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ABSTRACT
Crowdsourcing is a multi-agent task allocation paradigm that in-
volves up to millions of workers, of varying reliability and avail-
ability, performing large numbers of micro-tasks. A key challenge
is to crowdsource, at minimal cost and with predictable accuracy,
complex tasks that involve different types of interdependent micro-
tasks structured into complex workflows. In this paper, we propose
the first crowdsourcing algorithm that solves this problem. Our
algorithm, called BudgetFix, determines the number of interdepen-
dent micro-tasks and the price to pay for each task given budget
constraints. Moreover, BudgetFix provides quality guarantees on
the accuracy of the output of each phase of a given workflow. Bud-
getFix is empirically evaluated on a well-known crowdsourcing-
based text correction workflow using Amazon Mechanical Turk,
and is shown that BudgetFix can provide similar accuracy, com-
pared to the state-of-the-art algorithm for this workflow, but is on
average 32% cheaper.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Algorithms, Performance, Reliability, Human Factors

Keywords
crowdsourcing, find-fix-verify, budgeted task allocation, performance
guarantees

1. INTRODUCTION
Crowdsourcing is a multi-agent task allocation paradigm that is in-
creasingly becoming a major tool for organisations (businesses or
government agencies) to manage large data sets and to create new
products by tasking hundreds or millions of workers online with
micro-tasks (e.g., translation, transcription, and design) [1, 4, 11,
12, 14]. Within these systems, a task manager, or an autonomous
agent that acts on the behalf of the task manager, allocates differ-
ent tasks to a group of workers chosen from a population of crowd.
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Crowdsourcing platforms such as Freelancer.com claim to employ
6.5M workers for routine programming and other design tasks,1

while Amazon Mechanical Turk (AMT) is estimated to regularly
task more than 500K workers2. Crucially, these platforms are grow-
ing in size and in terms of the variety of tasks they allow the work-
ers to perform.

The ubiquity, size and heterogeneity of crowdsourcing networks
raises a number of challenges common to multi-agent task alloca-
tion problems [7, 15, 16]. First, given that workers may come from
different countries (e.g., China, India, UK, US) and with different
skills, the quality of their work may vary significantly. For exam-
ple, native English speakers will likely perform better at correcting
spelling mistakes or graduate graphic designers will do a better job
at drawing a logo compared to a non-expert. Second, the fact that
these workers are located in different time zones means that the set
of available workers will also change over time. Third, different
workers will likely react differently to the amount of money paid
per micro-task making it difficult to set a budget needed to guar-
antee good task performance [4]. To address these challenges, a
number of approaches have been proposed to deal with inaccura-
cies in worker outputs using probabilistic techniques [8, 5, 9, 13].
These approaches typically rely on the efficient use of redundancy
(i.e., allocating the same task to multiple users from the crowd),
and on the assumption that the tasks are independent from each
other and can be arbitrarily allocated to the crowd (see Section 2
for more details). Thus, while they provide efficient solutions for
crowdsourcing applications with independent micro-tasks in many
existing applications, there is a need to allocate to the crowd more
complex problems that need to be solved in multiple phases [4, 11,
14]. In fact, these phases can be solved using sets of interdepen-
dent micro-tasks. For example, in [4], a Find-Fix-Verify (FFV)
workflow is used to correct and shorten text by passing Finds of
mistakes in sentences by a set of workers to another set of workers
who Fix these mistakes. In addition, another set of workers verify
these mistakes (see more details in Section 2). A similar workflow
is used by [11, 14] albeit with more complex tasks.

A key challenge within the above-mentioned applications is to
determine how many tasks should be allocated to each phase and
how much to pay for each task in each phase. This is particularly
difficult when organisations have a limited budget to spend on a
crowdsourcing problem. Given these challenges, crowdsourcing

1http://techcrunch.com/2012/12/08/
asias-secret-crowdsourcing-boom/
2http://www.theverge.com/2013/3/7/4075810/
amazon-mechanical-
turk-users-study-finds-half-have-public-profiles.
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endeavours may result in high costs resulting in low quality out-
puts. In particular, existing approaches typically have to allocate
exponentially increasing numbers of tasks in subsequent phases [4,
11, 12]. For example, in the FFV workflow, for each Find, there are
multiple possible fixes and each fix requires a number of possible
verifications.

Against this background, this paper addresses the challenge of
interdependent task allocation under budget constraints in crowd-
sourcing problems. In particular, we consider the FFV workflow
and develop a novel crowdsourcing algorithm, called BudgetFix,
that our agent can use to allocate interdependent tasks within crowd-
sourcing systems. Given a budget B, BudgetFix specifies the num-
ber of micro-tasks to be allocated at each phase of a workflow and
how much to pay for each micro-task. Crucially, BudgetFix de-
termines which outcomes from one phase should be passed to the
next. By so doing BudgetFix combats the exponential growth of
micro-tasks in each phase yet often spends less than a given budget.
Moreover, we prove that BudgetFix is able to constrain the number
of tasks performed while guaranteeing an accurate solution with at
least e−O(B) probability. This makes BudgetFix the first crowd-
sourcing algorithm to provide such provable quality guarantees for
this problem. In more detail, we advance the state of the art in the
following ways:

• We propose BudgetFix, the first task allocation algorithm for
crowdsourcing systems with interdependent tasks that prov-
ably achieves 1− e−O(B) accuracy probability.

• We demonstrate through real experiments on AMT that our
method is both more efficient in terms of cost and accuracy,
compared to the existing approaches. In particular, Budget-
Fix is shown to be 32% cheaper than the baseline on average.

