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ABSTRACT

MC-nets constitute a natural compact representation scheme for co-

operative games in multiagent systems. In this paper, we study the

complexity of several natural computational problems that concern

solution concepts such as the core, the least core and the nucleolus.

We characterize the complexity of these problems for a variety of

subclasses of MC-nets, also considering constraints on the game

such as superadditivity (where appropriate). Many of our hard-

ness results are derived from a hardness result that we establish for

a class of multi-issue cooperative games (SILT games); we suspect

that this hardness result can also be used to prove hardness for other

representation schemes.
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Algorithms, Economics, Theory
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1. INTRODUCTION
In settings with multiple self-interested agents, the agents can

often benefit from forming coalitions, which allows them to ac-

complish tasks that they could not accomplish individually. Co-

operative game theory provides tools to answer several important

questions in this context, such as how the gains from such cooper-

ation are to be distributed among the agents. This has led to signif-

icant and sustained interest from multiagent systems researchers in

computational aspects of cooperative game theory. A book is now

available on this topic [2].

The most commonly studied model in cooperative game theory

specifies a value v(S) for every subset S ⊆ A, where A is the

set of agents. This is the value that the agents in S can obtain and

distribute among themselves if they work (only) with each other.

v : 2A → R is known as the characteristic function of the game.

Several assumptions are inherent in this model: for example, more

generally there may be restrictions on how agents can transfer util-

ity among themselves, or the agents may care about the actions of
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agents outside the coalition. Nevertheless, it is a broadly applicable

model and we will restrict attention to it in this paper.

The straightforward way to represent a cooperative game with n
agents requires listing 2n numbers, one for each coalition S ⊆ A.

This is generally not feasible. Usually, however, there is structure

in the game that allows us to represent it compactly. In this pa-

per, we focus on representations whose compactness relies on the

insight that the characteristic function is often a sum of multiple

functions—that is, v =
∑

t vt for multiple issues t—where each vt
can be represented compactly. For example, if for each individual

issue t, many (for example, all but a constant number of) are dummy

agents (where i is a dummy agent for vt if vt(S∪{i}) = vt(S) for
all S), then we can explicitly specify the value of the function vt
for each subset of non-dummy agents [4]. Alternatively, Marginal

Contribution nets (MC-nets) [14] specify, for each issue, a logical

pattern such that some constant value is obtained if the coalition

satisfies the pattern, and zero otherwise. Both of these represen-

tation schemes are fully expressive; necessarily, some games will

require exponential space to specify, but many interesting families

of games (e.g., graph games) can be specified compactly.

MC-nets in particular have received a significant amount of at-

tention in recent years. Which games can be specified compactly

using them depends on which logical operators are allowed in the

patterns. The original paper [14] focused on the case where only

conjunctions and negations (and no brackets) are allowed. More re-

cently, it was extended to also allow disjunctions and brackets [8].

Inspired by these papers, our main objective in this paper is to sys-

tematically characterize how the complexity of solving coopera-

tive games represented as MC-nets depends on what constraints

are imposed on patterns – specifically, which logical operators are

allowed and whether negative values are allowed. It turns out that a

key step is to first consider general multi-issue games in which all

issues but one concern only a small number of agents.

But what does it mean to solve a game? There are many solu-

tion concepts in cooperative game theory, such as the Shapley value

[19], the kernel [6], the core [11], the least core [17] and the nucle-

olus [18]. Among these, the Shapley value and the core are partic-

ularly prominent. A key and defining property of the Shapley value

is its additivity: an agent’s Shapley value is the sum of its Shapley

values in the individual issues, so that having multiple issues (or

patterns) does not get in the way of computational tractability [4,

14, 8]. Therefore, in this paper, we focus on stability-based solution

concepts, including the core, the least core and the nucleolus.

