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ABSTRACT
Collective decision making in self-organized systems is chal-
lenging because it relies on local perception and local com-
munication. Globally defined qualities such as consensus
time and decision accuracy are both difficult to predict and
difficult to guarantee. We present the weighted voter model
which implements a self-organized collective decision mak-
ing process. We provide an ODE model, a master equation
model (numerically solved by the Gillespie algorithm), and
agent-based simulations of the proposed decision-making
strategy. This set of models enables us to investigate the
system behavior in the thermodynamic limit and to inves-
tigate finite-size effects due to random fluctuations. Based
on our results, we give minimum requirements to guaran-
tee consensus on the optimal decision, a minimum swarm
size to guarantee a certain accuracy, and we show that the
proposed approach scales with system size and is robust to
noise.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: intelligent
agents, multiagent systems

General Terms
Algorithms, Performance, Theory

Keywords
collective decision making, voter model, consensus, swarm
intelligence, swarm robotics, self-organization, modeling

1. INTRODUCTION
The problem of finding a collective agreement over the

most favorable choice among a set of alternatives, namely
the best-of-n decision problem, is a general and abstract cog-
nitive challenge for both natural [8, 9, 24, 25, 29, 33] and
artificial [2, 20, 22, 26, 31] self-organized systems. In this pa-
per, we focus on artificial systems and we describe a control
algorithm that solves the best-of-n decision problem with
a self-organized approach. Our control algorithm relies on
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a positive feedback mechanism inspired by the house hunt-
ing behavior of honeybee swarms [9, 24, 25, 33]. We apply
methods from opinion dynamics [4, 10] to define mathemat-
ical models that reliably predict the system behavior as a
function of a number of relevant parameters. The key idea
is to develop a control algorithm along with a set of mod-
els that allows designers to give guarantees on the expected
system performance.

Collective decision making is a significant challenge for
artificial self-organized systems. Notably, for those systems
designed to provide a valuable alternative to classical cen-
tralized solutions (e.g., robotic swarms [3, 16, 17, 20, 22, 23],
wireless sensor networks [19, 27, 28], virtual agents operat-
ing in high-dimensional spaces [6, 7, 11, 12]). Artificial self-
organized systems achieve high degrees of scalability, flexi-
bility, and robustness by relying on limited perception and
communication capabilities (e.g., few and noisy sensors, only
neighbor-to-neighbor communication). Depending on the
particular scenario of interest, the collective decision making
problem may demand for problem-dependent requirements
that are either loose (e.g., a large majority in favor of an
alternative suffices) or stringent (e.g., consensus on the best
available alternative within given time constraints). When
studying solutions to the best-of-n decision problem, we fo-
cus on scenarios characterized by strict problem-dependent
requirements. Our goal is to define a control algorithm ca-
pable to guarantee unanimous agreement among the agents,
high accuracy of the decision and predictable performance.

With the purpose of satisfying the above mentioned re-
quirements, researchers took inspiration either by look-
ing at natural systems such as honeybee swarms and ant
colonies [16, 17, 22, 23], or by adapting opinion formation
models borrowed from the field of opinion dynamics [2, 20,
26, 31].

In the first case, designers devise bio-inspired control al-
gorithms largely by considering the house hunting behavior
characteristic of honeybee swarms [9, 24, 25, 29, 33] and
ant colonies [8, 9]. These systems offer interesting examples
of natural, self-organized solutions to the best-of-n decision
problem that are both accurate and reliable, thus appeal-
ing to designers. For swarms and colonies it is essential to
make good choices, either periodically or occasionally, on
where to relocate the nest — choices that are often deci-
sive for the survival of the whole population. They evolved
therefore self-organized decision mechanisms that are flexi-
ble enough to cope with the speed and accuracy trade-off [24]
demanded by the particular scenario and that enable them
to reliably assert which of many candidate sites represents a
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high-quality choice for the population. These natural solu-
tions are based on simple positive feedback mechanisms [9,
24, 25, 29, 33] and do not rely on individual agents’ cognitive
skills to directly compare and discriminate sites [8, 33].

