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ABSTRACT

The goal of this paper is to propose and study properties
of multiwinner voting rules (with a particular focus on rules
based in some way on single-winner scoring rules). We con-
sider, e.g., SNTV, Bloc, k-Borda, STV, and several variants
of Chamberlin–Courant’s and Monroe’s rules, identify two
natural approaches to defining multiwinner rules, and show
that many of our rules can be captured by one or both of
these approaches. We then put forward a number of desir-
able properties of multiwinner rules, and compare the rules
we consider with respect to these properties.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

Keywords

multiwinner elections, axioms, voting

1. INTRODUCTION
There are many situations where societies need to select a
small set of entities from a larger group. For example, in
indirect democracies people choose representatives to gov-
ern on their behalf, companies select groups of products to
promote to their customers [17], web search engines decide
which pages to display for a given query [12], and applicants
for a job (e.g., a tenure-track position at a university) are
first short-listed by a group of experts. For all these tasks we
need formal rules to perform the selection, and the desirable
properties of such rules may depend on the task at hand.

We view these selection rules as multiwinner voting rules
which, given individual preferences, output groups of win-
ners (which we call committees). While there is quite some
research on such rules, many results are scattered through-
out the literature. The goal of this paper is to review some
natural multiwinner rules (focusing on those that are, in
some way, based on scoring rules), to present a uniform
framework for their study, and to propose a set of natural
properties (axioms) against which these rules can be judged.
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Copyright © 2014, International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

We focus on the setting where the voters have ordinal
preferences over the candidates. We have picked ten voting
rules as examples of different ideas pertaining to multiwin-
ner elections: STV, SNTV, k-Borda, Bloc, three variants
of Chamberlin–Courant’s rule [2,8,17], and three variants
of Monroe’s rule [2,18,22]. STV and SNTV are well-known
rules that are used for parliamentary elections in some coun-
tries; Bloc is a rule that asks voters to specify their favorite
committee and selects k alternatives that were nominated
more often than others; k-Borda picks k alternatives with
the highest Borda scores and is representative of rules used
for picking k finalists in a competition (indeed, Formula 1
racing and Eurovision song contest use scoring rules very
similar to Borda). Chamberlin–Courant’s rule and Monroe’s
rule are examples of rules that, like STV, focus on propor-
tional representation, but are based on explicitly assigning
a committee member to each voter. We also consider two
rules based on approximation algorithms for Chamberlin–
Courant’s rule [17] and for Monroe’s rule [22]. All these rules
can be seen as being based, in some way, on single-winner
scoring protocols. Naturally, there are many other multiwin-
ner rules, based on other principles, that we do not discuss
(e.g., those based on the Condrocet principle [13–15,20] and
those based on approval voting [4,7]). We believe that ex-
tending our research to include these rules is an important
future research direction.

We are interested in judging our multiwinner rules with
respect to their applicability in the following settings:

Parliamentary Elections. Voting rules for such elections
should respect the“one person, one vote”principle. This
is reflected in the requirement that each elected mem-
ber should represent, roughly, the same number of vot-
ers. Some such rules are based on electoral districts, i.e.,
separate (possibly multiwinner) elections are held in dif-
ferent parts of the country, while others treat the whole
country as a single constituency, and focus on propor-
tional representation of different population groups.

Shortlisting. Consider a situation where a position is filled
at a university. Each faculty member ranks applicants
in order to create a short-list of those to be invited for
an interview. One of the important requirements in this
case is that, if some candidate is shortlisted when k ap-
plicants are selected, then this candidate would also be
shortlisted if the list was extended to k + 1 applicants.

Movie selection. Based on rankings provided by different
customer groups, an airline has to decide which (few)
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movies to offer on their long-distance flights. It is im-
portant that each passenger finds something satisfying.
This task is similar to parliamentary elections, but with-
out the need to worry that each movie would be watched
by the same number of people. It is, however, quite
different from shortlisting: If there are two similar can-
didates, then for shortlisting we should, typically, take
either both or neither, whereas in the context of movie
selection it makes sense to pick at most one of them.

We study properties of voting rules that are important in
these settings. We introduce committee monotonicity, solid
coalitions property, consensus committee property, and una-
nimity, and adapt the standard notions of monotonicity, ho-
mogeneity, and consistency to the multiwinner framework.

The paper is organized as follows. In Section 2 we intro-
duce the basic terminology used in this paper; in Section 3
we define the rules that we study and put forward two ways
of classifying them. In Section 4, we define several properties
of multiwinner rules and in Sections 5–8 we study particular
groups of these properties in detail. We present our conclu-
sions in Section 9.

Our paper is a preliminary attempt to give a formal frame-
work for the study of multiwinner rules. Thus we use the
word axiom quite freely, without meaning that it should be
a normative requirement. We omit many proofs due to space
constraints.

2. PRELIMINARIES
An election is a pair E = (C, V ), where C = {c1, . . . , cm}
is a set of candidates and V = (v1, . . . , vn) is a sequence
of voters. Each voter is described by a preference order,
which is a ranking of the candidates from the most desirable
one to the least desirable one. We denote the position of
a candidate c ∈ C in the preference order of a voter v ∈
V by posv(c). If V1 and V2 are two sequences of voters
over the same candidate set C, then V1 + V2 denotes the
concatenation of V1 and V2. If V is a sequence of voters and
t is an integer, then tV denotes the concatenation of t copies
of V . For E1 = (C, V1) and E2 = (C,V2), we write E1 + E2

to denote (C, V1 + V2), and for E = (C,V ) and a positive
integer t, we write tE to denote (C, tV ). For an integer n,
we denote {1, . . . , n} by [n].

