
Asymmetric Abstractions for Adversarial Settings

Nolan Bard
University of Alberta
Edmonton, Alberta

nolan@cs.ualberta.ca

Michael Johanson
University of Alberta
Edmonton, Alberta

johanson@cs.ualberta.ca

Michael Bowling
University of Alberta
Edmonton, Alberta

bowling@cs.ualberta.ca

ABSTRACT
In multiagent domains, an agent’s beliefs about how other agents
will or could act plays a significant role in their own behaviour.
In large domains where it is infeasible to uniquely represent every
possible decision an agent will face, abstraction is often used to
collapse the state and action space to make the problem tractable.
By abstracting other agents’ views of the environment, the agent
makes assumptions about how other agents act. Incorrect abstrac-
tion choices can yield less than ideal performance as other agents
may, in reality, use coarser or finer abstraction than they were mod-
elled with. The standard approach when abstracting is to use sym-
metric abstraction: where all agents are assumed to distinguish
states in the same way. This work examines the benefits and po-
tential pitfalls of using asymmetric abstractions in two-player zero-
sum extensive-form games. Using the domain of two-player limit
Texas hold’em poker, we investigate the performance of strate-
gies using both symmetric and asymmetric abstractions in terms
of in-game utility and worst-case utility in the real game. Further-
more, we show that combining asymmetric abstractions with robust
counter-strategy techniques can produce counter-strategies which
dominate their symmetric abstraction counterparts in terms of both
exploitative power and worst-case utility.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert Systems—
Games

General Terms
Algorithms

Keywords
Game theory; extensive-form games; abstraction; agent modelling;
opponent modelling; multiagent learning; poker

1. INTRODUCTION
In large decision-making scenarios it is common to use abstrac-

tion techniques to simplify the space of solutions and to make it
tractable for our reasoning algorithms. The granularity of an ab-
straction presents a trade-off between computational requirements

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and
Michael Huhns (eds.), Proceedings of the 13th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS
2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

and the fidelity of the abstraction. In single-agent settings, one typ-
ically uses the finest granularity possible that is tractable given the
available computation.

In multiagent settings, the situation is considerably more com-
plicated. First, it is not only necessary to choose an abstraction for
the agent of interest, but it is also necessary to choose an abstrac-
tion for the other agents in the environment. Such an abstraction
choice is representing one’s belief about the other agents’ capa-
bilities, knowledge, and computational capacity. In this sense, a
fine-grained abstraction is not always the obvious choice. Further,
given fixed computational resources, it is not obvious how to trade-
off using those resources to have a finer-grained agent abstraction
or a finer-grained abstraction for the other agents. The situation
in multiagent scenarios is complicated by Waugh et al.’s abstrac-
tion pathologies [13], which show that in multiagent domains there
is no guarantee that refining an abstraction will result in a better
approximation of optimal behaviour.

Despite the lack of theoretical guarantees, there is considerable
evidence that finer-grained abstractions do actually improve agent
decision-making. For example, in Texas hold’em poker, finer-
grained abstractions have been shown to perform better in head-
to-head competitions [14, 4] as well as resulting in less exploitable
behaviour in the worst case [8, 7]. However, all of this empirical
evidence has been based on symmetric abstraction choices, where
the same abstraction is used for all of the agents. There has been
no empirical analysis in this game on the effect of asymmetric
abstractions, i.e. different abstractions for the agents, on the quality
of the resulting behaviour. As a result, there is no guidance to a
practitioner for how they should trade off abstraction granularity
between the agents. However, this is exactly one of the key choices
faced by practitioners.

In this paper, we present the first thorough empirical exploration
of asymmetric abstractions. We do this in the domain of two-
player limit Texas hold’em, where others have shown the value of
symmetric abstractions. We examine how the abstraction trade-off
affects an agent’s performance in both head-to-head competition
and in terms of worst-case exploitability, which is often used as
a measurement of Nash equilibrium approximation quality. Our
results give the first guidance for practitioners on the abstraction
trade-off and show that symmetric abstractions, while being the
most common choice, may not be ideal. In addition, we explore the
effect of abstraction choice when building counter-strategies from
observations of other agents. In this case, there is an additional
trade-off of representation capacity and sample efficiency.

2. BACKGROUND
We begin our exposition with an introduction of basic terms

and concepts for extensive-form games, our experimental domain

501

of two-player limit Texas hold’em poker, and existing solution
techniques for extensive-form games.

2.1 Extensive-Form Games
Extensive-form games are a natural formalism for describing the

interaction of agents in an environment. These interactions are
represented by a tree in which nodes represent game states at which
some player acts, and edges represent the possible actions. Leaf
nodes represent the end of the game, and assign utilities to the
players. In games with random chance, there is a special chance
player who acts randomly according to a known distribution.
In games with imperfect information, some actions may not be
observable by some of the players, who then cannot distinguish the
exact state of the game. An information set is a set of game states
that are indistinguishable to a player because of these unobserved
actions. A player must act based solely on its current information
set, thereby acting the same at all the indistinguishable game states
within the information set.

A behavioural strategy (henceforth a strategy) is an explicit
description of how a player will play a game: a mapping from
information sets to probability distributions over the legal actions.
Given the strategies for two players, σ1 and σ2, it is straightforward
to calculate each player’s expected utility by traversing the game
tree, or approximating it through Monte Carlo sampling (i.e.,
playing a large number of games). The field of game theory
describes several types of strategies that an agent may want to
calculate or approximate. First, a best response for player i to
their opponent,−i, is the strategy σ′i that maximizes their expected
utility. One common measure of a strategy’s quality is its expected
loss when playing against its own best response, or exploitability.
Although best responses maximize their expected utility against a
particular opponent, they tend to themselves be highly exploitable.
At the other extreme, a Nash equilibrium is a pair of strategies,
σ∗1 and σ∗2 , that are mutually best responses to each other. In two-
player zero-sum games (when alternating positions), the strategies
in a Nash equilibrium are unexploitable: against any opponent,
they can do no worse than tie on expectation. Computing or
approximating such a strategy is called solving a game.

