
Optimal Randomized Classification in Adversarial Settings

Yevgeniy Vorobeychik and Bo Li
Electrical Engineering and Computer Science

Vanderbilt University
Nashville, TN

{yevgeniy.vorobeychik, bo.li.2}@vanderbilt.edu

ABSTRACT
The problem of learning to distinguish good inputs from
malicious has come to be known as adversarial classification
emphasizing the fact that, unlike traditional classification,
the adversary can manipulate input instances to avoid being
so classified. We offer the first general theoretical analysis
of the problem of adversarial classification, resolving several
important open questions in the process. First, we signifi-
cantly generalize previous results on adversarial classifier re-
verse engineering (ACRE), showing that if a classifier can be
efficiently learned, it can subsequently be efficiently reverse
engineered with arbitrary precision. We extend this result
to randomized classification schemes, but now observe that
reverse engineering is imperfect, and its efficacy depends
on the defender’s randomization scheme. Armed with this
insight, we proceed to characterize optimal randomization
schemes in the face of adversarial reverse engineering and
classifier manipulation. What we find is quite surprising: in
all the model variations we consider, the defender’s optimal
policy tends to be either to randomize uniformly (ignoring
baseline classification accuracy), which is the case for tar-
geted attacks, or not to randomize at all, which is typically
optimal when attacks are indiscriminate.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed artificial intel-
ligence—Intelligent agents

Keywords
Adversarial classification, game theory

1. INTRODUCTION
Machine learning has become a mainstay in a wide variety

of prediction tasks. Among these, there has been consider-
able interest in using machine learning techniques for secu-
rity, for example as a means for detecting intrusions, sepa-
rating spam email from good, and distinguishing benign and
malicious files [21]. However, applying machine learning in
cyber (or physical) security has a particular caveat: unlike
traditional machine learning tasks, the adversary in secu-
rity domains can, and will, actively attempt to undermine

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the classifier, either through evasion (trying to change the
patterns of behavior so as to be misclassified as benign) or
attempted sabotage (for example, manipulating the train-
ing data or the classification software to mislabel instances).
The study of machine learning in such settings has come to
be known as adversarial machine learning [8, 16, 3, 5, 15, 2,
6, 14, 10, 7, 18]. Most of the work to date can be grouped
into two categories: approaches that attempt to modify the
learning algorithms to be robust to adversarial manipula-
tion, typically by leveraging a game theoretic model of the
learner-attacker interaction (e.g., [8, 5]), and studies of the
algorithmic complexity of the adversary’s classifier evasion
problem (e.g., [16, 18]). Moreover, with the notable excep-
tions of Biggio et al. [3] (who propose adding noise to the
classification boundary) and Colbaugh and Glass [7] (who
address randomization among two equally good classifiers),
the vast majority of the work considers only deterministic
classification schemes. When possible, however, randomiza-
tion is widely recognized to be of great value in security, and
it has been leveraged in many other domains [20, 11].

We study the problem of adversarial classification by draw-
ing on ideas from machine learning theory, with the aim of
offering fundamental insights into the nature of the problem.
To begin, we consider the question of adversarial reverse en-
gineering, asking in what circumstances the adversary can
efficiently learn the classifier used by the defender with ar-
bitrary precision. In previous work, Lowd and Meek [16]
showed that a similar problem of reverse engineering a clas-
sifier through queries (an easier problem) is, in general, hard,
but this task can be efficiently done for linear classifiers.
Recently, Nelson et al. [18] have extended these results to
show that query-based reverse engineering can be efficiently
done (approximately) for arbitrary convex-inducing classi-
fiers, but also note that without the ability to query the
classifier, the problem becomes NP-Hard in general. In other
work, Nelson et al. [19] state as an open question a full char-
acterization of the classes of classifiers that are easy to evade.
Our first result shows that an arbitrary classifier can be re-
verse engineered if we impose a natural restriction that it
came from a learnable class. Thus, for practical purposes,
we address the open question posed by Nelson et al. Addi-
tionally, we prove an analogous result for randomized clas-
sification schemes, showing that in this case the scheme can
be efficiently, but imperfectly, reverse engineered, answering
another open question from Nelson et al.

As we identify a clear (theoretical) advantage of random-
ized classification scheme, we proceed to study the problem
of optimal randomization schemes, given a pair of classifiers

485

that may be used as a part of it. Colbaugh and Glass [7]
showed under restrictive assumptions on adversarial behav-
ior that, armed with two equally accurate classifiers, the
learner would optimally choose a uniform randomization
scheme. We study the general setting in which two classifiers
have arbitrary accuracy, and consider a number of settings
with varying adversary capabilities and goals. A surprising
outcome of our endeavor is that, by and large, optimal ran-
domization schemes take on one of two modes: either the
defender randomizes uniformly among the two classifiers, or
chooses the one with higher accuracy. Specifically, when at-
tacks are highly targeted, the learner will always randomize,
while in the case of indiscriminate attacks, the tendency is
for the learner to choose the better classifier.

2. REVERSE ENGINEERING AS LEARN-
ABILITY

2.1 Deterministic Classification
Consider a learning system (a “defender”) which has been

trained to distinguish good and bad instances, for some no-
tion of good and bad (for example, malware and goodware,
spam and ham, etc). We begin by assuming that this learn-
ing system uses a single classifier, and consider the attacker’s
problem of reverse engineering this classifier, or using the
data of past classifications (collected, for example, from re-
peatedly querying the classifier) to determine with high pre-
cision the nature of the classifier.