A multiwinner voting rule R is a function that, given an
election E = (C, V ) and a positive integer k, k ≤ ‖C‖,
returns a set R(E, k) of k-element subsets of C, which we
call committees. That is, a rule returns a set of committees
that are tied-for-winning. Brams and Fishburn [3] refer to
these rules as choose-k rules. In practice, one would need to
combine such a rule with a tie-breaking mechanism but, for
simplicity, we mostly disregard this issue here.

We stress that if R is a multiwinner rule, then given an
election E = (C, V ) and a positive integer k, k ≤ ‖C‖,
R(E, k) must output committees of size exactly k; when
we need to emphasize the size of the committee, we use
the term k-committee selection rules. This is a natural re-
quirement if, for example, the goal is to elect a parliament
whose size is fixed by external rules. However, as a conse-
quence, we are sometimes forced to elect Pareto-dominated
candidates (e.g., if all voters unanimously rank the candi-
dates in the same order and k > 1). Alternatively, we could
require R(E, k) to return committees of up-to-k members.
The latter approach is also studied in the literature (either

explicitly or implicitly), but we adopt the former one due
to its simplicity and applicability in our settings of interest.
Note that Brams and Fishburn [3] require a choose-k rule to
select a committee of size at least k.

3. MULTIWINNER VOTING RULES
We now provide definitions of our multiwinner rules and
discuss two general ways of classifying them.

3.1 Definitions of Multiwinner Rules
Many multiwinner rules rely on ideas from single-winner
rules, so let us review these first.

Plurality score. The plurality score of a candidate c is the
number of voters that rank c first.

t-approval score. Let t be a positive integer. The t-
approval score of a candidate c is the number of voters
that rank c among top t positions.

Borda score. Let v be a vote over a candidate set C. The
Borda score of a candidate c ∈ C in v is ‖C‖ − posv(c).
The Borda score of c in an election E = (C,V ) is the
sum of c’s Borda scores from all voters in V .

We are now ready to describe several multiwinner rules.
Let E = (C, V ) be an election and let k ∈ [‖C‖] be the
size of the committee that we seek. We assume the parallel-
universes tie-breaking [9], i.e., our rules return all the com-
mittees that could result from breaking an intermediate tie
during the computation of the rule.

Single Transferable Vote (STV). STV is a multistage
elimination rule that works as follows. If there is a candidate
c whose Plurality score is at least q = ⌊ ‖V ‖

k+1
⌋ + 1 (the so-

called Droop quota), we do the following: (a) include c in
the winning committee, (b) delete q votes where c is ranked
first, and (c) remove c from all the remaining votes. If each
candidate’s Plurality score is less than q, a candidate with
the lowest Plurality score is deleted from all votes.

There are many other variants of STV; we point the reader
to the work of Tideman and Richardson [23] for details.

Single Nontransferable Vote (SNTV). Under SNTV,
we return the k candidates with the highest Plurality scores
(thus one can think of SNTV as simply k-Plurality).

Bloc. Under Bloc, we return the k candidates with the
highest k-approval scores.

k-Borda. Under k-Borda, we return the k candidates with
the highest Borda scores. Debord [10] provided an axiomatic
characterization of this rule.

Chamberlin–Courant’s and Monroe’s Rules. These
rules explicitly aim at proportional representation. The
main idea is to provide an optimal assignment of commit-
tee members to voters by using a satisfaction function to
measure the quality of the assignment.

A satisfaction function is a monotonically nonincreasing
mapping α : N → N. Intuitively, α(i) is a voter’s satisfaction
from being represented by a candidate that this voter ranks
in position i. We focus on the Borda satisfaction function,
which for m candidates is defined as αm

B (i) = m− i.
Let k be the target committee size. A function Φ: V → C

is an assignment function if ‖Φ(V )‖ ≤ k. Intuitively, in the
elected committee voter v is represented by candidate Φ(v).
There are several ways to compute the societal satisfaction
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from the assignment; we focus on the following two:

ℓ1(Φ) =
∑

v∈V

α(posv(Φ(v))) , ℓmin(Φ) = min
v∈V

(α(posv(Φ(v))).

The former one, ℓ1(Φ), is a utilitarian measure, which sums
the satisfactions of all the voters, and the latter one, ℓmin(Φ),
is an egalitarian measure, which consider the satisfaction of
the least satisfied voter only.

Let α be a satisfaction function and let ℓ be one of ℓ1
and ℓmin. Chamberlin–Courant’s rule for ℓ and α (ℓ-α-CC)
finds an assignment function Φ that maximizes ℓ(Φ) and
declares the candidates in Φ(V ) to be the winning commit-
tee. If ‖Φ(V )‖ < k, the rule fills in the missing committee
members in an arbitrary way. ℓ-α-Monroe’s rule is defined
in the same way, except that we optimize over assignment
functions that additionally satisfy the so-called Monroe cri-
terion, which requires that ⌊n

k
⌋ ≤ ‖Φ−1(c)‖ ≤ ⌈n

k
⌉ for each

elected candidate c. To simplify notation, we omit αm
B when

referring to Monroe/CC rule with Borda function.
For Chamberlin–Courant’s rule, for each set of candidates

C′ ⊆ C we define the assignment function ΦCC(C′) so that
for each voter v, ΦCC(C′)(v) is v’s top candidate in C′. If W
is a winning committee under Chamberlin–Courant’s rule,
then ΦCC(W ) is an optimal assignment function.