2. RELATED RESEARCH
Deng and Papadimitriou [7] proved that the CORE-EMPTINESS

problem (see Definition 2) is NP-complete in graph games where

agents are vertices and a coalition’s value is the sum of all edges’
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weights in the subgraph induced by that coalition. As has been pre-

viously pointed out [14, 12], MC-nets can encode graph games effi-

ciently, so the problem is also hard for MC-nets. However, a natural

and extremely common constraint on the characteristic function is

for it to be superadditive, that is, for S ∩ S′ = ∅, we must have

v(S ∪ S′) ≥ v(S) + v(S′). The intuition is that one course of ac-

tion for any coalition is simply to further divide into two subcoali-

tions and take the sum of their values, so the (maximum) value the

coalition can achieve must be at least this sum. Graph games are

superadditive if and only if there are no negative edges, and if there

are no negative edges the graph game must be convex and its core

nonempty. So, if a superadditivity constraint is added, the CORE-

EMPTINESS problem is trivial for graph games, and its complexity

is not clear for MC-nets.

Conitzer and Sandholm [5] introduced a compact representation

scheme that fundamentally relied on the game being superaddi-

tive. They proved that the CORE-EMPTINESS problem is coNP-

complete under their representation. However, they proved that this

hardness was strictly due to the hardness of computing the value

of the grand coalition (v(A)) under their representation, because
once that value is given, the CORE-EMPTINESS problem can be

solved in polynomial time. Hence this result cannot imply hardness

for MC-nets, where v(A) is easy to compute. In other work [4],

Conitzer and Sandholm consider the multi-issue representation de-

scribed above (a constant number of non-dummy agents per issue)

and proved that the harder NOT-IN-CORE problem (see Defini-

tion 3) is NP-complete even with a superadditivity constraint. How-

ever, they did not settle the complexity of the CORE-EMPTINESS

problem under these conditions. In this paper, we prove that the

CORE-EMPTINESS problem is in fact NP-complete under a multi-

issue representation (with a constant number of non-dummy agents

for all but one issue), even when requiring superadditivity. We

show that this also implies hardness for several, but not all, vari-

ants of MC-nets. The proof is quite involved; we will give some

intuition for why this might be necessary at the end of Section 3.2.

Note that our work is not the first to prove NP-hardness for the

CORE-EMPTINESS problem in cooperative games that are super-

additive. Greco et al. [13] proved such hardness for games that are

specified using “polynomial-time worth functions”. But their result

does not seem to apply to MC-nets and multi-issue games, as their

representation scheme is significantly more powerful. Specifically,

in their hardness proof, the coalition value switches to some value

once the coalition size exceeds |A|/2, and we do not see how this

can be expressed using MC-nets with only limited logical opera-

tors or using multi-issue games with small issues. On the other

hand, our result implies their hardness result, as SILT games are

polynomial-time worth function games. To the best of our knowl-

edge, no hardness results are known for CORE-EMPTINESS under

MC-nets or multi-issue representations. Previous results left open

the possibility that these problems were polynomial-time solvable

under such representation schemes.

Although the core is a computationally challenging solution con-

cept in many cases, some positive results are known. For example,

the NOT-IN-CORE problem is in P for MC-nets if the treewidth of

the corresponding agent graph is bounded [14]. This problem is

also in P for graph (or hyper-graph) games if all the edges (or hy-

peredges) have non-negative values [7]. Those games correspond

to MC-nets with only ∧ operators and non-negative pattern val-

ues. In fact, Deng and Papadimitriou [7] gave an efficient network

flow algorithm that can solve a harder problem: MOST-VIOLATED-

COALITION (see Definition 4).1 A similar network flow algorithm

1They do not explicitly state that their algorithm can solve this
problem, but it does. Specifically, the maximum violation is v(A)

can be found in Lawler [15, p. 125]. (The provisioning problem

there is identical to the MOST-VIOLATED-COALITION problem.)

Those algorithms can further be used to compute an element of

the least core, and, under certain conditions [9], the nucleolus, effi-

ciently. The nucleolus is a very attractive solution concept; among

other properties, it is unique and it lies within the core whenever

the core is nonempty.