Formally, let H be the class of possible classifiers which
the defender considers (i.e., the defender’s hypothesis class).
Let (x, y) ∼ P be instances, where x ∈ X is an input feature
vector, and y is a label in {0, 1}. To simplify exposition, we
assume below that y = h̄(x), i.e., a deterministic function of
input x which is the true classification of x as either benign
or malicious. For any h ∈ H, let e(h) = Prx∼P [h(x) $=
h̄(x)] the expected error of h w.r.t. P , and we define eH =
infh∈H e(h) as the optimal (smallest) error achievable by
any function h ∈ H. Let zm = {(x1, y1), . . . , (xm, ym)} be
data generated according to P and let Zm be the set of all
possible zm.

Definition 2.1. Let H be a class of functions mapping x
to {0, 1}. A learning algorithm is a function L : ∪m≥1Z

m →
H. We say that H is learnable if there is a learning algo-
rithm for H with the property that for any ε,δ ∈ (0, 1) and
any P , there exists m0(ε,δ), such that for all m ≥ m0(ε,δ),
Przm∼P {e(L(zm)) ≤ eH+ε} ≥ 1−δ. We say it is efficiently
learnable if m0(ε,δ) is polynomial in 1/ε and 1/δ and there
exists a learning algorithm for H which runs in time poly-
nomial in m, 1/ε, and 1/δ.1

In words, the definition of learnability above says that a
hypothesis class H is learnable if we can compute a nearly-
optimal candidate from this class for an arbitrary distribu-
tion P over data. In our context, learning will be performed
at two levels: first, by the “defender”, who is trying to dis-
tinguish between good and bad instances, and second, by
an “attacker”, who is trying to infer the resulting classifier.
We call the attacker’s learning task as the reverse engineer-
ing problem, with an additional restriction: we require the

1This definition is taken, in a slightly extended form, from
Anthony and Bartlett [1] (Definition 2.1).

attacker to be within a small error, γ, from the actual clas-
sification behavior by the defender, rather than merely from
the best candidate in a hypothesis class.

Definition 2.2. We say that a distribution P over data
(x, y) can be efficiently γ-reverse engineered using a hypoth-
esis class F if there is an efficient learning algorithm L(·)
for F with the property that for any ε,δ ∈ (0, 1), there exists
m0(ε,δ), such that for all m ≥ m0(ε,δ), Przm∼P {e(L(zm)) ≤
γ + ε} ≥ 1− δ.

As the following result demonstrates, efficient learning di-
rectly implies efficient 0-reverse engineering.

Theorem 2.1. Suppose that H is polynomially learnable,
and let ĥ ∈ H be the best candidate in H for some distribu-
tion over instances P . Then the distribution over (x, y) with
x ∼ P and y = ĥ(x) can be efficiently 0-reverse engineered.

Proof. Suppose that we have learned the classifier ĥ ∈
H. Consider the new distribution of instances (x, ĥ(x))
where x ∼ P . The task of the attacker is to reverse en-
gineer this new distribution. In other words, the attacker
wishes to efficiently learn hre which is arbitrarily close to
ĥ w.r.t. x ∼ P . Since ĥ ∈ H, eH = 0, and since H is
efficiently learnable (it was chosen so by the defender), it
follows directly that there is an efficient learning algorithm
for the attacker that outputs hre which makes an error w.r.t.
x ∈ P and ĥ of at most ε with probability at least 1 − δ.
That is, the attacker can consequently efficiently 0-reverse
engineer ĥ.

In essence, this result tells us that if the defender can learn
to distinguish good from bad, the adversary can reverse en-
gineer the resulting decision rule. This result is a signifi-
cant generalization of previous work on ACRE learnability of
classifiers [16, 18]. For example, Nelson et al. [18] prove that
all convex-inducing classifiers are ACRE-learnable, but not
all can be efficiently reverse engineered (a stronger require-
ment). We show, in contrast, that all classifiers, convex-
inducing or not, can be efficiently reverse engineered, as
long as they are learnable by the defender for his classifica-
tion task. Insofar as we view the efficiency of the defender’s
learning algorithm as a practical prerequisite, our result sug-
gests that reverse engineering is easy in practice.

2.2 Randomized Classification Schemes
A fundamental assumption that we have made so far is

that the defender learns, and uses, a single, deterministic
classifier. Recently, there has been a significant push in
the arena of cyber security towards moving target or dy-
namic defense [13, 12]. In our setting, a natural interpreta-
tion of dynamic defense is to learn multiple classifiers, and
use a randomized policy which switches among these on an
instance-by-instance basis.

As before, suppose that we have a distribution P over in-
puts x and let h̄(x) be some fixed ground truth classifying
x as malicious or benign. Suppose that we have n hypoth-
esis classes, Hi, all polynomially learnable. Let hi ∈ Hi be
the best fits to h̄ (w.r.t. P) from these classes, respectively,
and let the corresponding error rates be εi. Additionally,
let∆ ij = Prx∼P{hi(x) $= hj(x)} for all i, j; that is, ∆ij

is the measure of how different hi and hj are from one an-
other. We assume that for all i $= j, ∆ij > 0. Consider a
space of policies parametrized by pi ∈ [0, 1] with

∑
i pi = 1,

486

(a) (b) (c) (d)

Figure 1: Effectiveness of adversarial reverse engineering (a) deterministic Naive Bayes classifier, (b) de-
terministic SVM, (c) randomization over two Naive Bayes classifiers (each using a subset of features), (d)
randomization over two SVM classifiers (each using a subset of features).

where we choose hi with probability pi; we denote the corre-
sponding probability vector by $p. Then, a policy $p induces
a distribution Q($p) over (x, z), where x ∼ P and z = hi(x)
with probability pi. Suppose that the attacker observes an
infinite sequence of such data points, and will fit the best
function h from H = ∪iHi to these. DefineΣ A($p) to be the
expected error of the best such fit measured against the true
randomized policy $p by the defender. The defender, in turn,
will incur a baseline error rate ofΣ D($p) =

∑
i piεi if there

are no attacks.