In the second case, researchers take advantage from theo-
retical frameworks available in the field of opinion dynamics.
Opinion dynamics is a branch of statistical physics that fo-
cuses on the dynamics of social systems [4, 10] (e.g., opinion
dynamics, spread of disease, democratic voting). Generally,
opinion formation models consist in a round-based stochas-
tic process where, at each round, a randomly chosen agent
from the population applies a particular decision rule over
a discrete set of equivalent opinions. In opinion dynamics,
researchers consider agents as adaptive entities rather than
rational agents, and the focus of studies is on communica-
tion structures instead of particular decision strategies [4].
Even though they rarely take the quality of alternatives into
consideration [4, 10], the theoretical frameworks built by
physicists can be adapted and the mathematical results can
be exploited to guarantee performance.

In this paper we use a hybrid approach that extends the
classic voter model — a simple and general model of demo-
cratic voting. To consider opinion qualities, we introduce a
positive feedback mechanism inspired by the house hunting
behavior of honeybee swarms. In the classic voter model [5,
18], agents are distributed over a static lattice and they in-
teract only with their neighbors. At each round, a randomly
picked agent adopts the opinion of a random neighbor. The
evolution of the process continues until consensus is even-
tually reached [5, 18]. We extend the classic voter model
with a number of changes and we devise a self-organized
decision making strategy referred to as the weighted voter
model. First, we consider agents with motion capabilities
whose neighborhood changes over time; hence the decision
process operates on a dynamic interaction network. Sec-
ond, to drive the system toward consensus on the best opin-
ion, we allow agents to participate in the decision process at
different rounds for a time proportional to the qualities of
their opinions. This implements a positive feedback mech-
anism similar to the duration of honeybees’ waggle dance
(cf. [33]). Finally, as observed in honeybee swarms [9, 24,
25, 33], agents temporarily leave the decision pool after ev-
ery application of the decision rule in order to survey the
quality of their current opinion.

2. WEIGHTED VOTER MODEL
At the abstract level, the best-of-n decision problem con-

sists of a set of n alternatives and a collection (or swarm)
of N agents. Each alternative ai ∈ {a1, . . . , an} is charac-
terized by a given quality ρi ∈ (0, 1]. Agents in the swarm
occasionally perceive the quality of alternatives, and, at all
time, have a preference for a certain alternative (henceforth
referred to as opinion). Agents change opinions by applying
a given decision rule. The best-of-n decision problem is con-
sidered successfully solved if (i) the swarm reaches consensus
on a particular opinion and (ii) this opinion is associated to
the alternative of highest quality.

We study self-organized solutions to the best-of-n decision
problem within the context of embodied agents, i.e., swarms
of autonomous robots [1]. We consider agents acting within
a bounded, two-dimensional environment which is divided in
a number of regions. In the following, we restrict our study
to binary decision problems (n = 2) and we refer to the

two available alternatives as A and B. These alternatives
correspond to particular regions in the environment called
sites. As a consequence, agents’ opinions are preferences for
these spatially defined sites. In addition to sites, the en-
vironment is characterized also by a third region, the nest,
where all agents are initially located and that functions as a
hub for the decision-making process. Agents travel between
nest and sites and when they are located at a certain site
they can perceive its quality. Without loss of generality, we
consider site A to have higher quality than site B and for
the remaining of this study we fix ρA = 1 while varying the
value of ρB ∈ (0, 1]. That is, the collective decision mak-
ing problem is successfully solved if the swarm eventually
reaches consensus on opinion A — the opinion associated to
the optimal site.

2.1 Control Algorithm
To solve the best-of-n decision problem, we have devised a

self-organized control algorithm following a behavior-based
design approach [1]. Agents in the swarm are driven by the
four-state probabilistic finite state machine [1] shown in Fig-
ure 1a. In the waggle dance state (either WA or WB) agents
advertise their own opinion about the best available site. In
the survey states (either SA or SB) agents estimate the qual-
ity of a particular site. The time spent by an agent in a
certain state consists of two contributions. Initially, agents
spend an unknown period of time to move to the proper re-
gion of the environment where to perform the activities de-
fined by the current state (henceforth referred to as traveling
time). Next, once in the right region, agents act according
to the current state for a period of time defined by a control
parameter. We choose to adopt exponentially distributed
time periods. Thanks to its lack of memory, the exponential
distribution facilitates our successive mathematical model-
ing phase and enhances the predictability of the proposed
strategy. Other options would be constant time periods or
stochastic periods with different probability distributions.
Nonetheless, these latter alternatives are characterized by
less favorable mathematical properties.