As becomes apparent from the above discussion, the three prob-

lems CORE-EMPTINESS, NOT-IN-CORE, and MOST-VIOLATED-

COALITION are closely related to each other and to stability-based

solution concepts like the core, the least core and the nucleolus.

This makes it natural to study them all together, as we do in the rest

of this paper.

3. PRELIMINARIES
In this section, we define the computational problems that we

study, and review some basic results. We will not yet discuss how

games are represented; the definitions of the computational prob-

lems are valid for any representation scheme (though of course their

complexity depends on which scheme is used).

3.1 Problem Definitions
Given agents A, we first formally define the core:

DEFINITION 1 (CORE). Let x : A → R denote a payment

vector and let x(S) =
∑

a∈S x(a) be the total payment to coalition
S ⊆ A. The core is the set of payment vectors with x(A) = v(A)
that pay every coalition at least its value, i.e., {x | x(A) = v(A)∧
(∀S ⊆ A)x(S) ≥ v(S)}.

We will study the following related decision problems:

DEFINITION 2. In the CORE-EMPTINESSproblem, we are given

a cooperative game. The instance has a yes answer if and only if

the core of that game is empty.

DEFINITION 3. In the NOT-IN-CORE problem, we are given a

cooperative game and a payment vector x (x(A) = v(A)). The

instance has a yes answer if and only if x is not in the core of that

game (that is, there exists a blocking coalition ∅ ( S ( A such

that v(S) > x(S)).

DEFINITION 4. In theMOST-VIOLATED-COALITIONproblem,

we are given a cooperative game, a payment vector x (x(A) =
v(A)), and a violation goal γ ∈ R. The instance has a yes answer

if and only if there exists ∅ ( S ( A such that v(S)− x(S) > γ.

In Definitions 3 and 4, when the answer is yes, we might also

like to find a coalition that proves that this is the case. Hence, the

reader might prefer a definition of the computational problem that

is more constructive. Fortunately, in both cases, we can use an al-

gorithm for the decision problem to actually construct the coalition

in question, shown as Algorithm 1.2 In the case of Definition 4, we

may also wish to find the maximum γ with answer yes; searching

for this γ up to an arbitrarily good approximation is straightforward

by binary search.

(or equivalently v(N) = x(N) in their paper’s notation) minus the
value of the maximum flow/minimum cut.
2The algorithm is correct for the following reasons. If the decision
algorithm returns yes after x(a) is increased byM , there must be a
subset S with a /∈ S that can prove the yes answer; hence we can
safely exclude a by not restoring x(a). If the decision algorithm
returns no after x(a) is increased byM (but before that the answer
is yes), all S that can prove the yes answer (without using what has
already been excluded) must include a; therefore we restore x(a)
(so the answer remains to be yes) and put that a into C.
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Algorithm 1 Given an algorithm that decides whether a coalition

S with v(S)−x(S) > 0 (or v(S)−x(S) > γ) exists, and a game

for which the answer is yes, construct a coalition with that property.

for all a ∈ A do

increase x(a) and v(N) byM = (maxS v(S))− γ
run the algorithm for the decision variant again;

if the answer is no then

restore x(a), v(N) to their original values
end if

end for

Output the coalition C = {a ∈ A : x(a) < M}.

3.2 Basic Results
What could be a certificate for the core being empty? The well-

known Bondareva-Shapley theorem [1, 20] provides the answer.

THEOREM 1 (BONDAREVA-SHAPLEY THEOREM). For any

cooperative game with non-negative values (v(S) ≥ 0 for all S ⊆
A), the core is empty if and only if there exists a weight function

w : 2A \ {∅} → [0, 1] such that
∑

∅⊂S⊆A

w(S)v(S) > v(A) (1)

(∀a ∈ A)
∑

∅⊂S⊆A:a∈S

w(S) ≤ 1 (2)

The following lemma is also well-known (see, e.g., [16, 10]).