2.2 Poker
Poker is a canonical game of random chance and imperfect

information. It is a repeated game in which a set of players
play a long series of games, and aim to win as much as possible
from their opponents. Poker is actually a family of games with
similar rules; in this work, we will consider a variant called two-
player (also known as heads-up) limit Texas hold’em, which is the
longest-running event in the Annual Computer Poker Competition
(ACPC) [1]. Each game begins with the players being forced to
wager a small number of chips, and then progresses through four
rounds. In each round the players are randomly dealt cards from
a standard 52 card deck: two private cards that only they can see
or use in the first round, and three, one, and one public cards on
each subsequent round, respectively, that both players can see and
use. After the cards are revealed in each round, the players use their
chips to place wagers that their cards will be the strongest at the end
of the game.

A player’s goal in a poker game is to maximize their winnings
against their opponent. While research has developed efficient
techniques for approximating Nash equilibrium strategies, as we
describe in Section 2.3, these strategies are concerned with worst-
case opponents and do not attempt to exploit an opponent’s errors.
Equilibrium strategies usually win much less than a best response
can against weak opponents. Alternatively, given some knowledge

about our opponent’s strategy, we can precompute an exploitative
counter-strategy to win more against them than a Nash equilibrium
would. We will discuss this approach in Section 2.4.

2.3 Nash Equilibrium Approximation
Counterfactual Regret Minimization, or CFR [14], is a state-

of-the-art algorithm for approximating Nash equilibria in large
two-player extensive-form games. CFR is an iterative self-play
algorithm that simulates repeated games between two players. The
players begin the game with arbitrary strategies σ1 and σ2. On
each iteration of the algorithm, the players play against each other
by traversing the game tree. At each decision, they compare
the value of each action against the value of the current strategy.
The difference in these values, called regret, is accumulated over
all of the iterations of the algorithm, and the players update
their strategies to choose their future actions proportional to the
actions’ positive regret. In the limit, the average strategy used
by the players, σ̄ = (σ̄1, σ̄2), converges to a Nash equilibrium.
Although convergence to a Nash equilibrium is only guaranteed
in the two-player, zero-sum, perfect recall setting, CFR has also
been successfully applied to multiplayer games [11], non-zero-sum
games [8], and imperfect recall games [7].

While CFR is memory and time efficient, even relatively small
poker games played by human professionals remain too large to
be solved using modern hardware. For example, the game of two-
player limit Texas hold’em poker has 3.19×1014 information sets,
while the largest known game solved using CFR has 3.8 × 1010

information sets [3].1 The ubiquitous solution to this problem is
to apply a state-space abstraction technique to the game. An
abstraction can be represented as a many-to-one mapping from the
information sets of the real game to information sets in a smaller,
ideally strategically similar, abstract game that can be tractably
solved. Applying a game solving algorithm such as CFR to the
abstract game approximates an abstract game Nash equilibrium.
While abstraction means that this strategy may not be optimal in
the unabstracted game, it can be used to choose actions at real
game information sets by applying the mapping and returning the
strategy’s chosen action. The success of this approach relies on
how well the abstract game models the real game. The reduction
in size necessary to produce a tractable abstract game typically
requires at least some loss of information. If strategically dissimilar
information sets are merged together, the resulting abstract strategy
may not be effective in the real game, as measured by exploitability
(worst-case loss) or in-game performance against other strategies.

Creating an abstraction typically involves two tasks. First,
we must extract features, and choose a method for grouping
information sets based on these features such as tiling the space [14,
4] or using a clustering algorithm such as k-means [7, 2]. Second,
we must choose a number of abstract game information sets to
which the game will be reduced. Increasing the size of the
abstract game increases the time and memory required to solve
the game, but also means that fewer information sets need to
be mapped together which usually results in a better model of
the game. While intuition would suggest that increasing the size
of an abstraction will result in abstract game Nash equilibria
that are less exploitable in the real game, there is no theoretical
guarantee of this property. In fact, toy domains have yielded
examples of abstraction pathologies where even strict refinements
of an abstraction can result in increased exploitability [13]. In
human-scale games, however, increasing the size of an abstraction

1Jackson’s published size of 88 billion information sets includes
terminal nodes. The 38 billion figure we list here is the usual count
of only the decision points.

502

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

E
[H

S
2]

E[HS]

Bucket 1 (E[HS] 0.38)
Bucket 2 (E[HS] 0.43)
Bucket 3 (E[HS] 0.49)
Bucket 4 (E[HS] 0.55)
Bucket 5 (E[HS] 0.64)

2s7h
Js2h

6s7s 4s4h

AsAh

Figure 1: Abstraction of the first round of Texas hold’em poker,
dividing 1326 hands into 5 percentile E[HS2] buckets.

Abstraction Information Sets CFR Memory
5-Bucket 3624290 140 MB
8-Bucket 23551424 934 MB
12-Bucket 118671936 4708 MB

Table 1: Sizes of percentile abstractions.

typically results in a consistent decrease of an abstract strategy’s
real game exploitability [8, 7].