As soon as agents enter the waggle dance state (either
WA or WB) they start performing a random walk within the
boundaries of the nest. In the meanwhile, they advertise
their own opinion about what they currently consider to be
the best site. Before their transition to the survey state, that
is, as soon as the waggle dance time expires, agents recon-
sider their own opinion about the best available site. As in
the classic voter model [5, 18], agents first poll the opinion of
neighboring agents within a limited interaction range, and
then, they adopt a randomly picked opinion from this poll
(resulting in a probability ΣA to adopt opinion A). Simi-
larly to honeybees’ decisions (cf. [33]), the agents’ decision
rule does not take into consideration any information con-
cerning advertised sites. Once agents have deliberated on
their opinion, they move to the survey state (either SA with
probability ΣA or SB with probability 1−ΣA, see Figure 1a).

To drive the system towards the optimal decision, we in-
troduce a positive feedback mechanism to the waggle dance
state which is similar to the waggle dance of honeybees. In
honeybees’ waggle dance, the duration of the dance is pro-
portional to the quality of the advertised site [9]: the longer
the dance, the higher the chances to influence other nest-
mates. Similarly, in the proposed control algorithm, the
time spent by an agent in the waggle dance state is propor-
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Figure 1: Different modeling abstractions of the agents’ control algorithm: (a) probabilistic finite state
machine of the individual agent; (b) screen shot of an agent-based simulation (symbols ◦, •,M and N identify
agents in states WA, SA,WB and SB); and (c) flows of proportions of agents between pairs of control states.

tional to the quality of its opinion. In particular, we consider
(as a control parameter) a mean time g for the duration of
the waggle dance. This mean time g is then weighted by the
quality ρi of the agent’s opinion and used as rate parameter
of the exponential distribution, 1/(ρig).

As soon as agents enter the survey state (either SA or SB)
they depart from the nest toward the site associated with
their opinion. Once arrived at the proper site, agents first
determine the duration of the surveying phase by drawing
an exponentially distributed random time with mean du-
ration q. Note that the surveying time is independent of
the quality of the currently surveyed site, i.e., q is a control
parameter (possibly with the constraint of an application-
dependent minimum). Next, they explore the site by moving
randomly. During this time, agents evaluate the character-
istics of the site through their sensors and finally estimate
the site quality. Once the surveying time has expired, agents
return to the nest and enter the waggle dance state.

2.2 Agent-based Simulation
For the purpose of studying the dynamics of the weighted

voter model, we implemented a simple agent-based simula-
tions. In our simulations, agents are represented as mass-
less particles, i.e., points moving at constant velocity in a
bounded, two-dimensional space. As a consequence, we do
not consider a particular metric or scale for the size of the
environment but employ dimensionless units.

Agents are positioned in a 150 × 50 rectangular arena,
shown in Figure 1b. The arena is partitioned into three
regions: two 40 × 50 regions at the two ends of the arena
represent the sites, respectively, site A at the left-most side
and site B at the right-most side; and a 70 × 50 region
centered between the two sites represents the nest. Agents
are equipped with a digital compass that, when necessary,
allows them to reorient toward a particular region of the
environment. In Figure 1b, we represent agents’ opinions
by colored symbols using red circles for opinion A and blue
triangles for opinion B. Empty symbols represent agents in
the waggle dance state (either WA or WB) and filled symbols
correspond to agents in the survey state (either SA or SB).

In our simulations, agents perform the control algorithm
described in Section 2.1. Their motion is determined by a
random walk implemented as follows. Agents move straight
for a normally distributed amount of time; next, they uni-
formly choose a new orientation and they resume a straight
motion. Being dimensionless points, we do not consider col-

lisions between agents. However, agents do collide with the
boundaries of the arena. A collision with a wall changes the
agent’s direction of motion by mirroring the incidence angle.

Finally, to change opinion, agents firstly pool the opinions
of neighboring agents within a given interaction range r.
Secondly, they randomly choose one of the opinions within
their pool. In the case that an agent has no neighbors, thus
being unable to survey other opinions, it keeps its current
opinion prior to move to the survey state (either SA or SB).