LEMMA 1. If the value of any coalition v(S) can be computed

in polynomial time, then the CORE-EMPTINESS, NOT-IN-CORE,

and MOST-VIOLATED-COALITION problems are in NP.

An efficient algorithm for one of the problems sometimes leads

to one for another. The NOT-IN-CORE problem is the special case

of the MOST-VIOLATED-COALITIONproblem where γ = 0. Mean-

while, if NOT-IN-CORE is in P, then so is CORE-EMPTINESS, be-

cause the former is the separation oracle problem for the latter (see

also the discussion in [14]). Summarizing in a proposition:

PROPOSITION 1. The CORE-EMPTINESS, NOT-IN-CORE and

MOST-VIOLATED-COALITIONproblems have nondecreasing com-

plexity. That is, if a problem is in P, so are the problems on its left;

if a problem is NP-hard, so are the problems on its right.3

Hence, the most difficult hardness results to obtain are those

for CORE-EMPTINESS. Moreover, it appears even more difficult

to prove that this problem is hard if we require the game to be

superadditive, for the following reason. We recall that a natural

certificate for CORE-EMPTINESS consists of the right values for

w(S) in the Bondareva-Shapley theorem (or at least a specifica-

tion of which ones are positive). It is natural to attempt reductions

to CORE-EMPTINESS where, if the answer is yes, there exists a

subset S such that setting w(S) = 1 and w(A \ S) = 1 (and ev-

erything else to 0) is a certificate. Indeed, this is the case for the

proof by Deng and Papadimitriou [7]. However, this approach can-

not work in superadditive games, because there we would obtain
∑

S w(S)v(S) = v(S) + v(A \ S) ≤ v(A). More generally, any

reduction where, if the answer is yes, there is a certificate where

all the w(S) take value either 0 or 1—and this would seem to be

the natural approach if we rely on reductions that involve finding a

subset or partition of the agents with some property—cannot work

if the game is superadditive; we fundamentally need to consider

fractional values for the w(S), as we do in what follows.
3The hardness direction requires a Turing (Cook) reduction.

4. SMALL-ISSUES-LARGE-TEAM GAMES
We recall that one family of games that can be represented com-

pactly consists of those games whose characteristic functions are

the sum of multiple individual issues, each of which concerns only

a constant number of agents [4]. In this section, we consider a

slightly more general class of games that, in addition to the small

issues, allow a single issue that has nonzero value only for the grand

coalition. This value may represent various efficiencies that could

result from having all agents in the same coalition. We call these

games Small-Issues-Large-Team (SILT) games. Besides being of

interest in their own right, these games will help us prove hardness

results for MC-nets. Specifically, we show that CORE-EMPTINESS

is NP-hard in SILT games, even under the constraint of superaddi-

tivity (which also implies monotonicity because all the values are

nonnegative). We then (in Section 5.1) show that some (though not

all) important subclasses of MC-nets can compactly represent all

SILT games, thereby proving hardness for them as well.

DEFINITION 5 (SILT GAME). A SILT game is defined by a

triplet (A, T, gA) where A is the set of agents, T is the set of small

issues, and gA is the marginal contribution of the grand coali-

tion. A small issue t ∈ T is described by (vt, Ct): a relevant

agent set Ct ⊆ A (where |Ct| is bounded by a constant) and a

characteristic function vt : 2Ct → R. vt is extended to the do-

main 2A by letting vt(S) = vt(S ∩ Ct). Furthermore there is

the single large issue whose characteristic function g : 2A → R

is given by g(A) = gA and g(·) is zero everywhere else. The

game’s characteristic function overall v : 2A → R is given by

v(S) = g(S) +
∑

t∈T vt(S ∩ Ct).

Next, we give a reduction to SILT games from the NP-complete

VERTEX-COVER problem, in which we are given a graph G and a

number k and are asked whether there exists a subset of at most k
vertices such that every edge includes a vertex in the subset.