The utilitarian variants of the rules (i.e., ℓ1-CC and ℓ1-
Monroe) were introduced by Chamberlin and Courant [8]
and by Monroe [18], respectively. The egalitarian vari-
ants were introduced by Betzler et al. [2]. Unfortunately,
these rules are hard to compute, irrespective of tie-breaking,
both for Borda satisfaction function [2,17] and for various
approval-based satisfaction functions [2,19].

Approximate Variants of ℓ1-Monroe and ℓ1-CC.
Hardness results for ℓ1-CC and ℓ1-Monroe inspired research
on designing efficient approximation algorithms for these
rules [17,22]. Here, in the spirit of Caragiannis et al. [6], we
consider these algorithms as full-fledged multiwinner rules.

We refer to the rules based on approximation algo-
rithms for ℓ1-CC and ℓ1-Monroe as Greedy-CC and Greedy-
Monroe, respectively. Greedy-CC was proposed by Lu and
Boutilier [17] and Greedy-Monroe by Skowron et al. [22].
Both rules proceed in k iterations, in which they build sets
∅ = W0 ⊂ W1 ⊂ W2 ⊂ · · · ⊂ Wk, and declare Wk to
be the winning committee. In the i-th iteration, i ∈ [k],
Greedy-CC picks a candidate c ∈ C \Wi−1 that maximizes
ℓ1(Φ

CC(Wi−1∪{c})) and sets Wi = Wi−1∪{c} (ℓ1(·) is com-
puted using Borda satisfaction function). Greedy-Monroe,
in addition to the sets W0, . . . ,Wk, also maintains sets of
voters ∅ = V0 ⊂ V1 ⊂ · · · ⊂ Vk = V , such that, after the
i-th iteration, Vi is the set of voters for which the rule has
already assigned candidates. In the i-th iteration, the rule
picks a number ni ∈ {⌈n

k
⌉, ⌊n

k
⌋} (see below for the choice

criterion) and then picks a candidate c ∈ C \ Wi−1 and a
group V ′ of ni voters from V \ Vi−1 that together maximize
the Borda score of c in V ′. The rule sets Wi = Wi−1 ∪ {c}
and Vi = Vi−1 ∪ V ′ (intuitively, Greedy-Monroe assigns c
to the voters in V ′). Regarding the choice of ni, if n is of
the form kn′ + n′′, where 0 ≤ n′′ < k, then Greedy-Monroe
picks ⌈n

k
⌉ for the first n′′ iterations and picks ⌊n

k
⌋ for the

remaining ones.
Greedy-CC and Greedy-Monroe output committees that

approximate those output by ℓ1-CC and ℓ1-Monroe. In par-
ticular, Greedy-CC finds a committee W such that the sat-
isfaction of the voters is at least 1 − 1

e
of the satisfaction

achieved under ℓ1-CC [17], and Greedy-Monroe finds a com-

mittee that achieves at least a 1− k

2m−1
− Hk

k
fraction of the

satisfaction given by ℓ1-Monroe, where Hk =
∑k

i=1
1
k
[22].

These rules are efficiently computable in the sense that we
can output some winning committee in polynomial time;
however, their computational complexity under parallel-
universes tie-breaking is not known.

3.2 Two Types of Multiwinner Rules
Perhaps surprisingly, it turns out that many of the rules
introduced so far have very similar internal structure. Below
we present two natural ways of identifying these similarities.

Best-k Rules. SNTV and k-Borda are natural extensions
of Plurality and Borda to the multiwinner setting: We sort
the candidates in the order of decreasing scores (with further
parallel-universes tie-breaking if needed) and pick the top k
ones. In general, we say that a given multiwinner rule R is
a best-k rule if there is a social preference function F (i.e.,
a function that given an election E = (C, V ) returns a set
of tied linear orders over C) such that for each m-candidate
election E = (C, V ) and each k ∈ [m], a set W is in R(E, k)
if and only if ‖W ‖ = k and there is an order ≻ in F (E) such
that c ≻ d for each c ∈ W and d ∈ C \W .

SNTV and k-Borda are best-k rules. We can define a best-
k rule based on the social preference function known as the
Kemeny rule [16], and, somewhat surprisingly, we note that
Greedy-CC is a best-k rule. Thus, best-k rules are a more
diverse group than one might at first expect.

Committee Scoring Rules. Both k-Borda and ℓ1-CC
can be viewed as generalizations of the Borda rule to the
multiwinner case. Here we introduce a class of committee
scoring rules, which generalize single-winner scoring rules.
This class captures k-Borda, ℓ1-CC, and many other rules.
We believe that identifying committee scoring rules is an
important conceptual contribution of this paper.

Consider an election E = (C,V ) where we want to pick a
committee of size k out of m = ‖C‖ candidates. A k-winner
committee scoring rule is defined via a committee scoring
function f , f : [m]k → N, as follows. Given a committee S
and a voter v, we define posv(S) to be the vector (i1, . . . , ik)
resulting from sorting the set {posv(c) | c ∈ S} in the non-
decreasing order. The winning committees are the ones that
maximize the sum

∑
v∈V

f(posv(S)).
Just as for single-winner scoring rules, we require a certain

form of monotonicity with respect to the values of f . Specifi-
cally, let I = (i1, . . . , ik) and J = (j1, . . . , jk) be two increas-
ing sequences of numbers from [m]. We say that I � J if
and only if (i1 ≤ j1) ∧ . . . ∧ (ik ≤ jk), and we require that
I � J implies f(I) ≥ f(J).