Theorem 2.2. Suppose that each Hi is polynomially learn-
able, and let hi ∈ Hi be the best candidate in Hi. Then, any
distribution Q($p) over (x, z) can be efficiently ΣA($p)-reverse
engineered, where ΣA($p) = mini

∑
j $=i pj∆ij .

This and other missing proofs are in the online appendix
(http://appendices.webs.com/proofs.pdf). A direct con-
sequence of this result is that if each Hi admits a good fit to
the ground truth, the randomized classification scheme can
be approximately reverse-engineered for any $p.

Corollary 2.3. Suppose that each Hi is polynomially
learnable, and let hi ∈ Hi be the best candidate in Hi. Then,
any distribution Q($p) over (x, z) can be efficiently 2ε̄-reverse
engineered, where ε̄ = maxi εi.

There are two ways to think about this result. On the one
hand, it makes clear that even with randomization, reverse
engineering is easy as long as all classifiers among which
we randomize accurately predict the target. On the other
hand, clearly the attacker does incur an error, and this er-
ror depends directly on the difference among the classifiers,
which can be significant if at least some of the classifiers are
not very accurate. This suggests tradeoff between classifica-
tion accuracy and susceptibility to being reverse engineered:
using low-accuracy classifiers allows the defender to induce
a higher learning error rate on the attacker, but will also
degrade performance against the target. In the sequel, we
explore this tradeoff, considering the problem of choosing
an optimal randomized classification scheme. Before we can
do this, however, we need a tighter bound on the reverse
engineering error than that provided by Theorem 2.2. We
now show that in the special case when the defender only
randomizes between two classifiers (i.e., n = 2), this bound
is tight. Since there are only two classifiers, let p be the
probability of choosing h1, with 1 − p the probability of
choosing h2. The bound in Theorem 2.2 is then equivalent
to ∆min{p, 1− p}, where ∆ = ∆12 = ∆21.

Proposition 2.4. Suppose that there are two classifiers,
h1 and h2, and p is the probability of choosing h1. Then,
ΣA(p) = ∆min{p, 1− p}.
This result is critical for our analysis of specific adversarial
reverse engineering vignettes below, which we restrict to two
classifiers. As it turns out, this result does not hold for more
than two classifiers (see online appendix).

2.3 Experiments
The theoretical results above have two practical limita-

tions: first, they are asymptotic, assuming large amounts
of data, and second, they assume that the algorithms em-
ployed actually satisfy the theoretical assumptions (for ex-
ample, the particular algorithm used may end up finding a
local, rather than a global, minimum). We consider, there-
fore, two algorithms commonly used for spam classification:
Naive Bayes and SVM. In our experiments, we first learn a
classifier on Enron data, then use a subset of samples of in-
put vectors of a given size, evaluated using the learned classi-
fier, as input to the adversary’s reverse engineering problem.
The adversary then uses the same algorithm to attempt to
identify the classifier based on this data. In Figure 1 (a) and
(b) we offer the results for Naive Bayes and SVM, respec-
tively, for different numbers of initial samples used to train
the classifier, as well as number of samples taken by the at-
tacker. The theoretical result is essentially borne out in both
cases, although it is much stronger in the case of SVM, in
large part because it is a more effective algorithm. This is a
recurrent theme in our paper: a good learning algorithm is
a double-edge sword, since it can equally well be applied to
reverse engineer the resulting classifier. Notice that this is
quite unlike traditional over-fitting: here, we actually mean
performance on test data; the issue is that effective algo-
rithms are effective also when used by the attacker.

In the next set of experiments, we consider what hap-
pens if the learner can randomize among two classifiers. We
set this up by splitting the set of features into two non-
overlapping subsets, learning corresponding classifiers, and
then uniformly randomizing between these. Figure 1 (b)
and (c) shows the reverse engineering error rates when both
classifiers are Naive Bayes and SVM respectively. As our
results predict, randomization can be quite effective in re-
ducing the accuracy of reverse engineering attempts, but
there is a caveat: when the learner uses a larger sample
size, the advantage of randomization fades away. The rea-
son is that when the learner uses relatively few samples,
the learned classifiers are typically less accurate and, conse-

487

quently, more unlike (i.e., higher ∆), and recall that it is the
difference between the two classifiers that is pivotal in deter-
mining reverse engineering effectiveness. With many train-
ing samples, however, both learners are likely quite similar,
so randomization offers little advantage.

3. OPTIMAL RANDOMIZED DEFENSE:
BASELINE MODEL

We start our study of optimal randomized classification by
considering an objective which explicitly trades off minimiz-
ing the error against the underling target h̄ and maximizing
reverse engineering error. We assume that there are only
two candidate classifiers, h1 and h2, with errors ε1 and ε2
w.r.t. h̄, and consequently the defender’s decision amounts
to choosing p, which we define as the probability of classify-
ing an input according to h1. Without loss of generality we
assume from now on that ε2 ≤ ε1. The defender’s objective
function is then βΣA(p)−(1−β)ΣD(p), where β ∈ [0, 1] is an
exogenous measure of importance of the two factors in the
objective. We now fully characterize the optimal solutions
to this problem.

Theorem 3.1. The optimal solution of the problem
maxp∈[0,1] βΣA(p)− (1− β)ΣD(p) is:

p∗ =

1/2 if ∆β > (1− β)(ε1 − ε2)
0 if ∆β < (1− β)(ε1 − ε2)

any p ∈ [0, 1/2] o.w.

The characterization in Theorem 3.1 suggests that in typ-
ical cases the defender will either choose one of the two clas-
sifiers uniformly at random, or choose the better classifier
with probability 1. Which of these is optimal depends on
the relative importance of the adversarial ability to reverse
engineer the classification scheme (captured by the parame-
ter β), the relative quality of the two classifiers ε1 − ε2, and
how different the two classifiers are (captured by∆). Other
things being equal, the more different the two classifiers, the
more value is gained by randomizing between them; on the
other hand, the better h2 is compared to h1, the stronger
the pull towards choosing this classifier with probability 1.

