).

The decision by m-Consensus-Precommitment is done
per job, heuristically ordered by value density. A job is pre-
committed if at least half of the likelihood-weighted scenar-
ios would schedule it. Job 1 meets this criterion and thus
is committed first; job 3 then follows. This schedule has a
value of 12, but a 50% chance of a cost of 10, which gives
it an expected value of 7, which exceeds the value of the m-
Consensus schedule. This example can be generalised as
long as conventional generation is more expensive than any
value density.

5. EVALUATION
This section presents the empirical evaluation of the algo-
rithms. The goal is to compare the performance of the al-
gorithms and mechanisms in terms of their efficiency with
an offline optimal scheduler using perfect information.7 The
corresponding objective function is given in Equation 1. To
this end, we vary the number of scenarios used by the al-
gorithms, evaluate the benefit of using a model of future
demand and, most importantly, vary job flexibility to see if
the algorithms can take advantage of this flexibility. Fur-
thermore, we quantify efficiency losses due to precommit-
ment, which is required to ensure truthfulness. Finally, we
verify the computational complexity of the algorithms.

5.1 Experimental Setup
We consider settings with 10 and 30 scenarios and use two
variants: in experiments with a model, each scenario in-
cludes information on future demand and supply; in exper-
iments with no model, each scenario only includes informa-
tion about future supply. Thus, we quantify the value of

7We use Gurobi 5.5 to compute offline-optimal with a 1%
MIP gap.

442

uncertain information about future demand in terms of ef-
ficiency. We use the model below to generate both the sce-
narios as well as the actual realisation independently.

Demand.
As introduced in Section 2.1, jobs j ∈ J are characterised by
〈vj , rj , lj , aj , dj〉. For simplicity, the consumption rate is set
to rj = 1, ∀j ∈ J in the experiments. Job length l is sampled
from a uniform distribution over {1, 2, . . . , 6} and valuations
v from a uniform distribution over the real interval [0, 10].

Jobs are generated over a 24-hour period, with new jobs
being generated each hour. In our experiments, we choose to
keep total demand fairly constant, to reduce variation and
reflect the fact that demand can typically be predicted with
fairly high accuracy (in contrast to renewable supply). To
achieve this, at each time step t, we draw a value y uniformly
from {3, 4, 5, 6, 7}. Assuming all jobs start on their arrival, if
current demand for electricity, y′, is less than y, we generate
y−y′ additional jobs. Otherwise, we generate no jobs. This
ensures that, if jobs are executed immediately, at any point
in time, total demand ranges between 3 and 7 units. So far,
we have not considered job flexibility, which is defined as
dj − aj − lj . In our experiments, job flexibility is a control
parameter, and so we set this value equal for all jobs. We
vary flexibility between 0 (no flexibility) and 5 time steps.

Renewable Supply.
To realistically model uncertain supply of renewable en-
ergy, we use publicly available historical wind data from the
Sotavento wind farm in Galicia, Spain.8 This wind farm
consists of 24 turbines, with a combined output of up to
17.56MW. However, in order to scale the available supply in
our experiments, we model only the wind speed and derive
the corresponding power supply using a sigmoid power curve
that is based on the installed turbine technology [10]:

pr(wt) = C · (1 + e6−
2
3
wt)−1, (2)

where pr(wt) is the available power from wind generation
given the wind speed wt at time t. Here, C is a factor that we
use to scale supply and that corresponds to capacity of the
installed wind generators. Specifically, in each experiment
installed capacity C is scaled such that total supply from
wind equals the total amount of energy demanded [13], i.e.,∑

t pr,t =
∑

j∈J qj .
We use the wind data in two ways — first, for a single run

of our experiment, we select a random subsequence of wind
speed data to generate the actual supply available during
that run. Second, we train a generative probabilistic model
on the data set, in order to allow our scheduling mechanisms
to generate new scenarios, and to revise the likelihood of
scenarios given new information as it becomes available. We
use only the first two years of data to train this model and
the remaining data to generate the realisations.

In more detail, we use a hidden Markov model [5] with ten
hidden states as our generative model, as this yields good
results in practice on the wind data. For training the model,
we use the expectation-maximisation algorithm, and employ
the forward-backward algorithm for inference.