Example 1. Let m be the number of candidates and let
k be the target committee size. Define αℓ : [m] → {0, 1} by
setting αℓ(i) = 1 if i ≤ ℓ and αℓ(i) = 0 otherwise. For each
i ∈ [m], define β(i) = m − i. SNTV, Bloc, k-Borda, and
ℓ1-CC are committee scoring rule defined by:

fSNTV(i1, . . . , ik) =
∑k

t=1 α1(it) = α1(i1),

fBloc(i1, . . . , ik) =
∑k

t=1 αk(it),

fk-Borda(i1, . . . , ik) =
∑k

t=1 β(it), and

fCC(i1, . . . , ik) = β(i1).

The form of the committee scoring function has significant
impact on the properties of the rule, e.g., on its complexity.
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Proposition 1. Let α = (α1, . . . , αm, . . .) be a fam-
ily of nonincreasing polynomial-time computable functions,
αm : [m] → N. For each number of candidates m and each

k ∈ [m], the function f(i1, . . . , ik) =
∑k

t=1 α
m(it) defines a

polynomial-time computable k-committee selection rule.

We refer to committee scoring rules of the form given in
Proposition 1 as additively separable. Under such rules we
separately compute the “score” of each candidate, and pick
k candidates with the highest scores. In other words, they
are best-k rules. The first three rules in Example 1 are of
this kind.

On the other extreme, we have committee scoring rules
defined through functions f(i1, . . . , ik) whose values depend
solely on i1 (like the fourth rule in Example 1). Such rules
seem to focus on voter representation. As in ℓ1-CC, each
voter is assigned to her most preferred candidate in the se-
lected committee, and only contributes towards the score
of this candidate. We call such committee scoring rules
representation-focused.

Note that SNTV is both additively separable and
representation-focused.

4. AXIOMS
We will now put forward some properties (axioms) that mul-
tiwinner rules may or may not satisfy. We use the standard
axioms for single-winner rules as our starting point, and aug-
ment them with ideas from the literature that are specific
to the multiwinner domain. (Due to our choice of focus,
we do not include properties based on the Condorcet prin-
ciple, such as, e.g., the stability of Barberà and Coelho [1].)
We stress that, since multiwinner rules have a very diverse
range of applications, our properties should not necessarily
be understood in the normative way: the desirability of a
particular property can only be evaluated in the context of
a specific application. Below, R denotes a multiwinner rule.

Our first axiom is nonimposition. It requires that each
size-k set of candidates can win. This is a basic requirement
that is trivially satisfied by all rules that we consider.

Nonimposition. For each set of candidates C, and each k-
element subset W of C, there is an election E = (C, V )
such that R(E, k) = {W }.

The next three axioms—consistency, homogeneity, and
monotonicity—are adapted from the single-winner setting.
For the first two, the adaptation is straightforward.

Consistency. For every pair of elections E1 = (C, V1),
E2 = (C, V2) and each k ∈ [‖C‖], if R(E1, k) ∩
R(E2, k) 6= ∅ then R(E1+E2, k) = R(E1, k)∩R(E2, k).

Homogeneity. For each election E = (C, V ), each k ∈
[‖C‖], and each t ∈ N it holds that R(tE, k) = R(E, k).

We now consider monotonicity. If c belongs to a winning
committee W then, generally speaking, we cannot expect W
to remain winning when c is moved forward in some vote,
as this shift may hurt other members of W . Indeed, none
of our rules satisfies this variant of monotonicity. However,
there are two natural relaxations of this condition. One
option is to require that after the shift c belongs to some
winning committee. Alternatively, we may restrict forward
movements of c, prohibiting it to overtake other members
of W . We point the reader to [21] for an extensive discussion
of monotonicity in the context of irresolute voting rules.

Monotonicity. For each election E = (C, V ), each c ∈ C,
and each k ∈ [‖C‖], if c ∈ W for some W ∈ R(E, k),
then for each E′ obtained from E by shifting c one po-
sition forward in some vote v it holds that: (1) for can-
didate monotonicity: c ∈ W ′ for some W ′ ∈ R(E′, k),
and (2) for non-crossing monotonicity: if c was ranked
below some b 6∈ W , then W ∈ R(E′, k).

Our next axiom, committee monotonicity, is specific to
multiwinner elections, as it deals with changing the desired
committee size. Intuitively, it requires that when we increase
the committee size, none of the already selected candidates
should be dropped. Our phrasing is somewhat involved be-
cause R returns sets of committees.

Committee Monotonicity. For each election E = (C, V )
the following conditions hold: (1) For each k ∈ [m−1], if
W ∈ R(E, k) then there exists a W ′ ∈ R(E, k +1) such
thatW ⊆ W ′; (2) for each k ∈ [m−1], ifW ∈ R(E, k+1)
then there exists a W ′ ∈ R(E, k) such that W ′ ⊆ W .

The second condition in the definition above is aimed to
prevent the following situation. Consider an election E with
candidate set C = {a, b, c, . . .}. Without condition (2) a
committee-monotone rule R would be allowed to output the
following winning committees: R(E, 1) = {{a}}, R(E, 2) =
{{a, b}, {b, c}}, and so on. Note that the committee {b, c},
which suddenly appears in R(E, 2), breaks what we would
intuitively think of as committee monotonicity, but is not
ruled out by condition (1) alone.