The reason that the result above is surprising is that in-
tuitively we may expect that while uniformly random clas-
sification is optimal for equally good classifiers, probabili-
ties would gradually shift to favor the better classifier as its
relative superiority increases. The latter is, indeed, more
typical of other randomized security schemes [20, 11], and is
also the observation previously made in adversarial machine
learning [7]. One substantial difference between our baseline
optimization problem and the treatment of related problems
in the literature is that we only consider the error that the
attacker incurs in reverse engineering our decision rule, and
do not have a model of how this error affects actual attacks
on the classifiers. In the remainder, we consider several mod-
els that capture both the reverse engineering problem, and
the corresponding “attacks” on the classifiers.

4. MODELS OF CLASSIFIER MANIPULA-
TION

We have so far specified one aspect of our attacker model:
the attacker chooses the best fit h to the defensive classifi-
cation scheme among all functions from a hypothesis class

H = ∪iHi, that is, considering all possible candidate clas-
sifiers the defender could be using (in doing so, we rely on
the assumption that Hi are learnable and we can therefore
approximate h arbitrarily well with enough data). Given
such a fit h to the defender’s decision process, the main re-
maining question is how to model the impact of adversarial
manipulation which uses h.

We denote by Ah the event that the attacker is manip-
ulating (attacking) a classifier h, and Ah(x) to mean that
the manipulation affects an input x (that is, whatever ma-
nipulation is deployed by the adversary, it has an effect on
input x), whereas ¬Ah(x) will mean that manipulation of
h does not affect x. For any classifier hi used by the de-
fender, the effect of adversarial manipulation is to change
the classification accuracy of hi relative to ground truth,
h̄, on a subset of inputs x. This can happen in two ways:
either the actual classification scheme is impacted directly,
where the adversary changes something about the the code
implementing the classification (for example, by flipping the
outcome of classification for select inputs x using embedded
malware), or indirectly, with the adversary actually chang-
ing the ground truth h̄ (for example, by changing a spam
template so that spam is now classified as benign). Gener-
ically, we let {hA

i (x) $= h̄(x)} be the event that the clas-
sifier i predicts the true classification of x incorrectly after
adversarial manipulation (which may have targeted another
classifier h); although we only use a modifier on hi, we mean
this to capture both kinds of manipulation above.

Another important modeling element as yet left open is
how the attacker chooses the classifier h to manipulate. We
consider two options. The first is that the attacker chooses
to manipulate the function that is his best fit to the random-
ized classification scheme; we refer to this model as attacking
the best fit. This is a natural, indeed, almost obvious choice.
However, in this model the attacker is acting suboptimally
from another perspective: in his choice of which classifier to
attack, he does not consider his ultimate objective, which is
to maximize the expected error incurred by the defender. In
our second model, therefore, the attacker chooses a classifier
to manipulate so as to maximize the resulting expected clas-
sification error by the defender; we refer to this alternative
as attacking to maximize the defender’s error. This latter
model carries with it a complication which makes it poten-
tially less practically plausible. While we observed above
that when there are only two classifiers, the attack error
is minimized when choosing one of them, when we consider
that an adversary aims to maximize the defender’s error, this
restriction may now be suboptimal for the attacker, making
analysis intractable at the level of generality we consider
here. We deal with this complication by restricting atten-
tion to attacks in which the attacker still only chooses one
of the classifiers used by the defender. This restriction can
be justified by assuming that the attacker knows the true
target and all hypothesis classes the defender learns from.
In any case, it will provide us with initial insights, and we
leave improved treatments of this model for future work.

4.1 Targeted (Classifier Evasion) Attacks
One widely studied class of attacks on classifiers is what

is known as classifier evasion [19, 2, 18] or adversarial clas-
sifier reverse engineering (ACRE) attacks [16]. In such at-
tacks, an attacker is assumed to choose a single input x
which is misclassified by the learning agent (defender); typ-

488

ically, the focus is on inducing a false negative, thereby al-
lowing the adversary to get malicious input past the filters.

There are, indeed, two variants of this model which we can
consider. In the first, the adversary knows the actual target
of learning, h̄, as well as Hi for all i used by the defender.
If this is the case, the adversary’s job is easy: merely find
an instance x that will be misclassified by all hi (which the
attacker can infer given above information). This attack will
succeed with probability 1, no matter what $p is.

The limitation of the above model, from the attacker’s
perspective, is that it is not at all clear how difficult it would
be for the attacker to find a desirable instance x that by-
passes all of the classifiers. We therefore consider an alter-
native, in which the attacker will either only choose to evade
the best fit, or the best alternative of all i that maximizes
the defender’s error. In this model, if the defender chooses
hi which is manipulated by the attacker, the attacker always
succeeds. However, if the defender chooses another classifier
hj , the attacker only succeeds with probability 1 −∆ij .2

4.2 Indiscriminate Attacks
Many attacks on machine learning systems are not care-

fully targeted, either due to the difficulty of identifying pre-
cisely what target one should aspire to, or because of lim-
ited ability to manipulate specific training or evaluation in-
stances [17, 9]. We now consider several abstract models of
attacks that have this nature.