The rest of this paper is structured as follows. Section 2 sum-
marises the related work, and Section 3 describes our model. We
then introduce BudgetFix in Section 4, along with proofs of theo-
retical guarantees. Section 5 empirically evaluates Budget fix. Sec-
tion 6 concludes.

2. RELATED WORK
Here we discuss the literature on crowdsourcing, taking into ac-
count aspects of accuracy and budget constraints. Moreover, we
present the FFV workflow from [4] on which we demonstrate the
performance of BudgetFix.

Crowdsourcing for Accuracy
Previous work on crowdsourcing algorithms have typically consid-
ered how to allocate relatively simple micro-tasks to a crowd. For
example, they aim to get many workers to classify objects (e.g.,
to detect inappropriate websites or galaxies). To do so, these ap-
proaches use redundancy to minimise the estimation error. For
example, Wellinder et al. proposed a multidimensional model of
users in order to estimate the accuracy of a particular user’s answer
to improve the estimation of the ground truth [17]. In a similar
vein, [8, 13] use Bayesian learning techniques to predict the users’
responses. Moreover Dai et al. proposed a PoMDP-based (for
partially observable Markov decision process) approach to model
the estimation’s quality [5]. This work not only demonstrated the
effectiveness of the approach within relatively simple classifica-
tion tasks, but was also used within more complex iterative tasks
in which workers iteratively refine each others’ answers. How-
ever, contrary to BudgetFix, none of these methods are applicable
to complex workflows where different costs exist for performing

micro-tasks in multiple phases, taking into account that the ex-
pected performance of the worker pool is heterogeneous and not
known a priori. Moreover, none of these approaches have consid-
ered the budget limited case.

Budget-Constrained Crowdsourcing
In terms of budget-aware crowdsourcing, work by [9] presented
more advanced techniques to aggregate results from tasks performed
by the crowd, and crucially, performance guarantees are provided
when the algorithm is given a limited budget. However, in con-
trast to BudgetFix, they did not consider how to budget for complex
workflows that interleave heterogeneous micro-tasks (e.g, Find-Fix-
Verify). Instead, they assume that all budgeted tasks have an equal
level of difficulty, something which we observe is not the case in
many real-world environments including the text correction task we
consider in this paper. Other work that addresses the budget alloca-
tion between tasks include [7, 15, 16] but they do not take into ac-
count the interdependency between tasks, and thus, are not suitable
for our settings. Azaria et al. [3] model an environment in which a
task allocator must allocate many similar tasks in a crowdsourcing
environment with minimal cost. The authors show that this prob-
lem in NP-hard and therefore introduce two heuristic based agents
shown to outperform humans. However, they assume that the task
allocator has many similar tasks. Furthermore, in contrast to our
work they do not show any upper-bound limit on the expected cost.

Find-Fix-Verify
Bernstein et al. [4] showed how to allocate heterogeneous workers
within a multiple-phased crowdsourcing environment. They devel-
oped the Soylent system, which breaks a large, complex task into
three micro-tasks: Find, Fix and Verify (FFV). Within the Find
phase, the workers must identify an error that needs to be corrected.
For example, we consider a text correction task where the goal is to
find a spelling or grammatical error within the text. After a set of
workers have submitted their responses for the Find phase, it then
asks a new group of users to suggest corrections. As is common
practice, they intentionally use workers who did not participate in
the previous phase to ensures a varied worker base, thus yielding
better results [4, 9]. Last, in the Verify phase a third, independently
selected group of workers performs quality control on the previ-
ously submitted work. By either accepting or rejecting the work
from the previous phase, this further improves the result. Crowd-
sourced workers in particular have been shown to be effective in
yielding improved task quality by using this model [4, 9].

To address the possibility that multiple phases will generate an
exponentially increasing numbers of crowdsourcing tasks, Soylent
relies on very simple heuristics (e.g., only ‘find’s with 20% agree-
ment are passed to the Fix phase and only similar ‘fixes’ are passed
to the Verify phase) that determine the number of outcomes to pass
from one phase to another in an ad hoc fashion. While this helps
achieve high accuracy of the outcomes in practice, as we show in
Section 5 it is by no means budget–efficient nor does it come with
any guarantees of accuracy. In contrast, BudgetFix yields results
with similar (or better) accuracy while providing provable perfor-
mance guarantees. In addition, it is able to do so at a lower cost and
can do so when given a limited budget.

3. PROBLEM DEFINITION
In this section, we formally define a class of complex tasks that are
solved by a crowd in multiple interdependent phases3. In particular,

3The problem is solved in multiple steps to avoid lazy workers –
see [4, 11] for more details.
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we aim to crowdsource the solution to the text correction problem
as posed by [4] using the FFV workflow. Note that, even though
we focus on text correction, BudgetFix is applicable to many com-
plex tasks that can be solved in multiple interdependent phases (as
exemplified in this section). Specifically here, the task involves
finding a grammatical or spelling mistake within a sentence.4 Fur-
thermore, we assume that there is only one mistake to fix within a
given sentence.5 In what follows, we first present the FFV work-
flow and then describe the constraints and assumptions under which
it is executed.