3. THERMODYNAMIC PROPERTIES
In the thermodynamic limit, i.e., when the number of

agents tends to infinity (N →∞), random fluctuations that
characterize self-organized systems vanish and the system
itself approaches a deterministic behavior. Such an asymp-
totic perspective allows us to gain insights into the dynamics
of the weighted voter model irrespectively of its actual sys-
tem size. The object of interest here is the development of
consensus, thus, we look at the dynamics of the opinions
in space (nest and sites) and time. We employ dynamical
systems theory and we define, under the assumption of null
traveling times, a system of ordinary differential equations
(ODEs) to describe the weighted voter model dynamics.

We define quantities wA and wB as proportions of agents
in the swarm that are dancing for their favorite site, respec-
tively, with opinions A and B. Besides, we denote propor-
tions of agents surveying site A with sA and site B with sB .
The evolution in time of wA, wB , sA and sB is given by the
solution of the following system of ODEs:

d

dt
wA = − 1

ρAg
wA +

1

q
sA

d

dt
wB = − 1

ρBg
wB +

1

q
sB

d

dt
sA = σA

1

ρAg
wA + σA

1

ρBg
wB −

1

q
sA

d

dt
sB = (1− σA)

1

ρAg
wA + (1− σA)

1

ρBg
wB −

1

q
sB ,

where σA = wA/(wA + wB) is the probability1 for an agent
to adopt opinion A by randomly choosing a neighbor’s opin-
ion. The flows of agents between control states and opinions

1We compute the probability σA under the well-mixed as-
sumption [21], i.e., we assume a uniform spatial distribution
of the opinions among the agents in the nest.
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Figure 2: Predictions of the ODE model {ρA = 1.0, ρB = 0.875}: (a) time evolution of consensus (lines)
against agent-based simulations (box-plots) ; (b) time evolution of consensus for a number of different initial
conditions; (c) proportion of agents favoring opinion A against its first derivative in time.

can be understood by looking at Figure 1c. First, we focus
on the first two equations of the above system. The propor-
tion of agents dancing for a site, either wA for site A or wB
for site B, increases at a rate q−1 due to agents returning
from the survey states. This proportion also decreases at a
rate (ρig)−1 as agents leave the waggle dance state. Next,
consider the proportion sA of agents surveying site A (the
reasoning is equivalent for site B). This quantity depends
on the application of the decision rule underlying the voter
model, and thus, from probability σA. In particular, sA in-
creases at rates σA(ρAg)−1 and σA(ρBg)−1, respectively, for
the proportions of agents wA and wB leaving the waggle
dance state; and it decreases at a rate q−1 due to agents
that finished the surveying of site A.

There are a number of points to notice in this mathe-
matical model. Firstly, the system of ODEs describing the
weighted voter model is defined at a mesoscopic scale. That
is, we look at intermediate quantities given by proportions of
opinions within different regions of the environment. How-
ever, our final interest is in the aggregated information of the
overall proportion of opinion A. As a consequence, in the
following analysis we mostly focus on the aggregated macro-
scopic dynamics of wA+sA. Secondly, given the dependence
on the probability σA, the system of ODEs is non-linear, and
thus, we use standard numerical methods to solve it. Finally,
in the definition of this system of ODEs, we are neglecting
the temporal delay associated to agents’ state transitions,
and resulting from the time necessary for agents to move
between different regions of the environment.

In the ODEs model, the magnitude and the ratio of con-
trol parameters g and q determine the duration of the col-
lective decision process. The longer the time agents spend
at the sites, the longer is the consensus time. In particular,
for the weighted voter model the consensus time increases
linearly with the ratio q/g (data not shown). From an en-
gineering perspective of minimizing the consensus time, a
designer should thus prefer values for control parameters
such that g � q. In Figure 2a, we compare predictions of
the ODEs model (lines) against agent-based simulations of
N = 103 agents having r = ∞ (box-plots). We set sites’
qualities to ρA = 1.0 and ρB = 0.875. The difference be-
tween opinion qualities drives the system toward consensus
on the best opinion (wA + sA = 1 and wB + sB = 0). The
agreement between the ODEs model and agent-based simu-
lations (1000 independent runs) shown in Figure 2a is good.