In the limit Texas hold’em poker game we will use for our
experiments, abstraction is applied only to the chance events
in the game, and not to the players’ actions. The abstraction
task is thus simplified to finding similar sets of cards which
are mapped together to form buckets. In our experiments, we
will use two well-known abstraction features called expected
hand strength (E[HS]) and expected hand strength squared
(E[HS2]) [14; 7, p. 5]. E[HS] is a heuristic that assigns
a value in [0,1] to each hand, representing the probability of
winning against a randomly sampled opponent hand while taking
the expectation over any unseen public cards. E[HS2] measures
the expected square of hand strength, which promotes weak hands
that might become strong, such as flush draws and straight draws.
A percentile abstraction groups hands with similar feature values
into approximately equal sized buckets. On the first round of
the game, for example, a 5-bucket percentile E[HS2] abstraction
groups the 1326 possible hands of cards into the buckets shown in
Figure 1.

For each of the next three rounds, new public cards are revealed
and each round’s abstraction contains larger sets of cards that must
be abstracted. This is done by taking each previous round’s bucket,
considering all ways to deal the new public cards to the hands in
that bucket, and then reapplying the percentile E[HS2] technique
to that set of hands. The abstractions we will investigate in this
paper have the perfect recall property, in which hands that are
mapped together on one round must also be mapped together on all
earlier rounds. By convention, the same branching factor n is used
on each round. In this paper, we will consider three standard sizes
of abstractions used in prior research in abstraction techniques,
with branching factors of 5, 8 and 12 buckets on each round. The 5
and 8 bucket abstractions will be partitioned according to percentile
divisions of E[HS2], while the 12-bucket abstraction will first
divide the hands into six E[HS2] sets, which are further split into
two E[HS] sets. The sizes of these abstract games and the amount
of memory required by CFR to solve them is shown in Table 1.

2.4 Robust Counter-Strategies
Nash equilibrium strategies are useful in two player games

because they minimize a player’s exploitability. However, such
strategies do not attempt to exploit an opponent’s errors, and
typically only win by a small margin against exploitable opponents.
Since the goal of poker is to maximize winnings, a related line of
research is to compute counter-strategies that exploit the errors of
opponents or classes of opponents.

While a best response strategy is by definition a strategy that
maximizes utility against a specific opponent, they make no at-
tempt to limit their own exploitability and may lose badly when
used against other opponents. Robust counter-strategies offer a
compromise between exploiting an opponent and minimizing one’s
own exploitability. In particular, an ε-safe best response is a strat-
egy from the set of strategies exploitable for no more than ε that
maximizes utility against a particular opponent [10]. While best
responses are then ε-safe for sufficiently high values of epsilon, we
are more interested in ε-safe best responses that risk losing an ac-
ceptably small amount.

The Restricted Nash Response (RNR) algorithm [9] is an
efficient way to compute ε-safe best responses. It takes as input
a target opponent’s strategy σfix and a parameter p ∈ [0, 1] which
trades off between minimizing exploitability and exploiting the
opponent. We then use CFR or any other game solving algorithm
to compute a Nash equilibrium for a modified game, where one
“restricted” player is forced with probability p at the start of each
game to play according to σfix, and with probability (1− p) is free
to choose their own actions. We call these two parts of the restricted
player’s strategy their model and response, respectively. The other
“unrestricted” player is always free to choose their actions. When
we solve this modified game, the unrestricted player’s strategy will
converge to an ε-safe best response for some ε. Decreasing p
results in less exploitable strategies, with an unexploitable Nash
equilibrium occurring when p = 0. Increasing p results in
strategies that exploit the opponent, with a best response occurring
when p = 1. The Restricted Nash Response algorithm generates
the Pareto-optimal set of trade-offs between these goals.

The Restricted Nash Response algorithm is difficult to use in
practice, since we often do not have access to the opponent’s
strategy. Typically only observations of an opponent’s behaviour
are available when constructing a robust counter-strategy. In this
setting, the related Data Biased Response (DBR) algorithm [6]
allows us to create robust counter-strategies that exploit flaws
demonstrated in the observations. First, we choose an abstraction
to use for an opponent model. Next, we map the real game
observations of our opponent into the abstract game and create
our model from frequency counts of the observed actions. Finally,
as with the RNR algorithm, we solve a modified game in which
one player is sometimes forced to play according to the opponent
model, and the other player converges to a robust counter-strategy.
In DBR, the probability of being forced to follow the model is
applied at each information set (as opposed to the start of the
game), and varies with the number of times the opponent was
observed at that information set, reflecting the model’s varying
accuracy throughout the game. By varying a single parameter
Pmax, the maximum probability of following the model, we can
produce a range of counter-strategies similar to RNR that trade off
between minimizing exploitability and increasing exploitation. If
too few observations are supplied to DBR, it fails gracefully by
returning less exploitable strategies that are more similar to a Nash
equilibrium. Increasing the number of observations allows us to
generate counter-strategies that exploit more opponent errors while
still limiting their worst-case loss.

503

3. ASYMMETRIC ABSTRACTIONS
For large multiagent domains where abstraction is needed to

make the problem feasible, agent designers face the difficult task
of choosing the abstractions which encode the players’ knowledge
of the real game. As in many domains, designers face a feature
extraction problem where they must obtain features which provide
discriminatory power between states where an agent should act
differently. Unlike single agent domains, designers must also
determine how to distribute their limited computational resources
(typically limited by memory) between multiple agents.

To illustrate, consider the task of generating a strategy for a two-
player zero-sum extensive-form game. A common approach to
this is to approximate a Nash equilibrium using techniques like
those introduced in Section 2.3. In this setting, designers must
choose how to allocate their limited memory between the size of the
abstraction for the strategy being created and the size of abstraction
for the opponent’s response strategy.