8This data is available from www.sotaventogalicia.com,
and we use hourly data from May 2008 to 2013.

Conventional Generation.
Conventional generation (CG) as a source of reliable backup
generation is necessary in order for the non-preemptive and
precommitted jobs to be served even in the case of an unan-
ticipated shortfall of renewable generation. We assume CG
to be characterised by constant marginal cost, i.e., cc(pc) =
b ·pc, and we set b to a value approximately 30% above aver-
age job value density. With this cost parameter, low-valued
jobs should not be served if there is insufficient renewable
generation. On the other hand, if there is some, but insuffi-
cient renewable generation to fully serve a job from renew-
able generation, social welfare benefits if the remaining part
is served from CG instead of rejecting the job. As job flexi-
bility is increased, the amount of CG used by the algorithms
can be expected to decrease.

5.2 Results
Our experimental results are illustrated in Figure 1. We vary
job flexibility between zero and five time steps (hours) and
social welfare is normalised by offline-optimal assuming job
flexibility of five hours. Furthermore, the offline-optimal is
given by a solid black line. The reported results are the mean
relative social welfare, and the error bars represent the cor-
responding standard deviations. Different colours indicate
the type of algorithm (consensus or expectation), while line-
type and point shape indicate the presence (or absence) of
a demand model. We separate our results of 120 repetitions
by the number of scenarios (rows) and whether a scheduling
or mechanism approach (columns) is followed.

First, social welfare initially increases with flexibility for
all algorithms. Furthermore, the mechanisms achieve only
slightly reduced welfare compared to the extended algorithms
which rely on the strong assumption of cooperative agents.

Second, the availability of a demand model is more bene-
ficial for expectation than consensus-based algorithms. Re-
garding the schedulers, onlym-Expectation improves upon
the model-free variant at higher values of flexibility, while
m-Consensus seems to perform better without a model.
However, the loss from using a model in this case decreases
over flexibility. In contrast, both types of mechanisms ben-
efit from using a demand model at higher flexibility values.
The value of using a model is especially pronounced when
m-Expectation is used in the allocation phase. At low
flexibility levels, not using a model of future demand can
be slightly advantageous for both, schedulers and mecha-
nisms. This seems to be associated with the problem of
under-commitment when using a model, as the value of fu-
ture jobs might be overestimated. At higher flexibility levels,
however, this drawback is (mostly) compensated by better
allocation decisions based on information from the model.

Third, and most notably, the average gap in social wel-
fare, i.e., the cost of incentive compatibility in our settings
does not exceed 3%; while m-Expectation achieves approx-
imately 90% of the offline optimal at five hours flexibility,
the corresponding mechanism achieves 87%.

Our results show that computation time increases linearly
in job flexibility. Computing the hourly schedules for one
day with 30 scenarios not using a demand model and flex-
ibility set to 5 time steps takes about 10 seconds (approxi-
mately 80 seconds with model). m-Expectation is compu-
tationally more involved (2 minutes without and 7 minutes
with a demand model). Interestingly, the mechanism using
expectation in the allocation phase is computationally less

443

Mechanism (strategic agents) Scheduler (cooperative agents)

0.80

0.85

0.90

0.95

1.00

0.80

0.85

0.90

0.95

1.00

10 scenarios
30 scenarios

0 1 2 3 4 5 0 1 2 3 4 5
Flexibility

S
oc

ia
l w

el
fa

re
 re

la
tiv

e
to

 o
ffl

in
e−

op
tim

al

 u
nd

er
 fu

ll
fle

xi
bl

ity

Algorithm & Model
Consensus + model

Consensus

Expectation + model

Expectation

Offline

Figure 1: Social welfare relative to offline-optimal
(at flexibility set to 5 time steps) over flexibility.

involved for large flexibilities than its scheduling counter-
part: the consensus-based precommitment step reduces the
number of jobs under consideration at each time step.

