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ABSTRACT
We study competitive information provision in search mar-
kets. Consider the used car market: as a consumer searches,
she receives noisy signals of the values of cars. She can con-
sult an expert (say Carfax or a mechanic) to find out more
about the true value before deciding whether to purchase a
particular car or keep searching. Prior research has studied
the pricing problem faced by a monopolistic expert who pro-
vides searchers with perfect information. Here, we study a
richer model that augments prior work in two important re-
spects. First, we analyze expert duopolies; thus each expert
must now reason about the influence of her strategy on the
other. Second, we consider experts who provide uncertain
information, with higher quality experts providing more cer-
tainty; experts can compete on both price and quality. We
show that, in equilibrium, prices will be set such that the
searcher consults the worse quality expert for low or high
signals, and the higher quality expert for intermediate sig-
nals. Surprisingly, we find cases where an improvement in
the quality of the higher-quality expert (holding everything
else constant) can be pareto-improving: not only does that
expert’s profit increase, so does the other expert’s profit and
the searcher’s utility.
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1. INTRODUCTION
Consider a consumer looking to a buy a used car. She

will examine cars ads sequentially until she finds a car she
likes and buy it. When she looks at an advertisement, she
may not interpret the quality of the car correctly, as the
seller may not reveal the true condition of the car. The con-
sumer may choose to consult an agency like Carfax, which
provides information about the car’s history. Prior research
has modeled the impact of the presence of monopolistic in-
formation brokers or experts like Carfax on search markets
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like autotrader.com which serve as platforms for such con-
sumer search [3].

While it is convenient to model them as perfectly infor-
mative, in reality, experts’ signals are themselves likely to be
noisy. MacQueen has studied the searcher’s problem when
the information provided by the expert is noisy [17]; how-
ever, MacQueen’s expert is not strategic, or even an opti-
mizer. In contrast, Chhabra et. al.’s expert is an optimizing
monopolist, but she has access to perfect information [3,
4]. The noise in the expert’s signal is a direct measure of
the quality of the expert: the less noisy, the higher quality.
Recognizing that quality may be determined exogenously
or it might be a choice made by the experts themselves, in
this paper we model the dynamics of competition between
experts who can compete on both price and quality. For
example, the used car information services Carfax and Au-
toCheck compete in both the price space (as of this writing,
AutoCheck charges $29.99 for a single report and Carfax
charges $39.99) and anecdotally, at least, are of different
qualities. Our main contribution is to develop a model that
allows us to study competition between experts of different
quality and characterize optimal search and market dynam-
ics at equilibrium in a duopoly setting.

Related Work.
Our work relates to the literature on noisy one-sided search,

the literature on third-party certifiers of quality, and the lit-
erature on equilibrium analysis of firms providing differen-
tiated quality goods. In the one-sided search literature, we
extend the model of Chhabra et. al., which considers noisy
search with a perfectly informed expert and derives a double
threshold strategy [3].

Costly search [13] and in particular sequential costly search
[22, 15, 14] is a prevalent theme in MAS. It is of great
importance whenever there is no central source that can
supply an agent full immediate reliable information on the
environment thus an agent needs to consume some of its
resources obtaining this information [11]. Most sequential
search problems assume that the true value of the opportu-
nity is observed and the optimal solution is usually in the
form of a reservation-strategy [23, 19, 18, 24]. Work on
multi-attribute sequential search must typically incorporate
noise into the models [16, 25]. Most closely aligned with
our work is that of MacQueen, whose basic set-up is used
here [17]. However, in all the work on noisy search (with the
exception of Chhabra et al), the focus is solely on optimal
search, when the quality and price of the expert is exoge-
nous. In contrast, we use the optimal search strategy to
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analyze the market for experts. We model competitive mar-
kets and derive strategies for both searchers and experts.

The literature on certification is relevant because the ex-
pert can be thought of as a third party certifier providing
quality ratings for a product. Dranove and Jin summarize
the literature on third party certifiers [7]. Most prior work
either focuses on the seller’s incentives to disclose complete
information versus hiding their quality, or on the strategic
behavior of certifiers [2]. In this paper, the incentives for
experts to acquire more information are dependent on the
costs of such information acquisition, but there is no value to
hiding information once acquired. We also study the strate-
gic issues arising from the competition dynamics of experts
with different levels of information. The major difference
between a search setting such as ours and the literature on
ratings (for example, credit ratings) is that a central theme
of the ratings world is that organizations (or sellers) pay
certifiers in order to get rated (the issuer-pays model). So
competition can create completely different dynamics than
in a search setting; these certifiers are struggling to stay in
the market so they may have incentives to provide generous
ratings [9]. The business model is different for our expert,
since she provides services to buyers directly. She may have
to make a decision on the quality of information to acquire
in order to compete, but there are no incentives for misrep-
resentation.