Prior research in poker has investigated or discussed abstrac-
tion techniques [14, 2, 7], but has focussed on the feature extrac-
tion problem and only provided analysis for symmetric abstractions
where all agents use the same features. The only investigation of
asymmetric abstractions where players view the game with differ-
ent discriminatory power was performed by Waugh et al. in a toy
poker domain [13]. The historical use of symmetric abstractions
is both a default assumption and a matter of convenience, as a
symmetric abstraction only requires a game to be solved once to
compute all players’ strategies, while an asymmetric abstraction re-
quires us to solve the game once for each arrangement of the play-
ers’ abstractions. Despite this prior work, there are unanswered
questions about the practical uses of asymmetric abstractions in
large domains. In particular, these abstraction choices may af-
fect two common performance measures: one-on-one performance
against other agents, and exploitability in the unabstracted game.

In terms of real game exploitability, Waugh et al.’s abstraction
pathology results examined both symmetric and asymmetric ab-
stractions in a toy poker game and showed that nothing can be
guaranteed about worst-case performance in the real game if the
opponent is abstracted [13]. While similar problems could occur
in human-scale games such as Texas hold’em poker, a recent in-
vestigation by Johanson et al. has found that in practice, increasing
the size of abstractions does result in a consistent decrease in ex-
ploitability [8]. Further, the recent development of a variant of the
CFR algorithm called CFR-BR has made it possible to solve asym-
metric abstract games where the opponent uses no abstraction [5].
This provably converges to an abstract strategy with the lowest pos-
sible real game exploitability. While these results provide valuable
insight, they do not investigate the impact of abstraction size on
asymmetric abstractions when both players are abstracted.

Although real game exploitability is an important objective
measure of a strategy’s quality, agents typically do not face their
worst-case opponent and one-on-one performance against other
agents may be more relevant in practice. Johanson et al.’s CFR-
BR work highlighted this by noting that despite being optimal
in terms of real game exploitability, CFR-BR strategies tended
to perform worse one-on-one compared to strategies solved with
CFR using a symmetric abstraction. This result suggests that there
may be a trade-off between real game exploitability and one-on-
one performance, but this trade-off has only been investigated in
the extreme case where the opponent uses no abstraction. More
interesting trade-offs may occur in other asymmetric abstractions
when either our agent or the opponent’s abstraction is relatively
stronger.

Agent designers face even more unanswered questions when

generating robust counter-strategies to agent models constructed
from limited observations (as opposed to an agent’s explicit strat-
egy). In this case, even smaller domains which could otherwise be
represented exactly may require designers to assume some form of
generalization to prevent model sparsity (i.e., insufficient sampling
of agent behaviour across the model’s possible decision points).
This situation arises when using the DBR algorithm described in
Section 2.4 as it uses state-space abstraction to provide this gener-
alization. This further encumbers designers with selecting an ab-
straction for the model of the opponent in addition to abstractions
for the robust counter-strategy being created and the opponent’s un-
restricted response strategy.

The prior work on robust counter-strategies [9, 6] explored
only the default case of symmetric abstractions, and the possible
advantages of using asymmetric abstractions have not yet been
explored. Without this investigation, designers are left with a gap in
guidance on how to select abstractions that will yield the best robust
counter-strategies. In this work, we aim to guide agent developers
by addressing these outstanding questions. We begin our analysis
with an examination of asymmetric abstractions in the context
of computing Nash equilibrium approximations and then provide
further results regarding robust counter-strategy generation.

4. NASH EQUILIBRIUM
APPROXIMATION

As discussed previously, the question of how asymmetric ab-
stractions impact an agent’s one-on-one performance and real game
exploitability remains largely unaddressed. Our first experiment
directly investigates this question for approximate Nash equilibria
strategies.

Experimental Design. Nine approximate Nash equilibrium strate-
gies were constructed using different pairs of abstractions for the
strategy being created and the opponent’s response strategy. Each
player’s strategy uses one of a 5, 8, or 12-bucket perfect recall per-
centile E[HS2] abstraction (see Table 1). The CFR algorithm de-
scribed in Section 2.3 was used to generate a strategy for each pair
of abstractions (3 symmetric and 6 asymmetric). For each of the
three abstractions we also produced a strategy using the CFR-BR
algorithm [5] which solves an asymmetric game in which the op-
ponent uses no abstraction. Each strategy’s exploitability was com-
puted using the Accelerated Best Response algorithm [8], and the
one-on-one expected value, measured in milli-big-blinds per game,
between each pair of strategies was measured by playing 100 mil-
lion duplicate games of poker (200 million games total). The size
of each abstract game is listed, with asymmetric games requiring
half of each abstraction’s size from Table 1, and CFR-BR requiring
1096 megabytes of memory for the unabstracted opponent [5].

Empirical Results. Table 2 presents the results for these 12
strategies. Each strategy has a label “U-R” which indicates which
abstraction was used for us and for the opponent’s response. For
example, “12-5” is a strategy using an asymmetric abstraction
where our strategy uses the 12-bucket abstraction and assumes
the opponent is using a 5-bucket abstraction. Strategies labelled
“U-FULL” are solved using the CFR-BR algorithm in which the
opponent plays the full (i.e., unabstracted) game.