In the thermodynamic limit, the weighted voter model

guarantees consensus on the best opinion. Figure 2b depicts
the time evolution of the proportion wA+sA of agents in the
swarm with opinion A for a number of different initial con-
ditions. When ρA > ρB , every trajectory initially starting
at {wA ∈ (0, 1], wB = 1−wA} eventually converges to a con-
sensus on opinion A (that is, wA+sA = 1). As for the classic
voter model [5, 18], the two macroscopic solutions, consen-
sus either on opinion A or on opinion B, characterize the
asymptotic behavior of the collective decision making pro-
cess. Noticeably, for the assumption ρA = 1 and ρA > ρB ,
the consensus wA + sA = 1 is a stable fixed point, while
the consensus wA + sA = 0 is an unstable fixed point. The
system of ODEs is characterized by the two equilibria

wA =
g

g + q
, wB = 0, sA =

q

g + q
, sB = 0, and

wA = 0, wB =
ρBg

ρBg + q
, sA = 0, sB =

q

ρBg + q
.

The first equilibrium is asymptotically stable and the system
converges to it in the regime wA ∈ (0, 1]; while the second
equilibrium is unstable and the system reaches it only when
initialized to a consensus on opinion B (wA = 0, wB = 1).
This result might be useful in applications at design time
because it allows to choose the final distribution of agents
among nest and site (e.g., to optimize resource gathering
rates in foraging tasks [20, 26]).

Finally, we consider the non-equilibrium dynamics (i.e.,
transient) of the weighted voter model by looking at the
speed of change d/dt(wA + sA) of opinion A as a func-
tion of (wA + sA). Figure 2c depicts a number of tra-
jectories for different values of the control parameter ra-
tio q/g and various initial conditions {wA ∈ (0, 1], wB =
1 − wA, sA = 0, sB = 0} (shaded lines). Initially, the value
of (wA + sA; d/dtwA + d/dt sA) is determined by the ini-
tial conditions of the system of ODEs and is independent
of the ratio q/g (see crosses in Figure 2c with trajectories
moving from left to right). The speed of change of opin-
ion A as a function of itself decreases abruptly due to agents
rapidly redistributing among nest and sites. At a later stage
it converges toward a parabolic trajectory determined by the
magnitude of q/g. The less time agents spend to survey the
sites, the faster is the change in the proportion of opinion A
(compare solid against dotted lines). Notice that the speed
of change of opinion A reaches its peak at the unbiased con-
ditions wA+sA = 0.5. Opinions among agents in the swarm
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depart rapidly from an unbiased situation of wA + sA = 0.5
and then converge toward consensus with decreasing speed.

4. FINITE-SIZE EFFECTS
In Section 3, we studied properties of the weighted voter

model in the thermodynamic limit (N → ∞) where the
system behaves deterministically. However, despite self-
organized systems are usually composed of a large number
of agents, their finite size (N < ∞) often plays a crucial
role in their dynamics. Toral and Tessone [30], for instance,
show that for a number of collective decision making sys-
tems finite-size effects may produce unexpected dynamics
that differ from those predicted in the thermodynamic limit.
It is thus important to develop also mathematical models
with dependency on the actual size of the swarm (e.g., time-
homogeneous Markov chains as done in [14, 15, 31]).

To study how finite-size effects influence the weighted
voter model, we define a macroscopic mathematical model
using the formalism of (chemical) master equations [32],
i.e., by means of stochastic differential equations. As in
Section 3, we assume null traveling times and we neglect
the influence of agents’ displacement periods. We model
the proposed collective decision making system as a set of
coupled chemical reactions. In our settings, molecules play
the role of agents, reaction rules define the agents’ behavior
for each state and reaction rates their duration. However,
the resulting master equations are characterized by non-
linearities that prevent the use of analytical approaches. We
use therefore numerical methods, in particular the Gillespie
algorithm [13].