Our first, quite natural, assumption, on the nature of in-
discriminate manipulation is that when x is not affected by
manipulation, the correctness of its previous classification
by hi is not affected. Formally, we assume that

∀ i, h : Pr
x
{hA

i (x) $= h̄(x)|¬Ah(x), hi(x) $= h̄(x)} = 1 (1)

∀ i, h : Pr
x
{hA

i (x) $= h̄(x)|¬Ah(x), hi(x) = h̄(x)} = 0. (2)

In addition, we assume that the impact of manipulation on
the accuracy of the classifier i is independent of which clas-
sifier is actually being manipulated by the adversary, if we
know that x is affected by manipulation. Thus, we introduce
the following notation:

∀ i, h : Pr
x
{hA

i (x) $= h̄(x)|Ah(x), hi(x) $= h̄(x)} = ri (3)

∀ i, h : Pr
x
{hA

i (x) $= h̄(x)|Ah(x), hi(x) = h̄(x)} = si. (4)

In words, ri is the probability that an input misclassified by
hi remains misclassified after manipulation, and si the prob-
ability that a correctly classified input becomes misclassified.
Thus, for highly effective manipulations we expect both ri
and si to be close to 1. Finally, we model manipulation
as an indicator whether x is affected or not, as described
above, which means that, in general, all that matters is the
probability that manipulation has an effect on input x. For
our purposes, the following variables capture all the relevant
information about the effectiveness of manipulation Ah:

Pr
x
{Ai(x)|h(x) $= h̄(x)} = fih, and (5)

Pr
x
{Ai(x)|h(x) = h̄(x)} = f̄ih, (6)

2We are effectively assuming here that the attacker evaluates
the probability that hi and hj are different according to the
same distribution as that generating instances x. In fact,
this caveat will make no difference for our analysis, and we
only keep it to simplify notation.

where we use i as a shorthand for hi (as we do below as well).
Intuitively, fih is the probability the an instance misclassi-
fied by a classifier h is affected by the attack on classifier
i. Similarly, f̄ih is the corresponding probability of success-
fully affecting an instance correctly classified by h through
an attack on i. Put differently, fih and f̄ih capture the ex-
ternalities of manipulating i on another classifier h when
h $= i, or simply the expected impact of manipulation when
h = i (i.e., how well it works). When a function being ma-
nipulated is one of the defender’s classifiers indexed by j,
we simply use notation fij and f̄ij for the above quantities.
For a highly successful (targeted) manipulation, for exam-
ple, we expect fii ≈ 0 while f̄ii ≈ 1, that is, the attacker
aims to affect only the correctly classified instances. Finally,
we define fi := fii.

We now introduce some more notation that we will need
for the analysis below. Define εih = εhi = Prx{hi(x) $=
h̄(x) ∧ hi(x) = h(x)} = Prx{h(x) $= h̄(x) ∧ hi(x) = h(x)}.
Then, for all i, h, εi = εih + γih, where γih = Prx{hi(x) $=
h̄(x)∧hi(x) $= h(x)}, and εh = εih+γhi. Observe that for all
i, εii = εi, and γii = 0. Moreover, it is not difficult to verify
that ∀ i, hγ ih + γhi = ∆ih = ∆hi. Armed with this frame-
work, we can derive the expression for the probability that a
classifier i used by the defender makes a mistake if another
classifier h is used as the object of adversarial manipulation.

Theorem 4.1.

Pr
x
{hA

i (x) $= h̄(x)|Aj}

= (1− fji)εi + rifjiεi + sif̄ji(1− εi). (7)

The model of manipulation above, while generic, has a
lot of moving parts that make it difficult to obtain clean
insights. Consequently, for our analyses below we make an-
other restriction that the probability that an input x is af-
fected depends only on how it is classified by the classifier h
targeted by the adversary. Formally, we assume that

Pr
x
{Ah(x)|h(x) $= h̄(x), h′(x) $= h̄(x)}

= Pr
x
{Ah(x)|h(x) $= h̄(x)} = fh (8)

and

Pr
x
{Ah(x)|h(x) = h̄(x), h′(x) $= h̄(x)}

= Pr
x
{Ah(x)|h(x) = h̄(x)} = f̄h. (9)

Note that this is not an innocuous restriction, as it implies
that manipulation has to be, in general, uniform across in-
puts x. This would capture manipulations in which the at-
tacker targets the inputs randomly, but then decides whether,
say, to flip a classification output bit depending on whether
it is classified correctly or not (or create a new template cor-
responding to that feature vector if it is classified as benign).
Given the restrictions 8 and 9, we can obtain expressions for
the probability that a classifier i is incorrect.

Theorem 4.2. Under the assumptions 8 and 9,
Pr
x
{hA

i (x) $= h̄(x)|Ah}

= (1− f̄h)γih + (1− fh)εih + ri(f̄hγih + fhεih)

+ si(f̄h(1− εi)− (f̄h − fh)γhi). (10)

Below, we analyze two specific parametric variations of
this restricted manipulation model in increasing order of
generality:

489

Model I assumes that ri = si = 1 for all i, and fh = f̄h
for all h. As a consequence, we obtain a much simplified
expression for the probability of error due to manipulation:

Pr
x
{hA

i (x) $= h̄(x)|Ah} = εi + fh(1− εi) ∀ i, h.

Model II generalizes Model I, allowing fh $= f̄h. In this
model, the probability of error due to manipulation is

Pr
x
{hA

i (x) $= h̄(x)|Ah} = εi+ f̄h(1−εi)−(f̄h−fh)γhi ∀ i, h.

5. TARGETED ATTACKS
We now proceed to analyze optimal randomized policies

under our model of targeted attacks. A key step in this
analysis is to quantify the expected error incurred by the
defender when hi is targeted by the adversary, which we do
in the following lemma.

Lemma 5.1. If the attacker attacks h1, the defender’s ob-
jective value is O(h1) = (1−∆)+p∆, while if h2 is attacked,
the defender’s objective value is O(h2) = 1− p∆.