These results provide insight about several trends that arise
when increasing abstraction sizes. First, examining the symmetric
abstraction case (5-5, 8-8, 12-12), we see that as we increase
abstraction size both mean utility against the field and exploitability
improve. While Waugh et al.’s abstraction pathology results
showed that this is not guaranteed by any theory, these results
help explain why competitors in the Annual Computer Poker

504

12-5 12-8 12-12 8-5 8-8 8-12 5-5 5-8 5-12 Mean Exploitability Size
12-5 0 -3 -6 20 18 16 43 41 41 18.970± 0.128 435.757 2424 MB
12-8 3 0 -3 23 22 20 36 35 35 18.890± 0.143 378.919 2821 MB

12-12 6 3 0 16 16 14 29 28 30 15.842± 0.175 289.227 4708 MB
8-5 -20 -23 -16 0 -3 2 22 21 24 0.662± 0.121 379.659 537 MB
8-8 -18 -22 -16 3 0 4 16 15 20 0.276± 0.144 312.762 934 MB

8-12 -16 -20 -14 -2 -4 0 12 12 16 −1.985± 0.099 255.845 2821 MB
5-5 -43 -36 -29 -22 -16 -12 0 3 7 −16.189± 0.112 317.1 140 MB
5-8 -41 -35 -28 -21 -15 -12 -3 0 5 −16.751± 0.153 283.37 537 MB

5-12 -41 -35 -30 -24 -20 -16 -7 -5 0 −19.714± 0.190 234.351 2424 MB
12-FULL -22 -22 -21 -14 -13 -11 -2 -1 2 −11.526± 0.221 87.2765 3450 MB

8-FULL -36 -36 -32 -26 -24 -21 -14 -12 -7 −23.093± 0.070 101.256 1563 MB
5-FULL -54 -50 -45 -42 -38 -35 -29 -26 -21 −37.585± 0.150 122.385 1166 MB

Table 2: Cross table of approximate Nash equilibria strategies using various abstractions. The row player’s expected value is shown in
milli-big-blinds per game, rounded to the nearest integer. Values against individual opponents are computed through sampling 100 million
duplicate hands (200 million hands total) and have 95% confidence intervals of at most 0.424. 95% confidence interval on the mean is shown.

Competition (ACPC) [1] endeavoured to produce progressively
larger abstractions [12]. To explore the effects of increasing each
player’s abstraction independently, we must move to asymmetric
abstractions.

Our first significant result in asymmetric abstractions is the
discovery of the first abstraction pathologies outside of the toy
poker game used by Waugh et al. Note that abstract game Nash
equilibria in the 5-12 and 8-12 abstractions are both less exploitable
than in the 12-12 abstraction: if our goal is to minimize our
exploitability, we would do better by using a smaller abstraction
for our own agent. Further, the 5-8 strategy which reduces the
abstraction size for both players is also slightly less exploitable
than 12-12. This counter-intuitive finding shows that abstraction
pathologies are not only a problem in toy domains.

Examining the asymmetric abstractions where the opponent’s
abstraction is larger than our agent’s, such as 5-8 or 8-FULL,
we observe a trade-off between one-on-one performance and ex-
ploitability. In all cases, as the size of our opponent’s abstraction
increases (i.e., we become more pessimistic about our adversar-
ial opponent’s abilities), our exploitability improves while our one-
on-one mean utility decreases. The CFR-BR strategies (U-FULL)
are the extreme case of this form of asymmetry and, as observed
by Johanson et al. [5], pay a substantial cost in one-on-one util-
ity in order to minimize exploitability. This result suggests that
agent designers whose goal is to minimize worst-case performance
should assume a pessimistic (i.e., fine-grained) abstraction for other
agents.

Finally, we investigate the asymmetric abstractions where our
agent’s abstraction is larger than the opponent’s, such as 8-5 or
12-8. Here we see the opposite trend in the trade-off between
one-one-one performance and exploitability: as we improve our
agent’s abstraction, our exploitability gets worse while our one-on-
one performance improves not only in the mean utility, but also
in the one-on-one utility against each individual strategy. This
suggests that agent designers focused on the more practical one-on-
one performance goal may want to increase the size of their agent’s
abstraction.

This investigation of Nash equilibrium approximations using
asymmetric abstractions isolates two independent but related trends
in how abstraction size affects agent performance. Although
historically the standard approach has been to use symmetric
abstractions, we have shown that this choice may be balanced
but not optimal for either minimizing exploitability or maximizing
one-on-one performance. In fact, these goals are at odds: the

exploitability-minimizing 12-FULL strategy would lose in one-on-
one play against the smallest 5-5 symmetric abstraction, while the
performance-maximizing 12-5 strategy is also the most exploitable.

A designer’s prior domain knowledge and their beliefs about the
other agents in the environment will impact their priorities over
these goals. For example, if worst-case outcomes corresponded to
people being injured or killed, improving worst-case performance
may be a designer’s only goal. In this case, using a more
pessimistic fine-grained opponent abstraction may improve worst-
case performance by yielding strategies that guard against an
opponent which better approximates the worst case (although
abstraction pathologies prevent any guarantees). On the other hand,
if a designer believes the other agents are unable or merely unlikely
to act so as to produce worst-case performance, then choosing
abstractions which optimize one-on-one performance, such as a
fine-grained abstraction for the agent’s strategy, may produce better
results in practice. As we will demonstrate in the next section, these
abstraction choices continue to be relevant when we create robust
counter-strategies that strike a balance between these goals.

5. ROBUST COUNTER-STRATEGIES
Robust counter-strategies provide another approach to construct-

ing agent strategies. Instead of trying to optimize performance as-
suming a best responding opponent, as with the previous approxi-
mate Nash equilibria approach, robust counter-strategy algorithms
attempt to compromise between worst-case performance and ex-
ploiting knowledge of how other agents act. When this knowledge
comes from observations of an agent rather than explicit knowledge
of their strategy, designers usually need to transform the observa-
tions into a generative model of the agent’s behaviour. In many
domains, the number of information sets may make it infeasible
for the model to represent each distinct information set. Further-
more, even if every information set can be represented, a limited
quantity of observations can result in insufficient sampling to build
an accurate model. This model sparsity is typically combated by
agent designers generalizing about their observations in some form.
DBRs address both the model representation and observation gen-
eralization problems by using state-space abstraction.