Another line of related research is on equilibrium analysis
in duopoly when firms produce similar goods with different
qualities. In this paper, experts compete on price and qual-
ity, so we focus on literature geared towards finding Bertrand
solutions. Motta studies a two stage game in which the two
participating firms first choose their quality and then select
price or quantity when the marginal cost varies with qual-
ity in order to compare Cournot and Bertrand equilibrium
outputs [21]. Crampes and Hollander study how a duopoly
equilibrium can be perturbed if there is a minimum quality
requirement [5]. Economides studies oligopolistic competi-
tion with an infinite number of firms who can select quality
from a given range, and he studies equilibrium character-
istics with both fixed and variable costs of production [8].
However, in all of these papers, the model used are simple
enough to be solved analytically. As far as we are aware of,
we are the first to study competition in information provi-
sion in search markets.

Finally, we note that there is also related work on provid-
ing information to people in adversarial settings [1, 10]; this
literature tends to focus, however, on factors related to irra-
tionality and the computationally bounded nature of human
reasoning.

Contributions.

• We introduce a new model of competitive information
provision in search markets. Within this model, we
characterize the searcher’s strategy when there are two
competitive experts with different levels of information
quality, and show that, under certain conditions, the
optimal strategy of the searcher with imperfect experts
in a duopoly is reservation-based: there are lower and
upper thresholds between which an expert is consulted,
as in the monopolistic expert case. Now, the region be-
tween the lower and upper thresholds is itself divided
into three, with the higher quality expert being con-

sulted in the middle of the region and the lower quality
expert in the upper and lower parts of that region.

• We show how to compute the optimal price for experts
as a function of information quality and cost, both
when information quality is controlled by the expert
and when it is exogenous. We use this to characterize
equilibrium in the duopoly setting.

• We examine in detail the dynamics of competition be-
tween a higher quality expert and a lower quality ex-
pert (where quality is characterized by the variance of
white noise that affects an expert’s signal), and the ef-
fects of competition on the profits of the experts and
the welfare of searchers. Surprisingly, we find cases
where an improvement in the quality of the higher
quality expert (holding everything else constant) can
be pareto-improving: not only does that expert’s profit
increase, so does the other expert’s profit and the sear-
cher’s utility.

2. THE MODEL
We consider a one-sided noisy search environment where

a searcher observes a stream of opportunities sequentially,
from which she eventually needs to choose one. The value v
of each opportunity is a priori unknown, however the sear-
cher receives, upon paying a cost cs, a noisy signal s which is
correlated with the true value v according to a known proba-
bility density function fs(s|v). Let fv(x)(x ∈ R) denote the
(stationary) probability density function for the true values
(we assume the searcher knows fv(x)). Even with the signal,
the true value of the opportunity remains unknown and re-
vealed only if it is accepted. The searcher thus has to decide
whether to accept the opportunity and terminate the search
or reject and pay to receive the signal for the next opportu-
nity. The searcher also has a third option. She can consult
an expert for some fee in order to get more information about
the opportunity. An expert provides a noisy signal se. The
conditional density function of se given the true value v is
given by fe(se|v). The searcher’s signal and the expert’s sig-
nal are assumed to be conditionally independent given the
true value, i.e., for each expert f(s, se|v) = fs(s|v)fe(se|v);
thus one can easily calculate the joint density f(s, se, v) and
other conditional densities using Bayes’ rule. The searcher
is a risk-neutral utility maximizer.

The model above is standard in the literature and various
motivations and justifications for the above assumptions can
be found in the literature cited in this paper. In particular
the above model is similar to the one proposed by MacQueen
[17] and used as a basis by many others, mostly under the
assumption that expert signal is certain [3, 16].

There are two competing experts the searcher can turn to.
Each expert offers a different signal quality, captured by its
unique conditional density fe(se|v), and the searcher, who
is aware of the qualities of the two experts, can only use
one of them. Specifically, we assume that signals are cor-
rupted by zero-mean noise, ε, therefore se = v + ε, (i.e., the
mean of fe(se|v) is v). The variance σ2

e of the distribution is
thus a measure for the expert’s signal quality — the greater
the variance, the lower is the quality and vice versa. Sig-
nals received from a zero variance expert represent perfect
information.