3.1 The Find-Fix-Verify Workflow
This workflow allows the agent to separate the tasks of finding a
mistake, correcting it, and ensuring that all corrections to fixes re-
ceived are themselves correct. This workflow was shown to be ef-
fective in getting text corrected to a high accuracy (> 90%) with-
out any budget limitations. Here we formalise and then extend it to
consider budget constraints. The details of each step are as follows:

Find: the agent asks the workers to identify the position of the er-
ror in t. Let X denote the set of possible error candidates (i.e., all
positions in the text at which an error can occur). We assume that
these responses are drawn from an unknown distribution DX , and
that the error is at true position xt. The output of this phase is a set
X of possible errors.

Fix: the agent asks the workers to fix the identified errors at po-
sitions X ′ ⊆ X (i.e., we may not request all the errors found to
be fixed). In addition, for each x ∈ X ′ possible error position,
let Y (x) denote the set of possible fixes that belong to position x.
We assume that for each x ∈ X ′, Y (x) contains the “No–Fix”
response. This response represents the case when x is believed
to be non–erroneous. We assume that for each x ∈ X ′, the fix
responses that belong to x are drawn from an also unknown distri-
bution DY (x). Hence, for each x ∈ X ′ we can define its true fix
yt(x).

Verify: the agent asks the workers to vote on whether a possible
error-fix pair (x, y) is correct. Let Z(x, y) denote the set of veri-
fication responses of pair (x, y). For each z ∈ Z(x, y), we have
z = 1 if the corresponding user thinks the fix y of position x is cor-
rect (i.e., y(x) = yt(x)), and z = 0 otherwise. Thus, the responses
that belong to each pair (x, y) can be regarded as random variables
drawn from an unknown Bernoulli distribution DZ(x,y).

3.2 The Budget Limited Case
Let the costs for requesting a task in each of the Find, Fix, and
Verify phases be defined as cX , cY , and cZ , respectively (all real
valued) and let NX , NY , and NZ denote the number of responses
we require from the crowd for each of the phases respectively. Now,
the task requested cannot exceed a budget limit B ∈ <+, that is,
the crowdsourcing of tasks is subject to the following budget con-
straint:

NXcX +NY cY +NZcZ ≤ B (1)

In addition, we assume that the users are not malicious (i.e., they
do not provide wrong answers on purpose). As such, they only pro-
vide their best guess based on their knowledge of the task, which,

4The same approach works if the mistake is non-textual, such as a
logical mistake or a mistake within a picture/map.
5In future work, we will extend the model to consider multiple mis-
takes.

however, might be inaccurate with some uncertainty (hence the dis-
tributions DX , DY (x), and DZ(x,y)). This justifies the following
assumptions:
Assumption 1: In the Find phase, the users choose xt with the
highest probability in DX . That is, xt is the mode of DX . This as-
sumption guarantees that on average, the answers will tend towards
the true error position xt

Assumption 2: In the Fix phase, if x 6= xt, the user chooses
y(x) = No–Fix with at least 1

2
probability. That is,

P (y(x) = No− Fix|x 6= xt) >
1

2

Vice versa, for the case of x = xt, the user chooses y(x) 6= No–Fix
with at least 1

2
. More formally, we have:

P (y(x) 6= No− Fix|x = xt) >
1

2

This assumption guarantees that on average, there is higher proba-
bility to get the correct answer.
Assumption 3: In the Verify phase, if y(x) = yt(x), then

E[z(x, y)|y(x) = yt(x)] >
1

2

Otherwise, we have:

E[z(x, y)|y(x) 6= yt(x)] <
1

2

for the case of y(x) 6= yt(x). Similarly to Assumption 2, this
guarantees that on average, there is higher probability to get the
correct verification.

The next section proposes the BudgetFix algorithm to solve the
aforementioned problem in an efficient way. Crucially, we prove
that the algorithm guarantees a high probability of correct correc-
tions.

4. THE BudgetFix ALGORITHM
In this section, we address two key challenges common to many
crowdsourcing applications, namely:

1. how to minimise the overall cost of the process and maximise
the accuracy of the results given the maximum numbers of
micro-tasks for each phase (e.g., NX for Find, NY for Fix,
and NZ for Verify).

2. how to set the number of micro-tasks for each phase (i.e.,
how to set NX , NY , and NZ ) given a fixed budget and a
cost per task for each phase.

To this end, in Section 4.1 we first describe a quality control pro-
cess (called AccurateAlloc), and in Section 4.2 we define a pro-
cedure the agent can use to determine the number of micro-tasks
for each phase. The BudgetFix algorithm combines these proce-
dures. In particular, BudgetFix aims to avoid passing all the tasks
executed in one phase to the next one, while maintaining quality
guarantees (i.e., filtering most of the incorrectly completed tasks in
earlier phases). As described in Section 1, this is particularly im-
portant in multi-phase crowdsourcing processes as each task passed
on to the next phase results in multiple tasks in later phases, caus-
ing an exponential growth in the number of allocated tasks in those
phases. However, as we show in the following sections, Budget-
Fix filters incorrectly performed tasks (with high probability) in
early phases to avoid this exponential growth. Crucially, we pro-
vide theoretical results that describe the performance guarantees
of BudgetFix in terms of the bounds on the error in its final out-
put. Moreover, later in Section 5 we empirically demonstrate the
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strength of this approach. Note that due to space limitations, we
only provide sketches of proofs for the key results.

4.1 The Quality Control Procedure
Within the quality control procedure AccurateAlloc, the agent
takes as input the maximum number of tasks to be executed by
the crowd for each phase of the crowdsourced solution process. In
the case of Find, Fix, Verify, these are NX , NY ,and NZ . Then,
AccurateAlloc aims to efficiently allocate micro-tasks to the crowd,
in order to maximise the probability of correctness (or minimise
the probability of incorrectly done tasks) given these upper-bounds
on the number of tasks for each phase. In addition to NX , NY ,
and NZ , AccurateAlloc also takes as input a tuning parameter
0 < ε ≤ 1, which we describe later (in Section 4.1.1). In what fol-
lows, we describe how AccurateAlloc operates for each phase of
the solution process and, more importantly, we show how the error
in the output can be bounded.