The prior work on robust counter-strategies only examined the
techniques using small symmetric 5-bucket abstractions [6, 9] and
does not tease apart the distinct roles of the opponent abstrac-
tions. While the abstraction for the opponent’s response acts to
prevent the resulting counter-strategy from becoming exploitable

505

by overfitting to the opponent model, the abstraction for the op-
ponent model provides generalization across a limited set of agent
observations. Without exploring asymmetric abstractions, we can-
not answer how designers should select abstractions to produce the
best robust counter-strategies from a given quantity of observations
when using techniques based on state-space abstraction, like DBR.

Though not previously explored, note that both RNR and DBR
can be used with asymmetric abstractions. In particular, recall that
DBR generates robust counter-strategies using an opponent whose
strategy is mixed at each information set between an unrestricted
regret minimizing strategy and an opponent model [6, Equation 1].
These abstractions for the opponent’s response and model do not
need to be the same, and DBR can use a small abstraction for the
model to ensure data density while using a large abstraction for the
response to reduce the counter-strategy’s exploitability. Likewise,
the abstraction for our counter-strategy agent can be distinct from
either of the opponent’s two abstractions.

We will now directly investigate this aspect of creating robust
counter-strategies with both symmetric and asymmetric abstrac-
tions. Though our results from Section 4 provide evidence for
how designers should choose the abstractions for the agent’s strat-
egy and the opponent’s response, an abstraction for the opponent
model must also be chosen. Our experiments will directly exam-
ine how the quantity of observations and abstraction size used to
build the opponent model impact DBR performance. Furthermore,
we present results for RNRs and DBRs using both symmetric and
asymmetric abstractions evaluated according to their true worst-
case performance in the real game for the first time.

Experimental Design. To explore the impact of the abstraction
size, we used a variety of different configuration parameters to
generate several RNRs and DBRs based on knowledge of an ex-
ploitable opponent. RNRs trained using an agent’s explicit strategy
optimally trade between one-on-one and worst-case performance in
their abstract game. In practice, it is uncommon to know an agent’s
strategy exactly and it must be inferred from observations. When
building responses from observations, RNR is prone to an over-
fitting effect that DBR avoids, and so we compute DBR counter-
strategies in such cases.

The opponent was created using CFR to solve a modified 8-
bucket abstract game where payoffs were “tilted”, as in the original
presentation of DBR [6]. Specifically, the tilted opponent (falsely)
believes that it will receive 25% additional utility when it wins
the pot either through a showdown or the other player folding.
When building DBRs, models of the opponent were created using
104, 105, 106, or 107 full information hands of play (i.e., private
cards were revealed). Observations of the tilted opponent were
gathered using the same “probe” agent as in [6] which never folds
and calls or raises with equal probability.

Throughout these experiments we examine RNRs and DBRs
generated using different combinations of the aforementioned 5,
8, and 12-bucket perfect recall percentile E[HS2] abstractions.
Trend lines labelled “DBR-U-R-M” indicate that the corresponding
strategies are DBRs generated using abstractions U, R, and M
for the agent’s robust counter-strategy, opponent’s response, and
opponent model, respectively. RNRs are only labelled “RNR-U-
R” as their opponent model is the tilted opponent’s actual 8-bucket
strategy.

Finally, as described in Section 2.4 both RNR and DBR have
parameters which control the counter-strategy’s trade-off between
one-on-one and worst-case performance. RNR uses the parameter
p to specify the probability the opponent plays according to their
model. DBR combines a parameter Pmax with a function that
maps a quantity of observations to a probability the opponent must

104 105 106 107

Number of observations of opponent

60

65

70

75

80

85

90

95

100

105

E
xp

lo
ita

tio
n

(m
bb

/g
)v

s.
til

te
d

8-
bu

ck
et

DBR-U12-R12-M5
DBR-U12-R12-M8
DBR-U12-R12-M12

Figure 2: Impact of quantity of observations and model abstraction
on exploitation of tilted 8-bucket equilibria. Exploitation values are
in milli-big-blinds per game (mbb/g). Strategies for each data point
are exploitable for 100 mbb/g in the 12-bucket abstract game.

play according to the opponent model. The original presentation
of DBR found that the “0-10 linear” function (yielding Pmax with
10 or more observations and a linear interpolation between 0 and
Pmax from 0 to 10 observations) to perform best in practice [6]. We
used this 0-10 linear function and varied the value of Pmax or p to
create a range of strategies.

As with our earlier Nash equilibrium results, strategies were
evaluated in terms of exploitability and one-on-one expected utility
against the tilted opponent. One-on-one expected utility was
evaluated through sampling 100 million duplicate hands (200
million hands total). Values for one-on-one performance are
in milli-big-blinds per game (mbb/g) and have 95% confidence
intervals no larger than 0.585 mbb/g.

Empirical Results. Because DBRs are constructed from obser-
vations, the choice of abstraction for the opponent model directly
impacts on our beliefs about the opponent. To isolate the inter-
play between the opponent model’s abstraction and the quantity
of observations, in our first experiment we fix the abstraction for
the DBR strategy and the opponent’s response strategy to the 12-
bucket abstraction while varying the opponent model’s abstraction
size. Furthermore, we control each DBR’s worst-case performance
by computing DBRs that are exploitable for 100 milli-big-blinds
per game in the 12-bucket abstract game. Figure 2 shows the one-
on-one performance trends for DBRs using each of the three ab-
stractions sizes for the opponent model as we vary the quantity of
observations used to create the model.