The two experts are self-interested, risk-neutral, utility
maximizers and act strategically (the expected utility of an
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expert is the expected payments received from searchers mi-
nus the cost of producing its signals in response to queries).
We consider both exogenous and endogenous quality. In the
first case each expert needs to set merely its fee, denoted
by cei for Expert i ∈ {1, 2} while in the second case the
decision involves both the quality and the fee to be charged.
We assume the marginal cost of provision of services for
each expert, denoted dei , may vary for different qualities of
information, and therefore represent it as a function of its
variance σ2

ei respectively for Expert i ∈ {1, 2}.
We assume that the searcher can only query once per sig-

nal, so if she chooses to consult an expert she also has to
decide which expert to select. This restriction, where only
one expert can be queried, is applicable whenever the nature
of the opportunity, or constraints imposed by the provider
of the opportunity, preclude obtaining a second opinion. For
example, a car owner might not be willing to let a poten-
tial buyer take his car to be inspected by more than one
mechanic.

3. OPTIMAL POLICIES
In this section, we derive the optimal strategy for the

searcher and then use it to characterize the strategies for
both experts. We first summarize the searcher’s strategy in
case of a monopoly, drawing from existing literature. We
then turn to deriving the form of the optimal strategy when
multiple experts are available. Using the searcher’s optimal
strategy, we can calculate the expected demand for each ex-
pert’s services, and thus their profit. This enables us to
characterize equilibrium conditions and to study the phe-
nomenological properties of the market in equilibrium.

3.1 The searcher’s strategy

3.1.1 Monopoly
If signals and values are not meaningfully correlated, the

optimal strategy for the searcher is hard to characterize. For
any arbitrary conditional distribution of signals and values,
there is no guarantee that the optimal strategy is reservation
value based. However, it is often the case that if we assume
some natural relationship between values and signals, the
optimal strategy can be shown to have a simple structure. In
our case, we assume the monotone likelihood ratio property.

Definition 1. Monotone likelihood ratio property
(MLRP): A distribution f(y|s) satisfies MLRP if the ratio
f(y|s′)
f(y|s) is non-decreasing in y for s′ > s. This also implies

that f(y|s′) first-order, second-order and third-order stochas-
tically dominates f(y|s) for s′ > s.

The MLRP implies that a searcher is more likely to get
a higher value if she sees a higher signal than if she sees
a lower signal [20, 26]. If both the conditional distribution
of the true value v given the searcher’s signal, s, (fv(v|s))
and the conditional distribution of the true value v given the
expert’s signal se (fv(v|se)) satisfy the MLRP as given in
Definition 1 then the optimal policy is reservation based [17].
The optimal search strategy in this case can be described by
the tuple (V, tl, tu), where: (a) tl is a signal threshold below
which the search should be resumed; (b) tu is a signal thresh-
old above which the current opportunity should be accepted
and the search should be terminated; and (c) V is the ex-
pected utility of the searcher; the searcher should query the

expert if the signal s, she observes, lies in between tl and
tu; On receiving the signal, se, from the expert, the sear-
cher should terminate the search if E(v|s, se) ≥ V otherwise
resume search. The values tl, tu, and V can be calculated
using Equations 1-3:

V = −cs + V Fs(tl) +

∫ ∞
tu

fs(s)E(v|s) ds

+

∫ tu

tl

fs(s)

(
V FZ(V |s) +

∫ ∞
V

zfz(z|s) dz − ce
)
ds (1)

V = V FZ(V |tl) +

∫ ∞
V

zfz(z|tl) dz − ce (2)

E(v|tu) = V FZ(V |tu) +

∫ ∞
V

zfz(z|tu) dz − ce (3)

where Z = Ev(v|s, se) and the density function of Z condi-
tional on the searcher’s signal s is calculated as: FZ(z|s) =
Pr(Ev(v|s, se) < z|s).

3.1.2 Duopoly
We have two competing experts E1 and E2, each provid-

ing a different degree of expertise such that their conditional
distributions of the signals given the values are fe1(se1 |v)
and fe2(se2 |v) respectively, and they charge ce1 and ce2 per
query respectively. Without loss of generality, let E1 be the
lower quality (higher variance) expert and E2 be the higher
quality (lower variance) expert. For convenience, we refer
to E1 and E2 as Elow and Ehigh, and their corresponding
signals as selow and sehigh , respectively. If the searcher de-
cides to query and get more information about the current
opportunity, she also has to decide which expert to query.
Theorem 1 characterizes the structure of the searcher’s op-
timal strategy for the duopoly problem under the MLRP.