4.1.1 Quality Control for Find
In this phase, AccurateAlloc requests all NX micro-tasks to iden-
tify candidates for the position of the error in t. In particular, we
focus on how to avoid passing on all these candidates to the Fix
phase. Here, we assume that all of the NX received responses are
randomly drawn from the unknown distribution V X . Thus, let D̂X

denote the empirical distribution of X (i.e., the estimate of V X )
and x̂t denote the mode of D̂X , that is:

x̂t = argmax
x

PD̂X (x) (2)

where PD̂X (x) denotes the probability of x in D̂X . Given this, we
can define the set S of selected candidates x as:

S = {x|PD̂X (x) ≥ PD̂X

(
x̂t)− ε}

where the probability of candidate x in D̂X is within the ε distance
from the probability of x̂t. Thus, only those candidate errors with
the highest probability, or within ε of the error found with the high-
est probability, will be forwarded to the next phase. Note that this
is starkly different from the original Find, Fix and Verify model
where all error candidates with over 20% frequency were automat-
ically forwarded to the next phase.

Given these definitions, the following result holds:

THEOREM 1. Suppose that Assumption 1 holds, we have xt ∈
S with at least a probability of

(
1− 2 exp

{
−NXε2

2

})
.

PROOF SKETCH. From the Dvoretzky-Kiefer-Wolfowitz inequal-
ity we have that the probability that the estimation error of the em-
pirical distribution D̂X is larger than ε

2
is at most 2 exp

{
−NXε2

2

}
after receiving NX responses. This implies that the mode of DX

(i.e., the position that has the highest probability mass), which is
equivalent to the true position xt, is within S with the requested
probability.

After AccurateAlloc receives NX submissions, the set S is com-
puted as above and passed on to the Fix phase.

4.1.2 Quality Control for Fix
In this phase, apart from collecting possible corrections of the can-
didates from S, the algorithm aims to identify the true error position
xt with high accuracy (assuming that xt ∈ S). To do so, it main-
tains a “fitness" value r(x) for each x ∈ S as follows. For each
x ∈ S, if we receive a correction y(x) 6= No–Fix, the algorithm

allocates a reward value 1 to x, and 0 otherwise. Let r(x) denote
the average reward value that x has received so far. It is easy to
show that r(x) is an unbiased estimator of the probability y(x) 6=
No–Fix, that is,

E [r(x)] = P (y(x) 6= No− Fix) (3)

Now, if Assumption 2 holds, we have E
[
r(xt)

]
> 1

2
and E [r(x)] <

1
2

if x 6= xt. Given this, the true error position xt has the highest
expected fitness value. However, we do not know in advance the
probability of y(x) 6= No–Fix, and thus, the expected fitness for
each x. Given this, we need to estimate these values from the re-
ceived submissions within this phase and choose the one with the
highest average fitness. To do so, we rely on the Successive Reject
(SR) algorithm, proposed by Audibert et al. [2]. In particular, this
online learning algorithm is proven to provide the best performance
in identifying the fittest from a set of options (i.e., Find candidates)
with unknown fitness values. This algorithm can be adapted to our
settings as follows:

Recall that the maximum number of requests we can have within
this phase is NY . Let K = |S| denote the size of S. In addition,
let NX(x) denote the number of times x ∈ S was chosen to be a
candidate within the first phase.

We run K − 1 episodes as follows. We first define function v:

v(N) =
1

2
+

N∑
k=2

1

k
(4)

for any N > 0 integer. In addition, let S1 = S, m0 = 0, and for
each k ∈ {1, . . . ,K − 1}, we have:

mk =

⌈
1

v(K)

NY −K

K + 1− k

⌉
(5)

For each episode k, we request (mk −mk−1) submissions for
each x ∈ Sk. Note that each x ∈ Sk receives exactly mk submis-
sion requests up to episode k. It can be shown that the total number
of requests within this phase is at most NY (for more details, see
Audibert et al. [2]).

The fitness rk(x) of x ∈ Sk can be calculated as:

rk(x) =
NX(x) +

∑mk
i=1 I(y

i(x) 6= No− Fix)

NX(x) +mk
(6)

where I() is the indicator function. Note that we also take into ac-
count the submissions in the Find phase that indicate x is a possible
error position (i.e., by taking NX(x) into the formula). Given the
fitness values, we eliminate the x that has the lowest fitness value
from Sk, and update the set of candidates, that is:

Sk+1 = Sk \ {arg min
x∈Sk

rk(x)} (7)

Since we eliminate one candidate at the end of each episode, after
the K−1 episodes, SK only contains one candidate. Let x∗ denote
this candidate. In addition, let U = {y(x∗)} denote the set of
possible corrections of x∗ within this phase. The output of this
phase is then the pair 〈x∗, U〉.