These results demonstrate that using asymmetric abstractions
for the opponent model and the opponent’s response can pro-
duce strictly better robust counter-strategies. With fewer obser-
vations (104 and 105) we would improve our one-on-one perfor-
mance against the tilted opponent while keeping the robust counter-
strategy’s worst-case performance in the abstract game the same.
As the number of observations increases the DBRs using the 8-
bucket opponent model eventually catch up (106) and then sur-
pass (107) the DBRs using the 5-bucket opponent model. This
crossover point is likely due to the small number of observations
being too sparsely spread across the 8-bucket opponent model. De-
spite incorrectly representing the tilted opponent’s true abstraction
(8-buckets), the coarser 5-bucket abstraction yields better general-
ization and a more functional opponent model than the 8-bucket
abstraction with very few observations. With a larger number of
observations, the 8-bucket opponent model can better populate and

506

0 100 200 300 400 500 600 700 800

Real Game Exploitability (mbb/g)

20

40

60

80

100

120

140
E

xp
lo

ita
tio

n
(m

bb
/g

)v
s.

til
te

d
8-

bu
ck

et

RNR-U8-R8
RNR-U8-R12
RNR-U12-R8
RNR-U12-R12

Figure 3: Impact of counter-strategy and opponent response ab-
straction size on RNR one-on-one and worst-case performance in
the unabstracted game. Values are in milli-big-blinds per game
(mbb/g).

capitalize on its correctly chosen model whereas the 5-bucket ab-
straction remains an incorrect model of the tilted opponent. We
also observe that the 12-bucket abstraction does poorly throughout.
This is unsurprising as it would needlessly separate observations
from the tilted opponent’s underlying 8-bucket strategy into the
larger 12-bucket opponent model, resulting in both greater model
sparsity and an incorrect representation of the opponent’s abstrac-
tion. This suggests that designers should aim to select opponent
model abstractions that are not only similar to their opponent’s true
abstraction, but can also be estimated accurately from their limited
observations.

Prior work on robust counter-strategies evaluated the RNR and
DBR techniques in terms of worst-case performance in the abstract
game. Computing the real game exploitability of strategies has
only recently become feasible [8], and as a result we can now
revisit these techniques and evaluate their counter-strategies’ true
exploitability for the first time.

Our results in Section 4 suggested that increasing the size of
our agent’s and the opponent’s response abstraction both traded
between one-on-one and worst-case performance in contrary ways.
Using RNRs and DBRs in different abstractions, we investigate if
these trends also hold for robust counter-strategies. Performance
curves were generated by computing a counter-strategy for each of
the following p and Pmax parameters: 0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 1.0. We begin by examining the
performance of RNRs in Figure 3 as this eliminates the impact of
limited observations.

Examining the best values for one-on-one and worst-case per-
formance, we see similar trends to those observed with approxi-
mate Nash equilibria. Comparing RNRs using an 12-bucket instead
of an 8-bucket abstraction for the agent (RNR-U8-R8 to RNR-
U12-R8, and RNR-U8-R12 to RNR-U12-R12), we see that the
curves move up and to the right corresponding to improved one-on-
one and poorer worst-case performance. Interestingly though, the
RNRs using the larger 12-bucket opponent abstractions not only
improve in worst-case performance relative to the RNRs using the
smaller 8-bucket opponent abstractions (RNR-U8-R8 to RNR-U8-
R12, and RNR-U12-R8 to RNR-U12-R12), but their performance
curves also dominate them.

Note that since RNRs use the opponent’s exact strategy, at p
of 1 they become a best response to the opponent model and are
oblivious to the abstraction chosen for the opponent’s response.

0 100 200 300 400 500 600 700 800

Real Game Exploitability (mbb/g)

40

50

60

70

80

90

100

110

120

130

E
xp

lo
ita

tio
n

(m
bb

/g
)v

s.
til

te
d

8-
bu

ck
et

DBR-U12-R8-M8-10k
DBR-U12-R8-M8-10m
DBR-U12-R12-M8-10k
DBR-U12-R12-M8-10m

Figure 4: Impact of opponent response abstraction size and quan-
tity of observations on DBR one-on-one and worst-case perfor-
mance in the unabstracted game. Values are in milli-big-blinds per
game (mbb/g).

On the other hand, DBRs with a Pmax of 1 only approach a best
response in the limit of observations. Therefore, the opponent’s
response abstraction will always have some, though diminishing,
impact on DBRs even with Pmax set to 1. Figure 4 illustrates this
difference, showing that DBRs, depending on the quantity of obser-
vations used, behave between the RNR domination and the more
direct trade-off between one-on-one and worst-case performance
observed with Nash equilibrium approximation. Comparing the
DBRs using 107 observations (DBR-U12-R8-M8-10m and DBR-
U12-R12-M8-10m), we see tends similar to the RNRs in Figure 3:
using a larger opponent response abstraction produces nearly dom-
inant performance curves. Unlike RNRs though, we can observe
that using the larger 12-bucket opponent response abstraction re-
sults in a slight loss in the best one-on-one performance possible.
For DBRs using only 104 observations (DBR-U12-R8-M8-10k and
DBR-U12-R12-M8-10k) a more distinct trade-off between one-on-
one and worst-case performance is apparent. With fewer obser-
vations, the DBRs using the larger 12-bucket opponent response
abstraction have performance curves which shift distinctly down
and to the left, corresponding to improved exploitability and poorer
one-on-one performance. Both the RNR and DBR results echo the
findings of Section 4: larger abstractions for our agent’s abstrac-
tion should be used for greatest possible one-on-one performance,
while larger opponent abstractions can produce better worst-case
exploitability.

Finally, Figure 5 shows how varying the opponent model’s
abstraction affects one-on-one and worst-case performance in the
real game. We use the same abstractions as in Figure 2, but create
DBRs trained with 105 observations. RNRs using the 12-bucket
abstraction for the robust counter-strategy and the opponent’s
response are also shown. Performance curves were generated by
computing a counter-strategy for each of the following p and Pmax

parameters: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99,
1.0.