The final three axioms represent three implementations
of Dummett’s condition known as proportionality for solid
coalitions [11]. Dummett’s original proposal is as follows:
Consider an election with n voters where the goal is to pick
k candidates. If for some ℓ ∈ [k] there is a group of ℓn

k
voters

that all rank the same ℓ candidates on top, these ℓ candi-
dates should be in a winning committee. This requirement,
which tries to capture the idea of proportional representa-
tion, seems to be remarkably strong: We are not aware of a
single rule that satisfies it.1 The following three axioms are
weaker and reflect the same idea.

Solid Coalitions. For each election E = (C, V ) and each

k ∈ [‖C‖], if at least ‖V ‖
k

voters rank some candidate c
first then c belongs to every committee in R(E, k).

Consensus Committee. For each election E = (C, V )
and each k ∈ [‖C‖], if there is a k-element set W ,
W ⊆ C, such that each voter ranks some member of

W first and each member of W is ranked first by ⌊ ‖V ‖
k

⌋
or ⌈ ‖V ‖

k
⌉ voters then R(E, k) = {W }.

Unanimity. For each election E = (C, V ) and each k ∈
[‖C‖], if each voter ranks the same k candidates W on
top (possibly in different order), then R(E, k) = {W }
(strong unanimity) or W ∈ R(E, k) (weak unanimity).

5. COMMITTEE MONOTONICITY
The desirability of the committee monotonicity property is
strongly dependent on the application: if we are choosing

1There is a variant of Dummett’s condition known as Droop
Proportionality Criterion, which is geared toward STV [24];
STV can be shown to satisfy Dummett’s condition whenever
Droop quota is smaller than n

k
.
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Committee Solid Consensus
Rule Monotonicity Coalitions Committee Unanimity Monotonicity Homogeneity Consistency
STV × √

(⋄) √
(⋄) strong × √

(♥) ×
SNTV

√ √ √
weak C/NC

√ √

Bloc × × × strong C/NC
√ √

k-Borda
√ × × strong C/NC

√ √

ℓ1-CC × × √
weak C

√ √

ℓmin-CC × × √
weak C

√ ×
Greedy-CC

√ × × weak × √ ×
ℓ1-Monroe × × √

strong × √
(♣) ×

ℓmin-Monroe × × √
strong × √

(♣) ×
Greedy-Monroe × √ √

strong × √
(♠) ×

Table 1: Summary of results.
√

and × indicate that the rule has/does not have the respective property.
C means candidate monotonicity and NC means non-crossing monotonicity (C/NC means satisfying both
conditions). The properties marked with (⋄) hold for STV when n ≥ k(k + 1); property marked with (♥)
requires STV to use non-rounded Droop quota and fractional votes. Properties marked with (♣) hold if n is
divisible by k and (♠) in addition requires a specific intermediate tie-breaking rule.

finalists of a competition, then it is imperative to use a rule
that has this property, but in the context of proportional
representation requiring committee monotonicity may inter-
fere with selecting a truly representative committee.

It turns out that committee monotonicity axiomatically
characterizes the class of best-k rules.

Theorem 2. A k-committee selection rule satisfies com-
mittee monotonicity if and only if it is a best-k rule.

Proof. Let R be a best-k rule and let F be the un-
derlying social preference function. Consider an election
E = (C, V ). Pick k ∈ [‖C‖ − 1] and W ∈ R(E, k). By
definition of a k-best rule, there is an order ≻ in F (E) such
that w ≻ c for each w ∈ W and each c ∈ C \ W . Clearly,
there is a candidate w′ ∈ C \W such that for each w ∈ W
and each c ∈ C \ (W ∪ {w′}) we have w ≻ w′ ≻ c. Hence,
W ∪ {w′} ∈ R(E, k + 1). A similar argument shows that R
satisfies the second committee-monotonicity condition.

Conversely, assume thatR satisfies committee monotonic-
ity. We will show that it is a best-k rule by deriving the
underlying social preference function F . Let E = (C, V ) be
some election where C = {c1, . . . , cm}. We define F (E) to
contain all linear orders ≻ that satisfy the following condi-
tion: If π is a permutation of [m] and cπ(1) ≻ cπ(2) ≻ · · · ≻
cπ(m) then there is a sequence of sets W1 = {cπ(1)},W2 =
{cπ(1), cπ(2)}, . . . ,Wm = {cπ(1), . . . , cπ(m)} such that W1 ∈
R(E, 1),W2 ∈ R(E, 2), . . . ,Wm ∈ R(E,m). Using the two
conditions from the definition of committee monotonicity, it
is easy to verify that F indeed defines R.

Thus SNTV, k-Borda, Greedy-CC, and all additively sep-
arable committee scoring rules satisfy committee monotonic-
ity.

Indeed, for additively separable committee scoring rules
their underlying social preference functions can be shown to
be based on social welfare functions that always return a
single weak order (defined by candidates’ scores). This dis-
tinguishes them from rules such as, e.g., Greedy-CC, whose
social preference function may not be based on a social wel-
fare function.

STV, Bloc, ℓ1-CC, ℓmin-CC, ℓ1-Monroe, ℓmin-Monroe, and
Greedy-Monroe are not best-k rules, and thus none of these
rules satisfies committee monotonicity.