Given a swarm of N agents, we define quantities WA

and WB as the number of agents in the nest dancing, re-
spectively, for site A and site B. Equivalently, we denote
the number of agents surveying site A with SA and those
surveying site B with SB . The weighted voter model is then
defined by a set of reaction rules and corresponding reac-
tion rates. Next we give equations for reactions concerning
agents that favor opinion A (those for opinion B are equiv-
alent). Within the nest, agents change opinion as a result
of the application of the voter model. Such a change in the
opinion is captured by reactions

WA
ΣA(ρAg)

−1

−−−−−−−−→ SA,

WA
(1−ΣA)(ρAg)

−1

−−−−−−−−−−→ SB ,

where ΣA = WA/(WA + WB). According to the weighted
voter model, agents with opinion A reconsider their opin-
ions at an overall rate of (ρAg)−1. They keep opinion A
with probability ΣA and switch to opinion B with probabil-
ity (1−ΣA). Probability ΣA accounts for the interactions of
deliberating agents with their neighbors and it is computed
under the well-mixed assumption [21]. Agents ceasing to
survey site A are modeled by the reaction

SA
q−1

−−→WA.

Notice that, in contrast to the previous reaction rules, agents
return from the survey state at a constant rate q−1.

The above set of reaction rules (together with their equiv-
alent for agents with opinion B) is sufficient to define a mas-
ter equation following the methods described in van Kam-
pen [32]. The solution of the master equation can be studied

Algorithm 1: Gillespie algorithm(N, g, q, ρA, ρB)

Initialize agents in the swarm WA,WB , SA, SB1

Initialize time t = 02

repeat3

Compute the total reaction rate:4

κ = (ρAg)
−1WA + (ρBg)

−1WB + q−1SA + q−1SB
Generate an exponentially distributed time t′ with rate5

parameter κ and set t = t+ t′

Randomly choose the next reaction to occur with6

probabilities proportional to reaction rates
Update WA,WB , SA, SB according to the outcome of7

step 6
until WA + SA ∈ {0, N} ;8

numerically applying the Gillespie algorithm — a Markov
chain Monte Carlo method capable of generating statisti-
cally correct trajectories of stochastic equations [13]. Algo-
rithm 1 depicts our particular formulation of the Gillespie
algorithm according to the weighted voter model.

In the remaining of this section, we analyze the master
equation by means of Algorithm 1 and we asses how finite-
size effects influence the dynamics of the weighted voter
model. For this purpose, we consider (i) the exit proba-
bility EN , i.e., the probability that a swarm of N agents
eventually reaches consensus over opinion A and (ii) the
consensus time TN , i.e., the time necessary to reach con-
sensus on any opinion. We study the weighted voter model
under the settings g = 100 and q = 10, while varying the
value of parameters N , ρB and r. The numerical solutions
of the master equation model are compared against the re-
sults of agent-based simulations both averaged over 2.5×104

independent runs.

4.1 Influence of Opinion Qualities
When the swarm size N is finite, the dynamics of the

weighted voter model is not deterministic and shows stochas-
tic behavior with dependency on N . Figure 3a depicts the
exit probability as a function of the initial proportion of
opinions A for N = 100 agents with unlimited interaction
range r = ∞ (symbols give data from the agent-based sim-
ulations and lines give data from numerical solutions of the
master equation obtained with the Gillespie algorithm). We
find a good agreement between the numerical solutions of
the master equation and the agent-based simulations. For
equal opinion qualities (ρA = ρB), EN resembles a straight
line with slope 1; when the difference in quality increases
(ρA > ρB) EN increases as well for all initial conditions
{WA ∈ (0, N ],WB = N −WA, SA = 0, SB = 0} and even-
tually tends to a step function. Hence, the weighted voter
model enables swarms to easily discriminate an inadequate
site from a good one, while it correctly generates an unbiased
behavior for sites of equal qualities.

As shown in Figure 3b, the master equation also provided
a good approximation of the consensus time TN with a small
prediction error that increases with increasing values of TN .
This prediction error is due to our assumption of null travel-
ing times underlying the master equation model. When TN
is maximal agents perform many visits to sites and the influ-
ence of traveling times appears more important. Nonethe-
less, traveling times only affect the transient dynamics of
the systems, and therefore the overall consensus time (as
in Figure 3b). In contrast, equilibrium dynamics given by
the exit probability are independent of such delays (see Fig-
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Figure 3: Master equation numerically solved through the Gillespie algorithm (lines) against agent-based
simulations (symbols) {g = 100, q = 10}: (a) exit probability and (b) consensus time as a function of the
initial proportion of opinions A; (c) scaling behavior of exit probability as a function of initial proportion of
opinions A; (d) scaling behavior of consensus time for an initially unbiased system; (e) robustness to noise of
exit probability and (f) of consensus time.

ure 3a). The weighted voter model requires longer times to
discriminate between sites of similar qualities, while easier
decision problems are solved with much smaller effort; fur-
thermore, for equal sites’ quality, ρA = ρB , the consensus
time is symmetric (see Figure 3b).