DEFINITION 6 (VERTEX-COVER SILT GAME). Let (G, k) be
a VERTEX-COVER instance, where G = (V,E) and |V | = n. We
define the corresponding Vertex-Cover SILT game (A,T, gA) as

follows. The agent set isA = A0∪V whereA0 = {a0, a1, . . . , a4}
is a set of 5 auxiliary agents. The set of issues is T = V ∪ E. A

vertex issue i ∈ V ⊆ T concerns only agents in Ci = A0 ∪ {i}
and an edge issue e = {i, j} ∈ E ⊆ T concerns only agents in

Ce = A0 ∪ {i, j}.
For a coalition S and a vertex issue i ∈ V , vi(S) =

1
n(n+1)

if

i∧ [(a1∧a2∧ ((¬a3∧¬a4)∨¬a0))∨ (a3∧a4∧ ((¬a1∧¬a2)∨
¬a0))] and vi(S) = 0 otherwise. Here, a positive literal z in the

boolean expression means that agent z ∈ S, and a negative literal

¬z means z /∈ S. Similarly, for a coalition S and an edge issue

e = {i, j}, ve(S) = 1 if (i ∨ j) ∧ a0 ∧ ((a1 ∧ a3) ∨ (a2 ∧ a4))
and ve(S) = 0 otherwise.

Intuitively, if we arrange the 5 auxiliary agents as in Figure 1, a

vertex issue i contributes non-zero value if and only if (1) i ∈ S,
(2) no diagonal {a1, a0, a3} or {a2, a0, a4} is completely included
in S, and (3) either the left column {a1, a2} or the right column

{a3, a4} (or both) is completely included in S. An edge issue

e = {i, j} contributes non-zero value if and only if (1) {i, j} in-

tersects with S and (2) either diagonal {a1, a0, a3} or diagonal

{a2, a0, a4} (or both) is included in S.
Finally, the grand coalition’s marginal contribution is gA =
n−k

n(n+1)
× 2n+1

2n+2
.

LEMMA 2. The VERTEX-COVER instance (G, k) has yes as

its answer if and only if its corresponding VERTEX-COVER SILT

game in Definition 6 has an empty core.
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One of the diagonals (red)

is required for edge issue

contributions.
One of the columns (blue)

is required for vertex issue

contributions. Meanwhile,

a diagonal (red) excludes

vertex issue contributions.

Figure 1: How auxiliary agents in Definition 6 determine

whether an issue contributes non-zero value or not.

PROOF. First, we show that the existence of a vertex cover of

size at most k implies that the core is empty. We can handle this

direction quite easily thanks to the Bondareva-Shapley Theorem.

Let S ⊆ V be a vertex cover of size at most k. We construct the

following weight function w : 2A → [0, 1]:

w({a0, a1, a3} ∪ S) = w({a0, a2, a4} ∪ S) = 1/2

w({a1, a2} ∪ (V \ S)) = w({a3, a4} ∪ (V \ S)) = 1/2

and w = 0 everywhere else. It is straightforward to check that for

all a ∈ A,
∑

S⊆A:a∈S w(S) ≤ 1. We have v({a0, a1, a3} ∪ S) =

v({a0, a2, a4} ∪ S) = |E|: these coalitions will get all of the

edge contributions (because S is a vertex cover), none of the vertex

contributions (because they contain a diagonal), and they will not

get gA. Also, we have v({a1, a2} ∪ (V \ S)) = v({a3, a4} ∪
(V \ S)) ≥ n−k

n(n+1)
: these coalitions will get none of the edge

contributions (because they do not contain a0), at least n−k of the

vertex contributions (specifically, the contributions for all vertices

i ∈ V \ S), and they will not get gA. Finally, we have v(A) =
|E| + n−k

n(n+1)
× 2n+1

2n+2
, because the grand coalition will get all of

the edge contributions and gA, but none of the vertex contributions.
Hence, we can conclude that

∑

S⊆A w(S)v(S) ≥ |E|+ n−k
n(n+1)

>

|E|+ n−k
n(n+1)

× 2n+1
2n+2

= v(A). It follows that the conditions of the

Bondareva-Shapley theorem are satisfied and the core is empty.