4.1.3 Quality Control for Verify
Given the pair 〈x∗, U〉, we now focus on identifying the correct
fix of error candidate x∗. To do so, we also measure the fitness of
each correction. Recall that due to Assumption 3, for each y(x)
correction, we have E[z(x, y)] > 1

2
if and only if y is correct (i.e.,

y = yt(x)). Given this, by considering E[z(x, y)] as the fitness
of y(x), the desired correction has the highest fitness. Thus, we
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Algorithm 1 BudgetFix

1: Inputs: budget B, costs cX , cY , cZ , 0 < ε ≤ 1;
2: Compute NX , NY and NZ using Theorem 3 and Equation 12;

3: Run AccurateAloc as follows:
4: Find phase: Determine set of possible positions S (see Sec-

tion 4.1.1);
5: Fix phase: Use SR to identify possible corrections U (see Sec-

tion 4.1.2);
6: Verify phase: Use SR to identify the best position – correction

pair 〈x∗, y∗〉 (see Section 4.1.3);

can again use the SR algorithm to identify the correction with the
highest fitness level. To do so, let L = |U |, U1 = U , m0 = 0, and

ml =

⌈
1

v(L)

NZ − L

L+ 1− l

⌉
(8)

At each episode l, we allocate (ml −ml−1) request for each y ∈
Ul and the fitness rl(y) of y ∈ Ul can be calculated as:

rl(y) =
NY (y) +

∑ml
i=1 I(z

i(x, y) = 1)

NY (y) +ml
(9)

where NY (y) is the number of submissions within the Fix phase
that proposes y as a correction of x∗. By eliminating the weak-
est correction candidate at each episode, we can see that UL only
contains one single correction, denoted with y∗. The output of
AccurateAlloc is then the pair 〈x∗, y∗〉.

The performance of AccurateAlloc can be guaranteed in terms
of bounds on the error in the final output as follows:

THEOREM 2. Suppose that Assumptions 1–3 hold. Given this,
for each NX , NY , NZ > 0 integers and 0 < ε ≤ 1, the above-
mentioned algorithm guarantees that the probability of having the
output pair 〈x∗, y∗〉 incorrect (i.e., either x∗ 6= xt or y∗ 6= yt(xt))
is at most:

2 exp

{
−NXε2

2

}
+

K(K − 1)

2
exp

{
−NY −K

v(K)K

}
+
L(L− 1)

2
exp

{
−NZ − L

v(L)L

}
(10)

PROOF SKETCH. Suppose that AccurateAlloc provides an in-
accurate solution. This implies that it was inaccurate in at least one
of the phases. The probability that it is inaccurate in phase Find is at
most 2 exp

{
−NXε2

2

}
(from Theorem 1). By using the theoretical

results from Audibert et al. [2], we obtain that the probability of in-
accuracy in the Fix and Verify phases are K(K−1)

2
exp

{
−NY −K

v(K)K

}
and L(L−1)

2
exp

{
−NZ−L

v(L)L

}
, respectively. Using the union rule of

probability, we obtain the requested error bound.

4.2 Selecting the Number of Micro-Tasks per
Phase

Here we describe the procedure to set the values of NX , NY ,
and NZ , given the budget limit B to guarantee the algorithm’s
efficiency. To do so, we first refine the performance analysis of
AccurateAloc procedure in order to simplify the calculations. In
particular, in order to simplify the computation of NX ,NY and
NZ , we assume that AccurateAlloc has some upper limit for the
value of K and L, respectively. Note that the values K (i.e., the
size of the candidate set S in Find) and L (i.e., the size of candidate

set U in Fix) are not known in advance, and can only be identified at
the end of each corresponding phases. In particular, if K > Kmax,
the core algorithm will only choose the best Kmax candidates in
the candidate set S.6 Similarly, in the Fix phase, if L > Lmax, the
core algorithm will only choose the best Lmax candidates in the
candidate set U . By doing so, we can reformulate Theorem 2 to be
as follows.

The probability that the core algorithm provides an incorrect out-
come is at most:

2 exp

{
−NXε2

2

}
+

Kmax(Kmax − 1)

2
exp

{
− NY −Kmax

v(Kmax)Kmax

}
+

Lmax(Lmax − 1)

2
exp

{
− NZ − Lmax

v(Lmax)Lmax

}
(11)

This formula is indeed more convenient, as we now can minimise
it before running AccurateAlloc. In particular, we have the fol-
lowing result.

THEOREM 3. We relax NX , NY , NZ to be fractional values.
Let

WX =
ε2

2
, V X = ln 2

WY =
1

v(Kmax)Kmax
, V Y =

1

v(Kmax)
+ ln

Kmax(Kmax − 1)

2

WZ =
1

v(Lmax)Lmax
, V Z =

1

v(Lmax)
+ ln

Lmax(Lmax − 1)

2

The optimal values of ÑX , ÑY , ÑZ (that provides minimal error
bound) of Equation 11 are as follows:

ÑX = 1
WX

[
1∑

j
cj

Wj

(
B −

∑
j c

j V j+ln Wj

cj

W j

)
+
(
V X + ln WX

cX

)]

ÑY = 1
WY

[
1∑

j
cj

Wj

(
B −

∑
j c

j V j+ln Wj

cj

W j

)
+
(
V Y + ln WY

cY

)]

ÑZ = 1
WZ

[
1∑

j
cj

Wj

(
B −

∑
j c

j V j+ln Wj

cj

W j

)
+
(
V Z + ln WZ

cZ

)]
where the index j ∈ {X,Y, Z} iterates over letters “X", “Y ", and
“Z", respectively.

PROOF SKETCH. By using the Lagrangian relaxation technique
to solve the convex optimisation problem posed above, we obtain
that the optimal solution of the relaxed problem is as given in the
theorem.