Theorem 1. If the conditional distribution of the true
value v given the searcher’s signal, s, (fv(v|s)) and the con-
ditional distribution of the true value v given either expert’s
signal selow or sehigh (i.e., fv(v|selow) and fv(v|sehigh)) satisfy
MLRP, the searcher’s signal s and the experts’ signal selow
and sehigh are conditionally independent given the true value
v, and the conditional distribution of Z given s is differen-
tiable, then the optimal search strategy can be described by
the tuple (V, tl, tu), where: (a) tl is a signal threshold below
which the search should be resumed; (b) tu is a signal thresh-
old above which the current opportunity should be accepted
and the search should be terminated; (c) V is the expected
utility of the searcher; if the signal s, she observes, lies in
between tl and tu then the searcher should query one of the
experts depending on whichever yields higher expected value
from querying. The expected value of querying the experts
Elow and Ehigh is given by Equations 4 and 5 respectively
given the searcher’s signal s:

Ulow(s) = −celow + V Fzlow(V |s) +

∫ ∞
V

zfzlow(z|s) dz (4)

Uhigh(s) = −cehigh + V Fzhigh(V |s) +

∫ ∞
V

yfzhigh(z|s) dz (5)

On receiving the signal se, from the expert she chooses, she
should terminate search if E(v|s, se) ≥ V otherwise resume
search. The values tl, tu, and V can be calculated using
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Equations 6-8:

V = −cs + V Fs(tl) +

∫ ∞
tu

E(v|s)fs(s) ds

+

∫ tu

tl

max(Uhigh(s), Ulow(s)) ds (6)

V = max(Uhigh(tl), Ulow(tl)) (7)

E(v|tu) = max(Uhigh(tu), Ulow(tu)) (8)

Proof sketch: This is a simple corollary to MacQueen’s
result showing the optimality of a double reservation strat-
egy for the searcher when there is only one expert under a
stochastic dominance assumption on the distribution FZ(v|s)
[17]. Since the MLRP implies stochastic dominance, Mac-
Queen’s proof can be extended by replacing the terms re-
lated to the utility of querying an expert in a monopolistic
world with the maximum of the utilities that can be achieved
by querying each expert separately.

Equation 6 is the main Bellman equation which summa-
rizes the searcher’s expected utility from continuing search,
in which case she incurs a cost cs for obtaining the signal of
one additional opportunity. If the signal obtained is below
tl (with probability Fs(tl)) then the search resumes, yield-
ing expected utility V . Otherwise, if the signal obtained
is above tu, the search terminates and the agent’s utility is
E(v|s). Finally, if the signal is between tl and tu, the ex-
pert who provides higher expected utility to the searcher is
used. Equations 7 and 8 can be obtained by setting the first
derivative of Equation 6 w.r.t tl and tu respectively equal to
0.; they can also be seen as indifference conditions at signal
tl, and tu; for example, Equation 7 represents the fact that
when the signal value is equal to tl, the expert is indifferent
between querying an expert (whichever one would be more
useful given signal value tl), and rejecting the opportunity,
thus resuming search. There is also a degenerate case when
neither expert is being queried. In that case, a single thresh-
old serves as an optimal strategy for the searcher.
What happens between tl and tu? Although, Theorem
1 tells us that there is a region (between tl and tu), where
one of the experts will be queried, it is in general non-trivial
to determine how the searcher’s strategy behaves in [tl, tu].
However, for one of the most common and well-known value-
signal structures in the literature [6, 12], we can show that it
is optimal for the searcher to use a double reservation-value
strategy to partition the region [tl, tu] itself.

Theorem 2. Assume the true value is normally distri-
buted (v ∼ N (µ, σ2

v)) and signals are corrupted by additive
white Gaussian noise (AWGN), i.e., s = v + εs, sehigh =
v + εehigh and selow = v + εelow where εs, εehigh and εelow rep-
resent independent draws from zero-mean Gaussians. Then
the optimal strategy of the searcher can be characterized by
a tuple (V, tl, t1, t2, tu) such that a rational searcher should:
(1) reject all the signals s < tl; (2) accept all the signals
s > tu without querying the expert; (3) query the low quality
expert if tl ≤ s ≤ t1 and t2 ≤ s ≤ tu. On consulting the ex-
pert, if Zlow = E(v|s, selow) ≥ V , then accept the opportunity
and terminate the search, otherwise resume; (4) query the
high quality expert if the signal s lies in between t1 and t2.
On consulting the expert if Zhigh = E(v|s, sehigh) ≥ V , then
accept the opportunity and terminate the search, otherwise
resume;