Proposition 3. STV, Bloc, ℓ1-CC, ℓmin-CC, ℓ1-Monroe,
ℓmin-Monroe, and Greedy-Monroe do not satisfy committee
monotonicity.

6. DUMMETT’S PROPORTIONALITY
Properties based on Dummett’s proportionality condition
(with the exception of unanimity) are geared toward rules
that aim to achieve proportional representation of the voters.
Thus, in this section, we judge multiwinner rules from this
perspective.

We start by considering the solid coalitions property. It
is easy to see that it is satisfied by both SNTV and STV.
On the other hand, even though this property seems to be
very much in spirit of Monroe’s and Chamberlin–Courant’s
rules, ℓ1-Monroe, ℓ1-CC, ℓmin-Monroe, and ℓmin-CC fail to
satisfy it. Yet, it is satisfied by Greedy-Monroe.

Theorem 4. ℓ1-CC, ℓmin-CC, ℓ1-Monroe, and ℓmin-
Monroe do not have the solid coalitions property, but Greedy-
Monroe does have it.

Proof. For the first part of the theorem, we consider ℓ1-
CC and ℓ1-Monroe (we omit the constructions for other rules
due to space restriction). Take an election with candidate
set C = {a, b, c, d, e} and nine voters whose preference orders
are aedbc, aedbc, bedac, bedac, cedab, cedab, daebc, dbeac,
and dceab. The reader can verify that none of our rules
elects a size-3 committee that contains d, even though this
would be required by the solid coalitions property.

For the second part of the theorem, we consider Greedy-
Monroe. Take some election with n voters, where we seek
a committee of size k. Suppose that some candidate c is
ranked first by at least n

k
voters. Greedy-Monroe starts by

picking candidates ranked first by at least n

k
voters. By

the time it considers c, each of the voters that rank c first
remains unassigned, so it will pick c.

We believe that the solid coalitions property is desirable,
but not crucial for applications that require proportional
representation (e.g., parliamentary elections). In contrast,
the consensus committee property, which we discuss next,
seems to be fundamental. Indeed, it is satisfied by almost
all rules that aim to achieve proportional representation.
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In essence, the consensus committee property is satisfied
by every rule that has the solid coalitions property.2 In
particular, it is satisfied by SNTV, STV (if there are suffi-
ciently many voters) and Greedy-Monroe. It is also satisfied
by ℓ1-CC, ℓmin-CC, ℓ1-Monroe, and ℓmin-Monroe, but, inter-
estingly, not by Greedy-CC. This reveals a major deficiency
of the latter rule: It makes decisions regarding the inclu-
sion of some candidate c into the committee based on the
preferences of the voters to whom c would not be assigned.

Proposition 5. Bloc, k-Borda and Greedy-CC do not
have the consensus committee property (nor the solid coali-
tions property).

Proof. Consider an election with C = {a, b, c, d} and
two voters with preference orders b ≻ c ≻ d ≻ a and a ≻
c ≻ d ≻ b. We seek a committee of size k = 2. Each of
these rules includes c in each winning committee and thus
fails the consensus committee property.

For SNTV, ℓ1-CC, k-Borda and Bloc, the above results
can also be seen as incarnations of the following two more
general results regarding committee scoring rules.

Proposition 6. Let R be an additively separable com-
mittee scoring rule, let k < m, and let f(i1, . . . , ik) =∑k

t=1 α(t) be the respective committee scoring function.
Then R fails the consensus committee property if 0 < α(1) ≤
kα(2), but satisfies it if α(1) > kα(2) and there are suffi-
ciently many voters.

Proof. Due to space constraints, we consider the second
claim only. Assume that α(1) > kα(2). Consider an arbi-
trary election E = (C,V ) with ‖C‖ = m, where there is a
group W of k candidates such that each voter ranks some
member of W first and each member of W is ranked first
by either ⌊n

k
⌋ or ⌈n

k
⌉ voters. Consider a candidate x /∈ W .

Its α-score is at most nα(2). On the other hand, the score
of each candidate in W is at least ⌊n

k
⌋α(1). By assump-

tion, ⌊n

k
⌋α(1) > nα(2) for sufficiently large n and, thus, R

satisfies the consensus committee property for such n.

Proposition 7. Let R be a representation-focused k-
committee scoring rule with committee scoring function
f(i1, . . . , ik) = β(i1). Then R has the consensus commit-
tee property if and only if β(1) > β(2).

Our final instantiation of Dummett’s proportionality for
solid coalitions is the unanimity property. Every committee
scoring rule satisfies its weak variant.

Theorem 8. Every committee scoring rule R satisfies
weak unanimity.

Proof. Consider an election E = (C, V ) where every
voters ranks candidates from some set W , ‖W ‖ = k, on
top. Let f be the committee scoring function for R. By
definition, for each voter v in V and each size-k set Q of
candidates, we have f(posv(W )) ≥ f(posv(Q)). Thus, we
have W ∈ R(E, k).

It is immediate that ℓ1-Monroe, ℓmin-Monroe, Greedy-
Monroe, Bloc and k-Borda satisfy strong unanimity, and
that SNTV, ℓ1-CC, ℓmin-CC, and Greedy-CC do not.

Finally, we note that STV satisfies strong unanimity: If
there is some set W of k candidates that each of the n voters
ranks on top, then in every round of STV there is a candidate
from W that is ranked first by at least ⌊ n

k+1
⌋+ 1 voters.

2This is not a theorem due to rounding-related issues.