Based on this theorem, we set the values of NX , NY and NZ to
be

NX = bÑXc, NY = bÑY c, NZ = bÑZc, (12)

where bxc denotes the floor integer value of x. The pseudo code of
BudgetFix is shown in Algorithm 1. In particular, it calculates the
number of task allocations for each phase (line 2) and then uses the
AccurateAlloc procedure to control the tasks passed on between
phases while ensuring the best candidate solutions are passed on
(lines 4 − 6). Thus, it first identifies the set of possible error posi-
tions (i.e., S) (line 4) and then determines the set of possible correc-
tions (i.e., U ) using the SR algorithm (line 5). Finally it calculates
the best position-correction pair, also using SR (line 6).
6Ties can be broken in any arbitrary way.
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We now turn to prove the quality guarantees of BudgetFix. In
particular, we state the following:

THEOREM 4. Suppose that Assumptions 1–3 hold. Let 0 <

ε ≤ 1, C1 =
∑

j
cj

W j and C2 =
∑

j c
j V j+ln Wj

cj

W j . Given this,
BudgetFix guarantees that the probability of having the output pair
〈x∗, y∗〉 incorrect (i.e., either x∗ 6= xt or y∗ 6= yt(xt)) is at most

exp
{
−(B−C2)

C1
+ ln 3

}
.

That is, the probability that BudgetFix will provide an inaccurate
solution is at most e−O(B) where B is the budget limit. The proof
of this theorem is omitted.
Budget saving procedure: In practice, we can achieve further sav-
ings if S or U contains fewer candidates than Kmax or Lmax, re-
spectively. In particular, suppose that K = |S| < Kmax. In this
case, instead of requesting NY = bÑY c tasks within the Fix phase

as defined in Equation 12, we set NY =
⌊
ÑY K

Kmax

⌋
. That is, we

proportionally decrease the budget spent on fixing if the the num-
ber of candidates carried from the Find phase is less than Kmax.
Similarly, we set NZ =

⌊
ÑZ L

Lmax

⌋
if L < Lmax. By doing so,

we can clearly reduce the amount spent in the Fix and Verify phases
(i.e., the total cost will be lower, compared to the original budget
B). Note that in this case, Theorem 2 still holds (with the modified
values of K and L), and thus, this modified version of BudgetFix
still provides performance guarantees but with a lower total cost.
In addition, if the tuple 〈x∗, U〉 that BudgetFix propagates to the
Verify phase consists of one single pair 〈x∗, y(x∗)〉 (i.e., there is
only one type of fix for x∗), we stop the process, and provide the
pair 〈x∗, y(x∗)〉 as the solution. By doing so, we can refine the
probability of inaccuracy given in Theorem 2 by leaving out the
third term.

5. EMPIRICAL EVALUATION
While the previous sections developed theoretical upper-bounds for
the expected total estimation error of BudgetFix, we also wish to
examine its performance in a realistic setting. To this end, we eval-
uate BudgetFix through replicating an experiment similar to the
text correction task originally used to evaluate the Soylent system
[4]. We create a dataset of a total of 97 sentences to be corrected
by both algorithms.7 For each sentence we intentionally placed one
mistake, facilitating the existence of a known truth so that the accu-
racy of the worker’s performance could be evaluated. We generate
three types of mistakes with equal distribution: spelling mistakes
based on an added letter, spelling mistakes based on a missing let-
ter, and grammar mistakes. We place these mistakes into sentences
that were of three different complexity levels which generally rep-
resent sentences of high, medium, and low complexity. The high
complexity sentences are taken from AAMAS articles published
between 2008 and 2012. The medium complexity sentences are
taken from open computer science textbooks8 and the low com-
plexity sentences are taken from publicly available children’s sto-
ries.9 To quantify the complexity of these sentences we measure the
Flesch Reading Ease, Fog Scale Level, and Flesch-Kincaid Grade

7This dataset is publicly available at http://users.ecs.
soton.ac.uk/ltt08r/BudgetFix/data.csv. It initially
contained 100 sentences, but three were later discovered to be am-
biguous after our trial finished. They were, therefore, removed,
leaving 97 sentences in the dataset.
8http://freecomputerbooks.com/
compscCategory.html
9http://www.mightybook.com/free_to_read.html

Level measures, which constitute accepted measures of sentence
complexity [6, 10]. These measures for the sentences are 91.19,
6.14, and 3.74, respectively for the easy category, 53.23, 14.64,
and 10.85 for the medium category, and 37.55, 18.69, and 14.81
for the hard category.

We then proceed to the Find, Fix and Verify phases as per both al-
gorithms. As was done in the original Soylent experiments, we use
Amazon Mechanical Turk and workers are paid the same amount –
i.e. $0.06 per Find task, $0.08 for Fix tasks, and $0.04 for Verify
tasks. Within Soylent, regardless of the sentence difficulty or bud-
get, a minimum of 10 Find, 5 Fix, and 5 Verify tasks are generated
per sentence (see Section 2).

In contrast, BudgetFix generates the number of micro-tasks as
per its budget and only propagates those subtasks where fix can-
didates and are within ε of the most popular candidate. As per
Equation 12, BudgetFix sets its budget by taking as its input B,
Kmax, Lmax, and ε, which in turn set the values of NX , NY ,
and NZ , thus controlling how many instances are used for each
type of task. Therefore, different combinations of B, ε, Kmax and
Lmax determine the maximum budget per task type. For example,
if B = $2.25, ε=0.1, Kmax = 2, Lmax = 3, then NX = 10,
NY = 9, and NZ = 22, which yields a maximum total budget
of $2.20 per sentence. Accordingly, a total of 10 Finds will be
used, up to 9 Fixes will be divided among any candidates with no
less than 10% of the number of Finds received by the leading can-
didate, and up to 22 Verify workers will be employed. Note that
these values are maximum values. Hence, for a sentence, no more
than 10 Find, 9 Fix, and 22 Verify micro-tasks will be generated
within this configuration. In contrast, Soylent could theoretically
pass 5 different Finds to the Fix phase, generating 25 Fix micro-
tasks. These potentially could produce 25 different Fixes, which
would generate 25 × 5 Verify micro-tasks.