Proof. Since v ∼ N (µv, σ
2
v), fehigh(se|v) ∼ N (v, σ2

ehigh
)

and felow(se|v) ∼ N (v, σ2
elow), the following holds:

fZhigh(z|s) ∼ N

(
sσ2
v + µσ2

s

σ2
v + σ2

s

,
σ4
sσ

4
v(σ2

v + σ2
s)−1

σ2
sσ2
v + σ2

sσ2
ehigh + σ2

vσ2
ehigh

)

fZlow(z|s) ∼ N
(
sσ2
v + µσ2

s

σ2
v + σ2

s

,
σ4
sσ

4
v(σ2

v + σ2
s)−1

σ2
sσ2
v + σ2

sσ2
elow + σ2

vσ2
elow

)
This enables the calculation of FZhigh(z|s) and FZlow(z|s).

Since the mean is equal for the two conditional distributions
above, and is expressed as a function of the variable s, it can
be represented as µ(s). Let σZhigh and σZlow represent the
respective standard deviations. The difference in the utility
from querying either expert is:

Ulow(s)− Uhigh(s) = −celow + cehigh

+

∫ ∞
V

(Φ(z, µ(s), σ2
Zhigh

)− Φ(z, µ(s), σ2
Zlow

)) dz

where Φ(x;µ, σ2) represents the normal CDF with mean µ
and variance σ2 evaluated at x. We want to find the region
in which each expert is queried. In order to do so, we check
how many times the sign of the difference of utilities received
by querying the two experts changes. Note, that we only
need to consider cases where cehigh − celow > 0, as otherwise
the strategy is trivial — consult the high quality expert. We
claim that Ulow(s)− Uhigh(s) is single peaked function, and
therefore can change sign twice (have at most two roots).
In order to do so we first find the points at which the first
derivative is 0, and then perform higher order derivative test.

d(Ulow(s)− Uhigh(s))

ds
=
d(Ulow(s)

ds
− dUhigh(s))

ds

= − σ2
v

σ2
v + σ2

s

(
Φ(V ;µ(s), σ2

Zlow
)− Φ(V ;µ(s), σ2

Zhigh
)
)

Putting the derivative of Ulow(s)−Uhigh(s) equal to zero,
we get: Φ(V ;µ(s), σ2

Zlow
) = Φ(V ;µ(s), σ2

Zhigh
). The CDF

for two normal distribution with same mean and different
variance are equal at the extremes {−∞,∞} or at the mean
because CDF of any normal distribution at the mean is 0.5.

We know V is finite, therefore, µ(s) = V ⇒ s =
V (σ2

v+σ
2
s)

σ2
v

.

To check if this is an extremum, we calculate the second
derivative of Ulow(s)− Uhigh(s):

d2(Ulow(s)− Uhigh(s))

ds2
=

d

ds

(
d(Ulow(s)

ds
− dUhigh(s))

ds

)
=

(
σ2
v

σ2
v + σ2

s

)2 (
φ(V ;µ(s), σ2

Zlow
)− φ(V ;µ(s), σ2

Zhigh
)
)

d2(Ulow(s)− Uhigh(s))

ds2

∣∣∣∣
s=

V (σ2v+σ2s)

σ2v

=

(
σ2
v

σ2
v + σ2

s

)2
1√
2π

(
1

σZlow

− 1

σZhigh

)
> 0

as σehigh < σelow ⇒ σZhigh > σZlow ⇒
1

σZhigh

<
1

σZlow

where φ(x;µ, σ2) represent the normal probability density
function with mean µ and variance σ2. As the function is
single peaked it can at most change sign twice (intersect with
x-axis). Note, if the maximum of (

∫∞
V

(Φ(z;µ(s), σ2
Zhigh

) −
Φ(z;µ(s), σ2

Zlow
)) dz) is less than celow − cehigh then the high

quality expert will never be queried. If there are two roots
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(a) Searcher’s strategy vs. 1
σehigh

(b) Effect of duopoly on searcher’s utility

Figure 1: (a) The optimal strategy for the searcher (b) Searcher’s utility as a function of the quality of the
high-quality expert ( 1

σehigh
). For comparison, the green and the red line show the searcher’s utility when the

high-quality expert and the low-quality expert are the monopolist respectively. For both graphs, we keep
the low-quality expert’s standard deviation, σelow , constant at 3, delow = 0.01

σ2
elow

, dehigh = 0.01
σ2
ehigh

, cs = 0.1, µv = 5,

σs = 4, σv = 2.

of Ulow(s) − Uhigh(s) = 0, say t1 and t2, then as the point
of extremum calculated is a minima (the second derivative
is positive and the first derivative is zero) then for signals
less than t1 or greater than t2, the low-quality expert will be
preferred, and in between the high-quality expert. If t1 < tl
and t2 > tu then the low quality expert is never queried
in practice because then resuming the search or accepting
without querying are better alternatives for signals s < tl
and s > tu respectively.