Armed with this simple characterization, we proceed to
describe optimal defense for the two models of attacker choice,
one in which the attacker first obtains the best fit h to the
data, and then exploits h, and another in which the attacker
is actually trying to exploit a function which maximizes the
defender’s error. Surprisingly, we find below that these two
models result in exactly the same prescription for the de-
fender: uniform randomization between the two classifiers.

5.1 Attacking the Best Fit
When p ≥ 1/2, the attacker will attack h1, and will attack

h2 when p < 1/2. By Lemma 5.1, therefore, and the fact
that∆ > 0, the optimal decision of the defender is to ran-
domize uniformly between h1 and h2, since the coefficient
on p is positive when p ≥ 1/2 and negative when p ≤ 1/2.
We thus obtain the following result.

Theorem 5.1. When the attacker manipulates best fit in
a targeted attack, p∗ = 1/2.

This result is surprising because it is independent either of
the baseline error rates, or of the difference between the clas-
sifiers. The objective value, however, does depend on how
different the classifiers are, which suggests a very counter-
intuitive defensive strategy of choosing two arbitrary classi-
fiers that are as dissimilar as possible, and uniformly ran-
domizing between them. Such a strategy is clearly unreason-
able in practice, and this result rather suggests a limitation
of considering only targeted attacks: many attacks (spam,
etc) are, in fact, not so directly targeted. Often, malware
slowly evolves in response to filtering techniques, and our
abstraction of this evolution process into a single stage is
clearly limiting here. The main insight, however, is that,
given highly targeted attacks (e.g., malware generated by
criminals targeting, for example, proprietary information),
the most the defender can do in this limited defense space
is to maximize classification entropy, making the attacker’s
reverse engineering problem more challenging and uncertain.

5.2 Attacking to Maximize the Defender’s
Error

Suppose now that the attacker anticipates the result of
manipulation on the defender’s error, and attempts to make

a choice of which hi to manipulate based on this objec-
tive. By Lemma 5.1, therefore, the attacker will prefer h1 iff
O(h1) ≥ O(h2), or, equivalently, iff (1−∆)+p∆ ≥ 1−p∆ ⇔
p ≥ 1/2, since∆ > 0. Consequently, we get the following
surprising result:

Theorem 5.2. When the attacker maximizes the defender’s
error in a targeted attack, p∗ = 1/2.

Remarkably, therefore, whether the attacker targets the best
fit, or attempts to account for the resulting defense classifi-
cation error, the defender’s optimal policy remains the same,
which is to classify according to each hi with equal proba-
bility. The baseline error does not enter the equation, since
in this model the attacker always finds an input which is
misclassified by the targeted function; thus, baseline errors
do not even enter the objective. It may still be surprising
that the quantity ∆ does not play a role, but note that it is
symmetric, and the attacker will therefore confer the max-
imal error on the defender by attacking the most likely hi

under the defender’s policy. Consequently, the defender’s
only recourse is to choose hi uniformly at random.

5.3 Discussion
Randomization is often noted to endow a defender with

substantial power over a deterministic choice of defense [3,
4]. Indeed, we observe this to be very much the case with
targeted attacks: either the attacker must now subvert mul-
tiple classifiers, or he can be forced by the defender to incur
some probability of failure even in a highly targeted attack.
When we get down to specifics, however, our results offer
several extremely counter-intuitive findings. The first is that
the results or the error rates after the attack do not directly
depend on the baseline error rate of the classifiers. This is,
of course, natural once we consider that the very nature of
targeted attacks, through exploiting misclassification, makes
baseline error rates irrelevant. But there is a far more subtle,
and far more surprising consequence of our results. Consider
the optimal expected error rate achievable by the defender
given a targeted attack, 1−∆/2 and note that ∆ ≤ ε1 + ε2
(shown in the proof of Corollary 2.3 in the online appendix).
Consequently, we reach the following remarkable conclusion:
the better the baseline performance of classifiers, the worse
the performance after a targeted attack ! The reason is that
good accuracy of both classifiers implies high similarity, and,
consequently, higher likelihood that adversarial tampering
will affect both of them. As we mentioned before, we cer-
tainly do not use this result to advocate in favor of lousy
classifiers for malware detection. Rather, this result offers
us insight into some of the tradeoffs between performance
on current data and future exploitability that arise in the
adversarial classification settings.

6. INDISCRIMINATE ATTACKS
The second important class of attacks on classifiers that

we consider involves indiscriminate attacks, implying a threat
model in which an attacker does not have the ability to hand-
pick a fixed input, but is rather tampering with a broad
class of instances (we do allow for some very limited target-
ing based on whether the classifier is accurately classifying
instances or not in Model II described earlier).

As above, the first step is to characterize the impact of
attacks on defender’s classification error, which we do below

490

for Models I and II of consequences of indiscriminate attacks,
respectively.

Lemma 6.1. Under Model I, if the attacker attacks hi,
the defender’s objective value is

O(hi) = ε2 + fi(1− ε2) + p(1− fi)(ε1 − ε2).

Lemma 6.2. Under Model II, if the attacker attacks h1,
the defender’s objective value is

O(h1) = ε2 + f̄1(1− ε2)− (f̄1 − f1)γ12

+ p
(
(1− f̄1)(ε1 − ε2) + (f̄1 − f1)γ12

)
.

while when h2, the defender’s objective value is

O(h2) = ε2 + f̄2(1− ε2)− (f̄2 − f2)γ21

+ p
(
(1− f̄2)(ε1 − ε2)− (f̄2 − f2)γ21

)
.

6.1 Attacking the Best Fit
6.1.1 Model I
We now characterize optimal randomization under the

first model of adversarial manipulation.

Theorem 6.1. The optimal solution when the attacker
exploits hi which is the best fit to the randomized strategy
p under Model I is:

p∗ =

{
0 if 2(f2−f1)

1−f1
≤ ε1−ε2

1−ε2
1/2 o.w.