7. MONOTONICITY
Monotonicity is a natural and easily satisfiable condition for
single-winner rules. Among the few examples of prominent
non-monotone single-winner rules are STV and Dodgson’s
rule [5]. In contrast, for multiwinner rules monotonicity is a
rather demanding property. However, all committee scoring
rules satisfy candidate monotonicity, and all additively sep-
arable committee scoring rules satisfy non-crossing mono-
tonicity.

Theorem 9. Let R be a k-committee scoring rule. Then
R satisfies candidate monotonicity.

Proof. Consider an election E = (C, V ) with ‖C‖ = m.
Let f be the k-committee scoring function defining R for m
candidates and k winners.

Let W be a committee in R(E, k) and let c be a candidate
in W . Consider a vote v ∈ V that does not rank c first, and
replace it with a vote v′ obtained from v by shifting c one
position forward. Denote the resulting election by E′.

By construction, we have f(posv′(W )) ≥ f(posv(W )). On
the other hand, for each committee S ⊆ C \ {c}, we have
f(posv′(S)) ≤ f(posv(S)). Since W was a winning com-
mittee for E, this means that either W is also a winning
committee for E′ or some committee W ′ ∈ R(E′, k) has a
higher score. We must have c ∈ W ′, since only committees
with c can have a higher score in E′, compared to E.

Theorem 10. Let R be an additively separable k-
committee scoring rule. Then R satisfies non-crossing
monotonicity.

However, committee scoring rules that are not additively
separable (such as ℓ1-CC) do not always satisfy non-crossing
monotonicity.

Proposition 11. ℓ1-CC, ℓ1-Monroe, Greedy-CC, and
Greedy-Monroe fail non-crossing monotonicity.

While ℓmin-CC is not a committee scoring rule, it also sat-
isfies candidate monotonicity, but fails non-crossing mono-
tonicity; the proof is similar to that of Theorem 9.

Theorem 12. ℓmin-CC satisfies candidate monotonicity,
but both ℓmin-CC and ℓmin-Monroe fail non-crossing mono-
tonicity.

The remaining multiwinner rules studied in this paper fail
each of our monotonicity criteria. For STV this is well-
known to happen even for k = 1. For the rest of the rules,
we provide the next result.

Proposition 13. ℓ1-Monroe, ℓmin-Monroe, Greedy-
Monroe, and Greedy-CC fail candidate monotonicity.

Proof. We only give the proof for ℓ1-Monroe due to
space constraints. Consider an election with candidate set
C = {a, b, c, d} and four voters whose preference orders are
acdb, dacb, bcda, and dbac. Let k = 2. Under ℓ1-Monroe,
there are two winning committees, {a, b} and {c, d}, both
with satisfaction 4‖C‖ − 6 = 10.

If we shift a forward by one position in the last vote,
then {c, d} is the only committee that wins in the modified
election. Thus, ℓ1-Monroe is not candidate monotone.
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8. CONSISTENCY AND HOMOGENEITY
For single-winner rules, a famous theorem of Young says
that only scoring rules and their compositions satisfy con-
sistency [25]. While we do not know how to extend this re-
sult to multiwinner rules, the situation seems to be similar:
We show that every committee scoring rule satisfies con-
sistency, whereas other rules fail it (for STV, ℓmin-CC and
ℓmin-Monroe this follows from Young’s result, as for k = 1
these rules are not scoring rules).

Proposition 14. Every committee scoring rule satisfies
consistency. STV, ℓmin-CC, Greedy-CC, ℓ1/ℓmin-Monroe,
and Greedy-Monroe fail consistency.

We now consider homogeneity. Naturally, committee scor-
ing rules are homogeneous because consistency implies ho-
mogeneity. For other rules, the situation is more complex.

Theorem 15. Both ℓmin-CC and Greedy-CC satisfy ho-
mogeneity.

Intuitively, these rules are homogeneous since they treat vot-
ers with the same preference orders identically. Interestingly,
neither of the variants of Monroe’s rule is homogeneous.

Proposition 16. ℓ1-Monroe, ℓmin-Monroe, and Greedy-
Monroe are not homogeneous.

Proof. Consider an election with candidate set C =
{a, b, c, d} and three voters with preference orders abdc, abdc,
and cbda. For ℓ1-Monroe, Greedy-Monroe and ℓmin-Monroe,
the unique winning committee of size 2 is {a, c}. However,
for 2E the winner sets for these rules include {a, b}.

On the positive side, if the number of voters is divisible by
the size of the committee, then ℓ1-Monroe and ℓmin-Monroe
are homogeneous. In essence, this means that variants of
Monroe fail homogeneity due to rounding problems in the
Monroe criterion. One solution would be to clone each voter
k times when seeking a committee of size k. We do not
consider this modification of Monroe’s rule here, but it would
be interesting to see how the satisfaction of a committee
elected in this way compares to that elected without cloning.

Theorem 17. Both ℓ1-Monroe and ℓmin-Monroe satisfy
homogeneity, provided that the number of voters in the elec-
tion is divisible by the size of the committee to be selected.

Proof. LetR ∈ {ℓ1-Monroe, ℓmin-Monroe}, pick an elec-
tion E = (C, V ), and let k be a positive integer that divides
‖V ‖. We will show that R(E, k) = R(tE, k) for each t > 0.