3.2 The experts’ strategies
While the strategies described above are optimal for the

searcher no matter what prices the experts set, the non-
degenerate cases only hold when the experts pursue sensi-
ble pricing strategies, given their respective qualities. In a
duopoly, for both Elow and Ehigh to survive, it must be the
case that the lower quality expert charges less in equilibrium
(celow < cehigh), otherwise it will never be queried.

Under the white Gaussian noise assumption, the query
region of the two experts is nicely partitioned, therefore,
we can calculate each expert’s profit analytically (similar to
the monopolist profit calculation discussed in [3]) and we use
that to solve for equilibrium using best-response dynamics.
Let A, B, C, D, E and F represent the probability of (1)
rejecting and resuming the search; (2) accepting the search
without querying the expert; (3) querying the low quality
expert and terminating the search; (4) querying the low-
quality expert and resuming the search; (5) querying the
high-quality expert and terminating the search; (6) querying
the high-quality expert and resuming the search respectively.

The expected number of opportunities examined ηs =
1

B+C+E
(because termination is a Bernoulli trial with prob-

ability B+C+E). The expected number of times an expert
is queried, denoted by ηce , is given by:

ηce = Pr(Expert is queried)ηs

Therefore, the expected number of times Elow and Ehigh are
queried is ηcelow = C+D

B+C+E
and ηcehigh = E+F

B+C+E
respec-

tively. We now turn to a specific example to understand the
properties of equilibrium.

3.3 An example
Suppose we have two experts Ehigh and Elow such that

the conditional distributions of their signals, sehigh and selow
respectively, given the true value v are both normally distri-
buted with mean v and variance σ2

ehigh and σ2
elow (i.e.,

fehigh(se|v) ∼ N (v, σ2
ehigh) and felow(se|v) ∼ N (v, σ2

elow),

and σehigh < σelow). The distribution of the true value

v ∼ N (µv, σ
2
v). This example satisfies the assumptions for

Theorem 2.

3.3.1 Exogenous expert quality
First, we assume that the quality of both experts is fixed

and different, but they compete on price. We use a best-
response dynamic to find equilibrium prices for the experts
to set, as mentioned above.

Searcher strategy and utilities: The searcher’s op-
timal strategy is characterized by a 5-tuple (V, tl, t1, t2, tu)
as per Theorem 2. Figure 1(a) shows the searcher’s strat-
egy as a function of the quality of the higher-quality expert
(1/σehigh), holding the quality of the lower-quality expert
(1/σelow) constant. Therefore, the quality of the higher-
quality expert increases as we go right. We can see that
the lower-quality expert is only utilized for signals that are
“close to the edge” in terms of whether or not the searcher
wishes to consult an expert at all. The higher quality ex-
pert is consulted far more, since it is consulted for all signals
that fall in the intermediate range. Figure 1(b) shows the
expected utility of the searcher as the quality of the bet-
ter expert increases; the rate of increase is similar to what
would occur if the better expert were a monopolist, and, as
expected, the searcher is much better off in a world with
competition than a world where the expert is a monopolist.
The extent to which this effect holds is interesting. Note that
the searcher potentially has access to much better informa-
tion at the rightmost point of the green line (a monopolist
with 1/σehigh u 1.25 ⇒ σehigh u 0.8), than at the leftmost
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point of the blue line (duopolistic experts with σelow = 3.0
and 1/σehigh u 0.35 ⇒ σehigh u 2.85 respectively). How-
ever, the searcher’s expected utility is much higher for the
leftmost point of the blue line than the rightmost point of
the green line, showing that the high expert prices charged
in monopoly are much worse for the searcher than having
potentially worse information on the basis of which to make
a decision.
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Figure 2: Equilibrium profits of the two experts
and the searcher’s utility as a function of quality of
the high-quality expert ( 1

σehigh
), keeping the qual-

ity of the low-quality expert constant (σelow = 3).
For 1

σehigh
< 0.5 ⇒ σehigh > 2, we see that the profit

of both high-quality and low-quality expert and the
utility of the searcher increases as the quality of the
high-quality expert increases, therefore, the overall
social welfare also increases. The settings are same
as in Figure 1.