Let us make a few simple observations based on the result
in Theorem 6.1. First, if f2 < f1, p∗ = 0, since ε2 ≤ ε1.
This is highly intuitive: if h2 is better than h1 in both base-
line error and susceptibility to manipulation, it is surely the
dominant choice. Second, it may be surprising that under
no condition do we always (with probability 1) choose h1 in
this setting. To see why, it is helpful to rearrange O(hi) in
Lemma 6.1, getting O(hi) = fi + (1 − fi)(pε1 + (1 − p)ε2).
Since the attacks do not condition on the classifier at all, and
are indiscriminate, fi represents, in essence, an attacker’s
budget in attacking a classifier hi; given that, the success
of attacks is not affected by the defensive posture p, and
only when the attacks are not successful does defense enter
into play. However, in the latter case, the only thing that
the defender can impact is the baseline accuracy, hence the
tendency towards low p∗. The reason the defender will still
randomize is entirely to persuade the attacker to attack the
classifier h1 if it yields a significantly lower success rate f1
(for example, because it is easier to hack the computer that
executes that classifier). In practice, it seems likely that
f1 ≈ f2 and, therefore, p∗ = 0 in most interesting cases.

6.1.2 Model II
The characterization for the second model, when the at-

tacker manipulates the best fit, takes the following, rather
more complex form.

Theorem 6.2. Suppose that f̄i ≥ fi. Then the optimal
solution when the attacker exploits hi which is the best fit to
the randomized strategy p under Model II is:

p∗ =

0 if ε2−ε1
γ21

≥ f̄2−f2
1−f̄2

&

2f̄1(1− ε2) + (1− f̄1)(ε1 − ε2)−D1γ12
≥ 2f̄2(1− ε2)− 2D2γ21

1/2 o.w.

where Di = f̄i − fi.

One high-level observation we can make about the charac-
terization in Theorem 6.2 is that there is now a stronger
push towards randomization when the attacker actively dis-
criminates manipulations based on observed (or inferred)
classification correctness of the defender. Nevertheless, for
a substantial range of problem parameters, the tendency is
for the defender to choose the classifier with lower baseline
error with probability 1.

6.2 Attacking to Maximize the Defender’s
Error

6.2.1 Model I

Lemma 6.3. If f1 > f2, the attacker always exploits h1.
If f1 < f2, the attacker always exploits h2. If f1 = f2, the
attacker is indifferent.

The implication of this result is that the attacker’s optimal
decision is independent of the learner’s choice of p. Since
both O(h1) and O(h2) are increasing in p, the defender’s
optimal strategy is to set p∗ = 0. We state this in the
following theorem.

Theorem 6.3. In an optimal solution, the defender chooses
h2 with probability 1, that is, p∗ = 0.

This result echoes what we observed in the case when the
attacker simply attacks the best fit. In the latter case, the
characterization was somewhat more nuanced, but practi-
cally speaking, the bottom-line is that p∗ = 0 is a robust
optimal strategy for the defender when attacks are indis-
criminate: since such attacks do not strongly depend on the
choice of a classifier the defender uses, he may as well use
the one with the best baseline performance. Randomization
adds little value in this context.

6.2.2 Model II
Below, we define H̄ = (f̄1−f̄2)(1−ε2)−[(f̄1−f1)γ12−(f̄2−

f2)γ21], H = (f̄1− f̄2)(ε1− ε2)− [(f̄1−f1)γ12+(f̄2−f2)γ21],
and H = H̄/H .

Lemma 6.4. If H > 0, the attacker exploits h1 iff p ≤ H.
Otherwise, the attacker exploits h1 iff p ≥ H.

For the sequel, assume that f̄i ≥ fi, in which case H ≥ H̄.
We distinguish three cases.

Case I: H̄ > 0 and H > 0. In this case, H ≥ 1, which
implies that the attacker chooses h1 for any p. Since O(h1)
is increasing in p when f̄i ≥ fi, p∗ = 0 in this case.

Case II: H̄ > 0 and H < 0. In this case, the attacker
will choose h1 iff p ≥ H . Since H < 0, this implies that
the attacker will always exploit h1 and, consequently, the
defender will choose p∗ = 0, just as in Case I.

Case III: H̄ < 0 and H < 0, which implies that H ≥ 0.
Additionally, since H̄ ≥ H, −H̄ ≤ −H, which implies that
H ≤ 1. By Lemma 6.4, then, the attacker will exploit h1 iff
p ≥ H . Since by our assumption above, O(h1) is increasing
in p, it means that if the defender is trying to incentivize the
attacker to attack h1, his optimal choice is p∗h1

= H . Matters
are slightly more subtle if the defender wishes to incentivize
an attack on h2. Here, it is not difficult to derive that O(h2)

is decreasing in p iff ε1−ε2
γ21

≥ f̄2−f2
1−f̄2

. If O(h2) is decreasing in

p, p∗h2
= p∗h1

= H , which implies that p∗ = H . Otherwise,
the optimal decision depends on the relative objective values

491

in these two instances. The optimal objective value for the
defender if the attacker attacks h1 (i.e., when p = H) is
ε2+f̄1(1−ε2)−(f̄1−f1)γ12+H [(1−f̄1(ε1−ε2)+(f̄1−f1)γ12)],
while the optimal setting of p when O(h2) is increasing in
p is p = 0, yielding the objective value of ε2 + f̄2(1− ε2) −
(f̄2 − f2)γ21. Consequently, p

∗ = 0 in this case i ff

(f̄2 − f2)γ21 − (f̄2 − f̄1)(1− ε2)

≤ (1−H)(f̄1 − f1)γ12 −H(1− f̄1)(ε1 − ε2).
(11)

To help understand the implication of Condition 11 it is
useful to consider what is implied by Case III: H̄ < 0 and
H < 0 suggests that the dominant term in these expressions
is (f̄1−f1)γ12. Thus, the attacker, when he manipulates h1,
can rather effectively distinguish instances which are clas-
sified correctly, and those which are not. As a result, we
can expect the right-hand-side to be relatively large, and
the condition to be typically true. Since h2 is already better
(by our assumption) in terms of baseline (non-adversarial)
performance, it is in such a case a clear preference for the
defender. Thus, for Case III, just as in Cases I and II, we
can conclude that typically we expect p∗ = 0.