5.1 Cost versus Accuracy
We first study the results from running the Soylent algorithm, which
correctly fixed 88.66% of the sentences in the dataset (86 of 97
sentences) for a total cost of $135.40 (average $1.40). We find
that Soylent’s average cost per sentence linearly increases with the
sentence difficulty. This is because Soylent uses 5 Fixes for ev-
ery potentially viable mistake – which they defined as having an
occurrence of more than 20% of the time (at least 2 of 10 occur-
rences). Similarly, each potential fix candidate is given its own set
of 5 verification tasks. Thus, the size of the budget needed will
grow linearly with the number of Fix candidates found in the first
phase, something our results corroborate. For the set of easier sen-
tences Soylent spends on average $1.32, for the medium sentences
they spends $1.40, and $1.46 for the hardest sentence set.

We then proceed to study how BudgetFix performs with the same
dataset and how its cost and accuracy are both impacted by dif-
ferent parameter settings for B, ε, Kmax, and Lmax. In doing
so, we run the BudgetFix algorithm with all permutations of B ∈
{$1.00, $1.25, $1.50, $1.75, $2.00, $2.25,
$2.50}, Kmax ∈ {2, 3, 4}, Lmax ∈ {2, 3, 4}, and ε = {0.l, 0.2,
0.5, 1.0}. In theory we would like to test all 7× 3× 3× 4 = 252
permutations of BudgetFix. However, only 163 permutations are
feasible as 89 permutations yield zero or negative values for NX .
Note that in our experiments, we run the variant of BudgetFix with
the budget savings procedure (see Section 4.2 for more detail). This
implies that the above mentioned budget values of B are maximum
budget values. The actual spending costs were typically much less
since only a fraction of ÑY and ÑZ will be used in cases where
fewer Find and Fix candidates are identified in practice, which was
found to be the case in sentences with more obvious mistakes. In
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Figure 1: Cost vs Accuracy – comparing the actual cost and
accuracy of Soylent and various configurations of BudgetFix
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Figure 2: Savings (in % of Soylent’s spending, with standard
error bars) made by BudgetFix at various levels of accuracy.

fact, over the 163 runs, BudgetFix actually spent on average less
than half its allocated budget (44%, standard deviation 15%).

Note that tuning the parameters for Kmax, Lmax, and ε for a
given budget yields the same or better performance for significantly
less cost than the Soylent baseline. For example, in Figure 1 we
show a scatter-plot for the cost vs accuracy of various BudgetFix
configurations with Kmax ∈ {2, 3}, Lmax ∈ {2, 3}, and ε = 1.0
(i.e., all unique Finds to be selected for the Fix phase). The cost
and accuracy of Soylent is also shown (i.e., the diamond point) for
comparison.

While BudgetFix’s main contribution is that it provides perfor-
mance guarantees while strictly adhering to a budget, and while
we found that in all cases BudgetFix spent far less than the bud-
get allows, we also found that not all parameter settings yielded
improved performance over the Soylent baseline algorithm. Given
the large number of runs and the limited space, we cannot present
all these results in this paper, but give a summary of our findings.

We first looked at the accuracy difference between BudgetFix
and Soylent. In order to do so, we calculate the Jeffreys binomial
proportion confidence interval at 95% confidence level of the Soy-
lent’s accuracy: 81.23–93.82%. In particular, provided a configura-
tion of BudgetFix has an accuracy in this range, the null hypothesis
(stating that its accuracy is different from that of Soylent) cannot
be rejected with at least 95% confidence. Hence, such a BudgetFix
configuration is considered to have a similar accuracy level to that
of Soylent. In fact, we found 124 such configurations. On average
they spend 32% less than Soylent (standard deviation: 22%). The
remaining 39 configurations are considered significantly less accu-
rate than Soylent because their parameters give either a small NX

or NY , i.e. 2, 3, 4. Such low numbers of Find or Fix tasks are
shown here to significantly constraint the discovery of the true so-
lution (i.e., xt and/or yt(xt)). Therefore, it is not advised to choose
a values of B, Kmax, Lmax, and ε that result in NX or NY smaller
than 4.
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Figure 3: The average numbers of Find, Fix, and Verify tasks
allocated by BudgetFix and Soylent.

We now focus on the group of equal accuracy to Soylent’s. To
further drill down into the performance of this group, we compare
the number of correct sentences produced by BudgetFix against
that of Soylent (i.e., 86 sentences) and calculate the average spend-
ing difference in each case. The result is plotted in Figure 2, which
shows the average savings made by BudgetFix at the exact same
accuracy (0), at 1 or 2 more correct sentences, and at 1, 2, ...,
7 less correct sentences. In brief, the savings by BudgetFix in-
crease monotonically as the level of accuracy decreases, as ex-
pected. However, the magnitude of the savings is notable. For the
same level of accuracy, BudgetFix spent on average 16% less than
Soylent. More impressively, in cases where its spending is to be re-
duced by roughly a third (compared to Soylent’s), it only sacrifices
2–3% in accuracy (i.e. 2–3 sentences).