Expert behavior and profits: Figure 2 shows the prof-
its accruing to each expert (along with the searcher’s util-
ity) as a function of the quality of the high-quality expert
(1/σehigh), holding σelow constant (= 3). For this figure, the
marginal cost of production of expert reports is a function of
the quality provided (specifically, de = 0.01/σ2

e) for both ex-
perts. Several interesting things jump out from this picture.
First, the profit of the higher quality expert is an order of
magnitude higher than the profit of the lower quality expert
(the Y axes for the two curves are different, the higher qual-
ity expert always makes more profit than the lower quality
one). The profit of the higher quality expert increases sig-
nificantly as her quality increases. Despite the probability
of the higher quality expert getting queried in each round
(Pr(t1 ≤ s ≤ t2)) decreases the amount it is able to chargein-
creases at a much faster rate (see Figure 3), and hence the
profit. The behavior of the profit of low quality expert is
more complex — it initially increases rapidly when the dif-
ference in the quality of the high-quality expert increases
and then starts decreasing very slowly. This initial increase
is particularly surprising because one would imagine that
enhancing the quality of the better expert would hurt the
low quality expert. This effect can be teased out by again
examining the probabilities of each expert being consulted
and their fees in Figure 3. Interestingly, although the prob-
ability of consulting the low quality expert decreases as the

quality of the high quality expert increases, the price she
charges also increases. The higher quality expert charges
more when its quality is improved in order to offset its in-
creasing marginal cost associated with increasing quality. It
is possible that in this situation, the low-quality expert is
also able to take advantage of the higher price charged by
high-quality expert by increasing its own fee and thus gain-
ing more profit. However, eventually the rate of increase
of the query price at equilibrium for the low quality expert
decreases, and the declining probability that she is used be-
comes more important.

It is worth noting that the searcher’s utility (the red line
in Figure 2) also increases with the increase in the quality
of the high-quality expert, mainly because better informa-
tion is available to the searcher. Clearly, the searcher and
the high-quality expert are doing better as the quality of
the high-quality expert improves. The fact that the low-
quality expert’s profit also increases until σehigh > 2 (or
1/σehigh < 0.5) therefore demonstrates the surprising result
that improving the quality of the high-quality expert can be
pareto-improving.

3.3.2 Endogenous expert quality
When the expert not only has control over the price it

charges but also over the quality it offers, additional equi-
librium dynamics must be considered. One option in this
case is that the experts have already done enough research
on their part and are able to provide any quality and choose
the one which is in their best interest, i.e., in order to max-
imize their expected profit. Alternatively, it is possible that
the experts incur some switching cost whenever changing
their quality. We analyze equilibrium conditions for these
two situations for two experts with identical marginal costs
of producing expert reports.

No switching costs.
It is a fairly standard result on differentiated Bertrand

competition that the following conditions must hold in equi-
librium (cf. [8]):

1. The two experts should make identical profits, other-
wise one expert can slightly undercut the other expert
in price at the same quality and increase her profit,
taking over the entire market share.

2. At equilibrium the price charged by each expert should
be equal to the marginal cost, otherwise the experts
will tend to undercut each other and capture the com-
plete market. Hence, their profit at equilibrium is zero.
However, not all marginal cost pricing strategies are in
equilibrium.

In order to find an equilibrium in this case one needs to
find a quality (σe) (the price will be equal to the marginal
cost because of the condition discussed above), such that
the best response of the second expert is to charge a price
equal to the marginal cost for any quality. For example,
if the marginal cost of production is not dependent on the
quality and is a fixed identical constant for both experts,
then in equilibrium both experts provide perfect information
at a price that is equal to their marginal cost (e.g., in the
case of informational goods, that are characterized with zero
marginal cost of production, the service should be provided
for free at equilibrium).
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(a) Probability of querying either expert (b) Prices charged by the two experts
Figure 3: Probability that an expert will be queried (left) and price set by each expert (right) as a function
of the quality of the high-quality expert ( 1

σehigh
). The definitions and settings are the same as in Figure 1

In the presence of switching costs.
Consider two experts with quality and price combinations

(σe1 , ce1) and (σe2 , ce2) respectively such that ce1 and ce2
are equilibrium prices given that qualities are fixed. If the
experts are also allowed to change their quality and either
of them find a strategy (σ′e, c