6. CONCLUSIONS
In this paper, we extend the Expectation and Consensus al-
gorithms to cope with multi-unit, non-preemptive demand
under uncertainty on both supply and demand side. Specifi-
cally, to deal with uncertain supply, instead of using equally
weighted scenarios, we use the likelihood of each scenario
given past observations to adjust the weights of each scenario
online. By doing so, we can incorporate new information
without re-sampling the scenarios. Furthermore, in order
to apply the principles of these algorithms to settings with
self-interested agents, we use the concept of precommitment
to achieve monotonicity and thus incentive-compatibility for
the demand side. Finally, non-preemptive jobs and precom-
mitments can only be scheduled if there are guarantees in
terms of the availability of future supply. To deal with this
problem, we consider two supply sources: cheap but un-
certain renewables, and costly but unlimited conventional
energy. This way jobs can be committed, even if supply
is uncertain, and the algorithms are designed to take into
account the risk of using the costly alternative.

Our empirical evaluation in the domain of electrical power
systems shows a number of interesting results. First, as
expected, social welfare increases in job flexibility. Sec-
ond, using a model of future demand is especially valuable
in settings with large flexibilities when using Expectation-
based approaches. While Consensus-based approaches do
not achieve the results of Expectation-based ones, they are
more robust to the lack of a demand model and might be

preferred under very tight online time constraints. Neverthe-
less, Consensus benefits from using a model when using pre-
commitment; third, the cost of achieving truthfulness (i.e.,
by requiring precommitment) is very low and only approxi-
mately 3%. We note that our evaluation of the mechanism is
placed in the context of the electrical power domain. How-
ever, it could be applied to other settings where jobs are
non-preemptive and there is a source of free (or cheap), ex-
piring resources and costly backup supply.

In future work we intend to explore the trade-off between
economic efficiency and budget deficits for the mechanism.
Using the currently proposed mechanism, the system can
make a loss when the payments it receives are low (e.g., due
to lack of competition on the demand side), while incurring
more than expected costs on the supply side. By under-
committing, the mechanism could achieve budget balance
(in expectation) at the cost of reduced efficiency as less of
the free resource might be used. Another interesting area
of future work is considering more computationally efficient
methods. Specifically, while the current scenarios are based
on a day look-ahead, we would like to explore rolling horizon
techniques (e.g., of about 2-3 times the typical job length),
and their effect on social welfare.

7. REFERENCES
[1] H. Chang, R. Givan, and E. Chong. On-line

scheduling via sampling. In ICAPS, pages 62–71, 2000.

[2] F. Constantin and D. Parkes. Self-correcting
sampling-based dynamic multi-unit auctions. In ACM
EC, pages 89–98, 2009.

[3] DECC. UK renewable energy roadmap. Technical
report, UK Department of Energy and Climate
Change, 2011.

[4] P. Hentenryck and R. Bent. Online stochastic
combinatorial optimization. The MIT Press, 2009.

[5] B. H. Juang and L. R. Rabiner. Hidden markov
models for speech recognition. Technometrics,
33(3):251–272, 1991.

[6] N. Nisan, T. Roughgarden, E. Tardos, V. V. Vazirani,
and D. C. Parkes, editors. Algorithmic Game Theory.
Cambridge University Press, 2007.

[7] D. Parkes and Q. Duong. An ironing-based approach
to adaptive online mechanism design in single-valued
domains. In AAAI, pages 94–101, 2007.

[8] D. C. Parkes. Online mechanisms. In N. Nisan,
T. Roughgarden, E. Tardos, and V. Vazirani, editors,
Algorithmic Game Theory, pages 411–439, 2007.

[9] M. Pinedo. Scheduling: theory, algorithms, and
systems. Springer, 2012.

[10] V. Robu, R. Kota, G. Chalkiadakis, A. Rogers, and
N. R. Jennings. Cooperative virtual power plant
formation using scoring rules. In AAAI, 2012.

[11] J. L. Sawin. Renewables 2013, global status report.
Technical report, REN 21, 2013.

[12] S. Stein, E. Gerding, V. Robu, and N. R. Jennings. A
model-based online mechanism with pre-commitment
and its application to electric vehicle charging. In
AAMAS, pages 669–676, 2012.

[13] A. Subramanian, M. Garcia, A. Dominguez-Garcia,
D. Callaway, K. Poolla, and P. Varaiya. Real-time
scheduling of deferrable electric loads. In American
Control Conference, pages 3643–3650, 2012.

444