The results above suggests that BudgetFix distributes its budget
to the three FFV phases in an efficient manner while it guarantees
the cost per sentence not to exceed the given maximal budget. In
that respect, the next section looks into the difference in the way
BudgetFix and Soylent allocate tasks (and money) to the different
phases.

5.2 Task Allocation
The key to the success of BudgetFix is the method by which it
dynamically allocates its budget, especially in the Fix and Verify
phases. To explore this point, we study the relationship between
BudgetFix and Soylent’s budget allocation, and present the aver-
age numbers of Finds, Fixes and Verifies used by both algorithms
in Figure 3. These results are from BudgetFix configuration with
B = $2.25, Kmax = 2, and Lmax = 3, and ε = 0.1. This
particular configuration is chosen because it uses the same 10 Find
tasks as in the case of Soylent and both have the same accuracy,
allowing us to easily compare the number of Fix and Verify tasks
between the two algorithms.10 It should be noted that, at the same
level of accuracy, this configuration of BudgetFix spends 23% less
per sentence than Soylent, $1.08 vs $1.40. This is possible thanks
to the Successive Reject approach in the Fix and Verify phases (see
Sections 4.1.2 and 4.1.3) and the budget saving procedure (see Sec-
tion 4.2). In conjunction, they help BudgetFix control the aver-
age numbers of Fix and Verify tasks, 4.16 and 3.56 respectively, as
shown in Figure 3. In contrast, as Soylent ‘branches’ tasks on all
unique (with 20% agreement) Finds and Fixes, the number of Fix
tasks is higher at 6.13 and the number of Verify tasks is significantly
higher at 7.63.

We now look into how the Fix and Verify tasks are allocated
to sentences of different difficulty levels. Table 1 shows the av-
erage number of tasks generated in the Fix and Verify phases by
BudgetFix and Soylent for sentences of easy, medium, and hard
levels. In the Fix phase the number of tasks requested by both

10There is no difference in the number of Find tasks since both al-
gorithms use all their allowance in the Find phase.
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Fix Verify

Difficulty BudgetFix Soylent BudgetFix Soylent

Easy 4.00 (1.41) 5.16 (1.53) 4.69 7.66

Medium 4.27 (1.23) 6.50 (1.40) 3.00 7.00

Hard 4.23 (1.23) 6.71 (1.62) 3.00 8.14

Table 1: The average number of tasks in the Fix and Verify
phases generated by BudgetFix(2.25, 2, 3, 0.1) and Soylent with
respect to sentence complexity. Values in bracket represent the
average number of tasks passed on to the Verify from the Fix
phase.

algorithms generally (at least for Soylent) increases with the diffi-
culty of the sentences. Intuitively, one would expect AMT workers
would pick out more ‘incorrect’ mistakes from long and difficult
sentences than short and easy one in the Find phase, hence requir-
ing more Fix tasks. However, we note that more difficult sentences
do not necessarily generate more tasks in the Verify phase for both
BudgetFix and Soylent. In that phase, since the total number of
Verifies depends on the number of unique Fixes created by AMT
workers, the lower the number of unique Fixes, the lower the num-
ber of Verifies. In fact, as can be seen from Table 1, this particular
BudgetFix configuration chooses fewer Fixes than Soylent, out of
which even fewer unique answers are passed to the Verify phase
(1.41, 1.23, 1.23 for BudgetFix compared to 1.53, 1.40, and 1.62
for Soylent). This result suggests that it is not just the complexity
of a crowdsourcing task that determines the cost but, crucially, on
the performance of the workers (e.g., in creating few unique Fixes)
at different phases of the process.

6. CONCLUSIONS
We investigated the interdependent task allocation under budget
constraints in crowdsourcing systems. In particular, we consider
the FFV workflow, where the goal is to maximise the accuracy level
of the outcome with respect to a budget limit of task allocation. To
solve this problem, we proposed BudgetFix, a novel crowdsourc-
ing algorithm, that efficiently identifies the total number of tasks
for the Find, Fix, and Verify phases. We also proved that the al-
gorithm can guarantee that the probability of receiving an inaccu-
rate outcome is at most e−O(B) where B is the budget limit. We
demonstrated through real Amazon Mechanical Turk experiments
that with 16% less budget, our method can achieve similar accu-
racy, compared to that of an existing algorithm used in Soylent.
Moreover, we also showed that by reducing the budget of Budget-
Fix by roughly a fourth, the accuracy would only take a maximum
2-3% hit, and by spending less than half of Soylent’s average bud-
get results in a maximum sacrifice of 7% in accuracy. In summary,
BudgetFix can achieve similar accuracy, compared to Soylent, but
with a significantly lower spending cost. Given this, it is very use-
ful in applications with complex workflows and low budgets.

Note that once a phase is considered as ready, BudgetFix will
move to the next phase and does not return to the previous ones.
This might cause inefficiency if the output of the previous phase is
inaccurate, and will affect the quality of the work done within the
subsequent phases. Given this, one possible way to make Budget-
Fix more efficient is to allow loopy behaviour. That is, we allow
BudgetFix to return to previous phases, once it detects inaccuracy
of the outcome within a particular phases. However, adding such
behaviour changes makes our model significantly more complex,
and the techniques we use within this paper are not suitable for
analysing such complex models. Therefore, as future work, we

aim to extend our analysis to the abovementioned model, making
BudgetFix more efficient.
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