′
e) to be more beneficial, tak-

ing the strategy of the other expert to be fixed, then the
solution no longer complies with the equilibrium stability
condition. However, if changing one’s quality incurs a cost,
which is greater than the benefit achieved by deviating to
any new quality (and its corresponding price), the equilib-
rium conditions will still hold. It is natural to assume zero
costs for decreasing quality but positive costs for improving
quality, so we model switching costs using a hinge function.
In this case, any quality pairs (σe1 , σe2) for which neither
of the agents finds a benefit in switching to a lower quality
can be stabilized, and thus remain in equilibrium, using an
appropriate switching cost (that applies only to increasing
quality).

In order to understand how the switching cost affects the
nature of equilibria, consider an example where the switch-
ing cost depends linearly upon the amount of improvement
required to improve the profit, S = max(A( 1

σ′
ei

− 1
σei

), 0)

where A > 0 and σ′ei is the new standard deviation for Ex-
pert i ∈ {1, 2} (the higher the standard deviation of the
noise, the lower the quality). In order for a pair of standard
deviations to be in equilibrium, the proportionality constant
A must be sufficiently high to incentivize the two experts
to not deviate from the qualities they are offering. Fig-
ure 4 shows how the minimum value of the proportionality
constant A required to keep the two experts in equilibrium
varies as a function of the quality of the high-quality ex-
pert (1/σehigh), keeping the quality of the low quality expert
constant. While the figure shows the constant A needed for
both experts separately, under the assumption that there is
a universal switching cost function for both experts, A would
effectively be the max of the two at each point. Note that in
this example the proportionality constant for the low-quality
expert is always higher than that of the high-quality expert.
One reason for this could be that the low-quality expert can
gain more by improving her quality. Also, the minimum

value needed for the proportionality constant decreases as
the quality of the high-quality expert increases. Therefore,
if we choose any value of A (say A = 1), then only the points
lying on the right of 1/σehigh u 0.7 will be in equilibrium.
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Figure 4: Minimum value of A, the proportion-
ality constant for the switching cost, required for
the two experts to be in equilibrium as a function
of the quality of the high-quality expert ( 1

σehigh
)

keeping σelow constant. The switching cost S =

max
(
A( 1

σ′
ei

− 1
σei

), 0
)

where σ′ei and σei are the new

and the current standard deviations respectively for
Expert i ∈ {1, 2}. We find that the minimum value
of this constant decreases as the quality of the high
quality expert increases further, and the value is al-
ways higher for the low quality expert. Therefore,
if A is equal to any point on the blue curve, then
all the points to its right will be in equilibrium but
none of those to its left. The settings are same as in
Figure 1.

4. DISCUSSION
We have introduced a model for studying competitive in-

formation provision in search markets, focusing especially on
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the duopolistic case. Our model allows us to study the im-
pact of experts (information providers) of different quality,
and strategic issues in how these experts should price their
services. In this paper we demonstrate some basic results
– e.g, with normally distributed noise for both experts, the
higher quality expert will be consulted for “more ambigu-
ous” signals, while the lower quality expert will be consulted
for ones that are closer to the searcher’s original decision
thresholds. Using those results, we discuss the character-
istics of equilibria under both exogenous and endogenous
assumptions on expert quality. Surprisingly, we show that
improvements in the quality of the higher quality expert can
be pareto-improving, increasing not just her profit and the
utility of the searcher, but also the profit of the lower quality
expert (whose quality does not change). We also character-
ize the level of switching cost needed in order to “stabilize”
the (price, quality) pairs offered by the two experts so that
they are in equilibrium.

These results are of importance to MAS designers, plat-
form owners and regulators that often have control of, or
can impose constraints on, experts and the quality they of-
fer. For example, if the quality of the expert relies on the
amount of information it has or its access to databases that
are under the control of the MAS designer, then the latter
can dictate the set of expert qualities that maximizes user’s
benefit. Alternatively, the higher quality expert can be paid
to improve its quality, in a way that benefits all players.

The plausibility and tractability of our model, with nor-
mally distributed noise of different variances as the defining
features of experts of different qualities, opens up many in-
teresting questions for further study. For example, extend-
ing the model to multiple types of consumers/searchers may
lead to some interesting insights. Suppose there were some
consumers with noisier signals than others, or some who
were pickier than others. Would the dynamics of competi-
tion lead to market segmentation where different qualities
of information were provided to different types of searchers?
We believe our model can provide a useful foundation for
studying such questions.
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