Let W be a committee that wins in tE. We refer to the
members of W as the winners. Let Φ: V → C be an assign-
ment of candidates to voters witnessing that W ∈ R(tE, k).
By Monroe’s criterion, for each w ∈ W we have ‖Φ−1(w)‖ =
nt

k
. We now proceed as follows. First, we show how to trans-

form Φ into an assignment Φ′ such that (a) under Φ′ each
winner represents exactly n

k
voters in each copy of V and (b)

the satisfaction of the voters under Φ′ is the same as under
Φ. We then prove that Φ′ can be further transformed into
Φ′′ that uses the same assignment for each copy of V .

Let n = ‖V ‖. Let V1, . . . , Vt be t copies of V so that tV =
V1+. . .+Vt; we assume that within each Vi, i ∈ [t], voters are
listed in the same order. For each i ∈ [t], ℓ ∈ [n], we write vi,ℓ
to denote the ℓ-th voter in Vi. For each subsequence V ′ =

Algorithm 1: The algorithm performing the swaps used in

the proof of Proposition 17

1 W ′ ←W+;
2 Considered ←W+;
3 Subs ← [];
4 w ← −1;
5 while true do

6 U ← V1(W ′) ;
7 Subs .push back(U) ;
8 if repr(U) ∩ W− 6= ∅ then
9 w ← any winner from (repr(U) ∩ W−) ;

10 break;
11 else
12 W ′ ← repr(U)\ Considered ;
13 Considered ← Considered ∪W ′ ;
14 while Subs.nonempty() do

15 U ← Subs.pop() ;
16 vi,ℓ ← any voter from U , with i > 1, represented by w ;
17 w ← representative of v1,ℓ ;
18 swap(vi,ℓ , v1,ℓ) ;

(v1,i1 , . . . , v1,ip ) of voters from V1, we define the closure of V
′

to be V ′ = {v1,i1 , . . . v1,ip , v2,i1 , . . . v2,ip , . . . , vt,i1 , . . . , vt,ip}.
For each sequence U of voters and each subset W ′ of the
winners, we define U(W ′) to be the subsequence of the voters
from U that are represented by the members of W ′ under
Φ; let repr(U) denote the set of winners that represent the
voters from U .

We now show how to transform Φ so that it assigns each
winner to exactly n

k
voters from V1. Let W+ be the set

of winners who, under Φ, represent more than n

k
different

voters from V1. Similarly, let W0 and W− be the sets of
winners who, respectively, represent exactly n

k
and less than

n

k
different voters from V1. Naturally, if W+ = ∅ we can

take Φ(1) = Φ. Thus, assume that W+ 6= ∅. We define
a swap operation as follows: for two voters, v1,ℓ and vi,ℓ,
i ∈ [t], ℓ ∈ [n], swap(v1,ℓ, vi,ℓ) modifies Φ by assigning the
representative of vi,ℓ to v1,ℓ and vice versa. We claim that
Algorithm 1 finds a winner w+ ∈ W+, a winner w− in W−,
and a sequence of swaps after which (a) the number of voters
in V1 represented by w+ decreases by one, (b) the number
of voters in V1 represented by w− increases by one, and (c)
for each winner w in W \ {w+, w−}, the number of voters in
V1 represented by w does not change. Clearly, swap opera-
tions do not break the Monroe condition and do not change
the satisfaction of the voters from the assignment. Thus, if
our claim is correct, after executing Algorithm 1 sufficiently
many times (and recomputing the sets W+, W−, and W0

before each run), we transform Φ so that each winner in
W represents exactly n

k
voters in V1. (We omit a detailed

analysis of Algorithm 1 due to space constraints.)

Proposition 18. Greedy-Monroe fails homogeneity even
if the size of the committee divides the number of voters.

The above proposition relies heavitly on parallel-universes
tie-breaking. It is possible to refine the intermediate tie-
breaking procedure of Greedy-Monroe so that it becomes
homogeneous when k divides ‖V ‖. We omit the details here.

9. CONCLUSIONS
We have put forward a framework for studying multiwin-
ner rules and considered a number of their properties. We
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believe that our results give a better understanding of appli-
cability of various multiwinner rules to particular tasks. For
example, we see that best-k rules are well-suited for picking
a group of finalists in a competition, whereas rules based on
the Monroe criterion (ℓ1-Monroe, ℓmin-Monroe, and Greedy-
Monroe), as well as STV, seem to be more appropriate for
applications that require proportional representation (e.g.,
parliamentary elections). In this context, Greedy-Monroe
is particularly interesting. It was derived as an approxima-
tion algorithm for ℓ1-Monroe [22], but it has more appealing
properties than the original rule. We believe that Greedy-
Monroe should be taken as a full-fledged voting rule.

Our results for ℓ1-CC and ℓmin-CC are similar to those
for Monroe, but intuitively these rules are better suited for
applications such as movie selection (see the introduction)
than, say, parliamentary elections. The reason is that they
may assign very different numbers of voters to each winning
candidate (naturally, one could imagine rules for parliamen-
tary elections where voters would be represented by more
than a single person—and thus different winning candidates
might represent different numbers of voters—but ℓ1-CC and
ℓmin-CC do not operate on such basis). It is disappointing
that Greedy-CC, which was designed as an approximation
algorithm for ℓ1-CC, does not seem to perform very well.

Finally, it is interesting that SNTV (which, in essence, is
the multiwinner variant of the Plurality rule) satisfies all the
properties that we defined (though it only satisfies unanim-
ity in the weak sense). Yet one should not forget that SNTV
shares the negative features of the Plurality rule (it ignores
most of the information regarding voters’ preferences).
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