4.2 Scalability with the Size of the Swarm
In the following we study the scalability of the weighted

voter model using the master equation model and the agent-
based simulations. We use the accuracy of the decision and
the consensus time as performance measures.

The accuracy of a decision here is defined by the exit
probability which gives the probability of reaching a cor-
rect consensus (i.e., on the opinion A). Figure 3c shows the
exit probability EN as a function of the initial proportion of
agents favoring opinion A for different swarm sizes and un-
limited interaction range r =∞. The agent-based approach
(symbols) and the master equation model (lines) show good
agreement. When N is small (e.g., N = 10) the exit proba-
bility approaches a straight line with slope 1, resembling the
initial proportion of opinions A. However, as the swarm size
increases the exit probability rapidly grows and approaches
a step function. Thus, the accuracy of the weighted voter
model depends positively on the size of the swarm: Big-
ger swarms are more accurate. Notice in this context the
agreement with the deterministic consensus on opinion A
as predicted by the ODE model. In addition, using agent-
based simulations, we determined that the accuracy of the
weighted voter model is independent of the magnitude of the
agents’ interaction range r (data not shown).

Next we investigate scalability in terms of consensus

time TN . For unlimited interaction range r =∞, the agent-
based simulations behave similarly to numerical solutions
of the master equation (compare dotted and solid lines in
Figure 3d). The small prediction error of the master equa-
tion model is a result of neglecting the traveling time of
agents between nest and sites. Notice that, according to
the master equation model, the consensus time scales loga-
rithmically with the swarm size N . In contrast, when the
interaction range is finite (e.g., r = 5) the master equation
model fails to predict the consensus time for small swarm
sizes N . For larger swarm sizes N and larger interaction
range (e.g., r ∈ {7, 10}) this discrepancy is reduced. While
a finite r affects the consensus time, the prediction error is
reduced for larger swarms as higher agent densities reduce
the effects of small r. For these finite interaction ranges r,
bigger swarms have faster decision processes as found in hon-
eybee swarms [25]. Hence, contrary to the accuracy of the
decision, the consensus time is affected by both the size of
the swarm and the magnitude of the interaction range.

4.3 Robustness to Noise
In real-world applications, agents of artificial self-

organized systems are most likely equipped with low-cost
sensors suffering from noisy measurements. Under such con-
ditions, the accuracy of the decision as well as the duration of
the decision process may be largely affected, resulting in loss
of performance and prediction errors. We study the robust-
ness of the weighted voter model by adding a Gaussian noise
with zero mean and deviation σ ∈ {0.05, 0.10, 0.15, 0.2} to
the values of the site qualities (respectively, ρA = 1.0 and
ρB = 0.96875) when surveyed by the agents.
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With this noise applied, Figure 3e shows the exit prob-
ability EN for a swarm of N and with r = 5. The exit
probability is equivalent for all tested magnitudes of noise
and consistently predicted by the Gillespie algorithm. Thus,
as observed for honeybee swarms [24, 25], the weighted voter
model shows high robustness to noisy quality of sites.

Figure 3f gives the time TN necessary to reach consensus
under noisy conditions for swarms with finite interaction
range r = 5. The consensus time seems not to be signifi-
cantly influenced by noise except for a slightly greater vari-
ance for larger noise values. In agreement with the results
in Section 4.2, the numerical solution of the master equa-
tion fails to predict the consensus time for a swarm with
limited interaction range r. However, the prediction error
decreases with increasing swarm size N and consequently
the prediction is expected to be accurate for large swarms.