6.3 Discussion
Despite considering several different models of manipu-

lation in the context of indiscriminate attacks, our results
are relatively consistent: facing this class of attacks, the de-
fender will often eschew randomization entirely, and simply
use the classifier with better baseline performance. This is
rather dramatically in contrast with the situation we ob-
served when the attacks are targeted, in which case baseline
performance of the classifiers had no impact at all, and the
defender would simply choose among classifiers uniformly at
random.

7. CONCLUSION
We studied optimal randomized classification both when

attacks are targeted and when they are indiscriminate, and
obtained almost completely different answers: in the former,
the defender will randomize uniformly between the classi-
fiers, while in the latter an optimal scheme would rarely
randomize at all. In reality, attacks do not neatly fall into
one of these stylized classes. In some settings, such as spam,
attacks tend towards indiscriminate, while in spear phishing
the attacks are more targeted. System designers using ma-
chine learning tools in adversarial settings should therefore
consider carefully which stylized model is best aligned with
their predicament, and use our insights as guidelines to best
determine operational security posture.

8. REFERENCES
[1] Martin Anthony and Peter L. Bartlett. Neural Network

Learning: Theoretical Foundations. Cambridge University
Press, 1999.

[2] Marco Barreno, Blaine Nelson, Anthony D. Joseph, and
J.D. Tygar. The security of machine learning. Machine
Learning, 81:121–148, 2010.

[3] Battista Biggio, Giorgio Fumera, and Fabio Roli.
Adversarial pattern classification using multiple classifiers
and randomisation. In Lecture Notes in Computer Science,
pages 500–509, 2008.

[4] Battista Biggio, Giorgio Fumera, and Fabio Roli. Multiple
classifier systems for adversarial classification tasks. In
Eighth International Workshop on Multiple Classifier
Systems, pages 132–141, 2009.

[5] Michael Brückner and Tobias Scheffer. Nash equilibria of
static prediction games. In Advances in Neural Information
Processing Systems, pages 171–179, 2009.

[6] Michael Brückner and Tobias Scheffer. Stackelberg games
for adversarial prediction problems. In Proceedings of the
17th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’11, pages
547–555, New York, NY, USA, 2011. ACM.

[7] Richard Colbaugh and Kristin Glass. Predictive defense
against evolving adversaries. In IEEE International
Conference on Intelligence and Security Informatics, pages
18–23, 2012.

[8] Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai,
and Deepak Verma. Adversarial classification. In
Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages
99–108, 2004.

[9] P. Fogla and W. Lee. Evading network anomaly detection
systems: Formal reasoning and practical techniques. In
ACM Conference on Computer and Communications
Security, pages 59–68, 2006.

[10] Ling Huang, Anthony D. Joseph, Blaine Nelson,
Benjamin I.P. Rubinstein, and J. D. Tygar. Adversarial
machine learning. In Fourth ACM workshop on Security
and artificial intelligence, pages 43–58, 2011.

[11] Manish Jain, Jason Tsai, James Pita, Christopher
Kiekintveld, S. Rathi, Milind Tambe, and Fernando
Ordonez. Software assistants for randomized patrol
planning for the lax airport police and the federal air
marshals service. Interfacs, 40:267–290, 2010.

[12] S. Jajodia, A.K. Ghosh, V.S. Subrahmanian, V. Swarup,
C. Wang, and X.S. Wang, editors. Moving Target Defense
II. Springer, 2013.

[13] S. Jajodia, A.K. Ghosh, V. Swarup, C. Wang, and X.S.
Wang, editors. Moving Target Defense. Springer, 2011.

[14] Murat Kantarcioǧlu, Bowei Xi, and Chris Clifton. Classifier
evaluation and attribute selection against active
adversaries. Data Min. Knowl. Discov., 22(1-2):291–335,
January 2011.

[15] Wei Liu and Sanjay Chawla. Mining adversarial patterns
via regularized loss minimization. Machine Learning,
81:69–83, 2010.

[16] Daniel Lowd and Christopher Meek. Adversarial learning.
In ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining, pages 641–647, 2005.

[17] Daniel Lowd and Christopher Meek. Good word attacks on
statistical spam filters. In Conference on Email and
Anti-Spam, 2005.

[18] Blaine Nelson, Benjamin I.P. Rubinstein, Ling Huang,
Anthony D. Joseph, Steven J. Lee, Satish Rao, and J.D.
Tyger. Query strategies for evading convex-inducing
classifiers. Journal on Machine Learning Research,
13:1293–1332, 2012.

[19] Blaine Nelson, Benjamin I.P. Rubinstein, Ling Huang,
Anthony D. Joseph, and J.D. Tygar. Classifier evasion:
Models and open problems. In Workshop on Privacy and
Security Issues in Data Mining and Machine Learning,
pages 92–98, 2010.

[20] P. Paruchuri, J. Pearce, Janus Marecki, and Milind Tambe.
Playing games for security: An efficient exact algorithm for
solving Bayesian Stackelberg games. In Seventh
International Conference on Autonomous Agents and
Multiagent Systems, pages 895–902, 2008.

[21] Robin Sommer and Vern Paxson. Outside the closed world:
On using machine learning for network intrusion detection.
In IEEE Symposium on Security and Privacy, pages
305–316, 2010.

492