Surprisingly, we observe that the robust counter-strategies with
positive weight on the opponent model can be less exploitable
than abstract game Nash equilibria (i.e., RNR or DBR with p or
Pmax of 0) using the same abstraction. Figure 3 demonstrates this
improved exploitability with RNRs while Figures 4 and 5 show
this improvement is even more dramatic for DBRs. This may allow
us to construct robust counter-strategies at no cost to worst-case
performance relative to an abstract game Nash equilibrium. That

507

0 100 200 300 400 500 600 700 800

Real Game Exploitability (mbb/g)

40

50

60

70

80

90

100

110

120

130
E

xp
lo

ita
tio

n
(m

bb
/g

)v
s.

til
te

d
8-

bu
ck

et

RNR-U12-R12
DBR-U12-R12-M5-100k
DBR-U12-R12-M8-100k
DBR-U12-R12-M12-100k

Figure 5: Impact of opponent model abstraction size on one-on-one
and worst-case performance in the unabstracted game with 100,000
observations. Values are in milli-big-blinds per game (mbb/g).

said, these results may be specific to the particular tilted opponent
we used. Furthermore, these robust counter-strategies still do not,
and could not, have better exploitability than the 12-FULL CFR-
BR strategy from Table 2. Although the cause of this effect is
currently unknown, it appears similar to an effect discovered by
Johanson et al. in their investigation of tiled equilibria, in which
over-aggressive abstract strategies were found to be less exploitable
than Nash equilibria within the same abstraction [8, Table 3].

6. CONCLUSION
In large multiagent domains where some form of state-space

abstraction is necessary to make the problem tractable, agent de-
signers are often faced with the difficult task of dividing limited
computational resources for representing each agent’s behaviour
between the agents in the environment. While the standard ap-
proach in the poker domain is to use a symmetric abstraction that
divides the resources evenly between the players, we have shown
that this choice does not optimize for either worst-case performance
or performance against suboptimal opponents. Our experiments
performed the first empirical analysis of asymmetric abstractions
in the human-scale game of two-player limit Texas hold’em, and
addressed both Nash equilibria and counter-strategies. In the equi-
librium approximation setting, we discovered the first abstraction
pathologies outside of a toy domain. In the counter-strategy set-
ting, we found that in addition to choosing abstractions for both
players, the size of the abstraction used to model the opponent can
be chosen to match the quantity of data and result in higher overall
performance. Finally, we performed the first experiments with ro-
bust counter-strategies that measured real game exploitability, and
found that robust counter-strategies can occasionally be less ex-
ploitable than abstract game Nash equilibrium strategies.

Acknowledgements
The authors would like to thank all of the members of the Computer
Poker Research Group at the University of Alberta for helpful
conversations pertaining to this research. This research was
supported by NSERC, Alberta Innovates Technology Futures, and
the use of computing resources provided by Westgrid, Calcul
Québec, and Compute Canada.

7. REFERENCES
[1] The Annual Computer Poker Competition webpage.

www.computerpokercompetition.org, 2012.
[2] A. Gilpin, T. Sandholm, and T. B. Sørensen. Potential-aware

automated abstraction of sequential games, and holistic
equilibrium analysis of texas hold’em poker. In Proceedings
of the Twenty-Second National Conference on Artificial
Intelligence (AAAI-07). AAAI Press, 2007.

[3] E. Jackson. Slumbot: An implementation of counterfactual
regret minimization on commodity hardware. In 2012
Computer Poker Symposium, 2012.

[4] M. Johanson. Robust strategies and counter-strategies:
Building a champion level computer poker player. Master’s
thesis, University of Alberta, 2007.

[5] M. Johanson, N. Bard, N. Burch, and M. Bowling. Finding
optimal abstract strategies in extensive-form games. In
Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence (AAAI-12), 2012.

[6] M. Johanson and M. Bowling. Data biased robust counter
strategies. In Proceedings of the Twelfth International
Conference on Artificial Intelligence and Statistics
(AISTATS-09), 2009.

[7] M. Johanson, N. Burch, R. Valenzano, and M. Bowling.
Evaluating state-space abstractions in extensive-form games.
In Proceedings of the Twelfth International Conference on
Autonomous Agents and Multiagent Systems (AAMAS-13),
2013.

[8] M. Johanson, K. Waugh, M. Bowling, and M. Zinkevich.
Accelerating best response calculation in large extensive
games. In Proceedings of the Twenty-Second International
Joint Conference on Artificial Intelligence (IJCAI-11), 2011.

[9] M. Johanson, M. Zinkevich, and M. Bowling. Computing
robust counter-strategies. In Proceedings of the Annual
Conference on Neural Information Processing Systems
(NIPS-07), 2008.

[10] P. McCracken and M. Bowling. Safe strategies for agent
modelling in games. In AAAI Fall Symposium on Artificial
Multi-agent Learning, October 2004.

[11] N. A. Risk and D. Szafron. Using counterfactual regret
minimization to create competitive multiplayer poker agents.
In Proceedings of the Ninth International Conference on
Autonomous Agents and Multiagent Systems (AAMAS-10),
2010.

[12] T. Sandholm. The state of solving large
incomplete-information games, and application to poker. AI
Magazine, Special issue on Algorithmic Game Theory,
Winter:13–32, 2010.

[13] K. Waugh, D. Schnizlein, M. Bowling, and D. Szafron.
Abstraction pathologies in extensive games. In Proceedings
of the Eighth International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS-09), pages
781–788, 2009.

[14] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione.
Regret minimization in games with incomplete information.
In Advances in Neural Information Processing Systems 20
(NIPS-07), 2007.

508