5. DISCUSSION
The field of control algorithms for collective decision mak-

ing systems can be roughly separated into two groups: ap-
proaches based on opinion dynamics of either virtual or em-
bodied agents and approaches based on aggregation behav-
iors of inherently embodied agents. The former are easier
to model because they often result in system behaviors that
have approximately well-mixed spatial agent distributions
while the latter explicitly rely on inhomogeneous agent dis-
tributions. In addition, agents based on aggregation behav-
iors operate in continuous space [17] which defines a contin-
uum of opinions (e.g., at which position to form a cluster)
in contrast to the discrete number of alternatives in opinion
dynamics [4, 10]. Although it is possible to reduce the opin-
ion continuum of aggregation-based approaches to a discrete
set of opinions [15], these reductions are coarse and the mod-
eling of spatial inhomogeneous agent distributions remains
a tough challenge. Instead, scenarios and design approaches
based on opinion dynamics allow for stringent modeling and
subsequently more accurate predictions and guarantees.

An example of an approach that is exclusively based on an
aggregation behavior is that of Kernbach et al. [17] which is a
behavioral model of young honeybees’ aggregation behavior.
The investigated decision making problem is to find a con-
sensus on where to form a cluster; due to continuous space
there is a continuum of options (‘best-of-∞’). The control
algorithm works without any direct robot-to-robot commu-
nication and uses only indirect communication (detection of
close-by robots). While the decision making process is ro-
bust, it is also rather slow and particularly difficult to model
due to the relevance of spatiality and an emerging, complex
dynamics of cluster formation and cluster breakup [16].

The approach of Parker and Zhang [22] to the best-of-
n decision problem is an aggregation-based approach that
closely resembles the actual house hunting behavior of ant
colonies. In their work, agents directly recruit peers. In
contrast, our approach is based on an indirect recruitment
mechanism inspired by the waggle dance of honeybees. In
addition to the deliberation phase their algorithm includes
an initial search phase and a final commitment phase. Due
to their different objectives, the control algorithm of Parker
and Zhang is more complex and has several control states.
Also in contrast to our approach, their study is limited to
an empirical investigation based on experiments with robot
swarms of up to 15 robots [22].

Montes de Oca et al. [20] apply a design approach based

on opinion dynamics and develop a control algorithm for a
swarm of foraging robots. Differently from the weighted
voter model, their control algorithm uses the majority
rule [10] as the key feature to implement the collective deci-
sion making mechanism. Their approach also differs in the
type of positive feedback. In our case, positive feedback is
the result of agents that advertise a particular opinion for
a time proportional to the opinion qualities. In Montes de
Oca et al. [20] instead, positive feedback is an indirect effect
of traveling times between regions of the environment that
are associated with each opinion. The longer the traveling
time the lower is the opinion quality. As a consequence, their
method takes more time to discriminate between opinions of
very different qualities (ρB � ρA), contrary to our method
which solves such easier collective decision making problems
faster (see Figure 3b). Similarly to our study, their control
algorithm is supported by a thorough theoretical investiga-
tion [20, 26, 31]. Differently from the weighted voter model,
consensus on the optimal opinion is only guaranteed for ini-
tial proportions of preferences for the best opinion that are
greater than a certain threshold. Similar considerations ap-
ply also to the work of Brutschy et al. [2] which substitutes
the majority rule used by Montes de Oca et al. with the
k-unanimity rule.

6. CONCLUSIONS
In this paper we have introduced the weighted voter model

which is a simple control algorithm for self-organized col-
lective decision making in distributed systems. The main
advantages of this approach are its increasing decision accu-
racy with increasing system size, logarithmic scalability of
the consensus time, and robustness to noisy assessments of
site qualities. We have reported an ODE model and a mas-
ter equation model that allow precise predictions of crit-
ical performance characteristics such as decision accuracy
and consensus time. Using the ODE model we are able to
guarantee convergence to the best decision in the thermody-
namic limit, while using Gillespie simulations of the master
equation we are able to give guarantees for accuracy and
consensus time for finite size systems. We empirically in-
vestigated the robustness of the weighted voter model using
agent-based simulations. We conjecture that this robustness
is a result of the distributed collective decision making pro-
cess that does not rely on the individual agents’ cognitive
skill to directly compare and discriminate sites (as observed
in natural swarms [8, 33]).

Currently, the weighted voter model is implemented and
tested on a physical robot swarm with promising prelimi-
nary results. The models and simulations reported in this
paper will be tested against this real-world implementation.
Our conjecture about the robustness of the proposed control
algorithm will be further investigated through an empirical
evaluation against the direct comparison of opinions as well
as other decision rules. Future theoretical work will be fo-
cused on decision problems with more alternative opinions.
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