Next, we show that emptiness of the core implies that a vertex

cover of size at most k exists; this is the more difficult direction.

For the sake of contradiction, let us assume that the core is empty

and every vertex cover has size at least k+1. The emptiness of the

core implies the existence of a weight function w : 2A → [0, 1]
with the conditions specified in Theorem 1. Without loss of gen-

erality, we can assume w(A) = 0. (If w(A) > 0, then we can

construct the modified weight function w′ with w′(A) = 0 and

w′(S) = w(S)/(1 − w(A)) when S 6= A. Then, for any a ∈ A,
∑

S⊆A:a∈S w′(S) = 1/(1−w(A))
∑

S(A:a∈S w(S) ≤ (1/(1−

w(A)))(1−w(A)) = 1, where the inequality is due to the fact that
w satisfies Inequality 2. Moreover,

∑

S⊆A w′(S)v(S) = 1/(1 −

w(A))
∑

S(A w(S)v(S) > (1/(1−w(A)))(v(A)−w(A)v(A)) =

v(A), where the inequality is due to the fact that w satisfies In-

equality 1.) So we can restrict our attention to coalitions S ( A.

Now, we categorize all subsets S ( A into two families, namely

SE = {S ( A | v(S) ≥ 1} and SV = 2A \ (SE ∪{A}). Because
all vertex issues combined contribute strictly less than 1 and the

grand coalition marginal contribution will not occur as we consider

only coalitions S ( A, it follows that SE is exactly the family of

subsets S that obtain at least one contribution of 1 from an edge

issue. Hence, SV is the family of subsets S that only derive value

from vertex issues. We can then rewrite Inequality 1 as

∑

S∈SE

w(S)v(S) +
∑

S∈SV

w(S)v(S) > v(A) (3)

Let S∗
E = {S ∈ SE | v(S) ≥ |E|} consist of the coalitions

that correspond to vertex covers, and let p =
∑

S∈S∗

E

w(S) and

q =
∑

S∈SE\S∗

E

w(S). Because a0 ∈
⋂

S∈SE
S and Inequality 2

holds, we have p+ q =
∑

S∈SE
w(S) ≤

∑

S⊆A:a0∈S w(S) ≤ 1.

Therefore, q ≤ 1−p. Additionally, because for all S ∈ SE , v(S) is
an integer no greater than |E| (the presence of a0 precludes vertex

issue contributions), we derive
∑

S∈SE

w(S)v(S) =
∑

S∈S∗

E

w(S)v(S) +
∑

S∈SE\S∗

E

w(S)v(S)

≤ p|E|+ q(|E| − 1)

≤ p|E|+ (1− p)(|E| − 1) = |E| − 1 + p
(4)

This corresponds to the first term in the left-hand side of Inequal-

ity 3. For the second term, since for S ∈ SV , each vertex can

contribute at most 1
n(n+1)

, we obtain

∑

S∈SV

w(S)v(S) ≤
∑

S∈SV

w(S)|S ∩ V | ×
1

n(n+ 1)

=
1

n(n+ 1)

∑

v∈V

∑

S∈SV :
v∈S

w(S) (5)

≤
1

n(n+ 1)

∑

v∈V

1 =
1

n+ 1
(6)

where the last inequality is due to Inequality 2.

Combining Inequalities 4 and 6 with Inequality 3, we obtain

|E|−1+p+ 1
n+1

≥
∑

S∈SE
w(S)v(S)+

∑

S∈SV
w(S)v(S) >

v(A) > |E| , where v(A) > |E| because the grand coalition A
obtains all edge issue contributions plus a positive grand coalition

marginal contribution. From this it follows that p > n
n+1

.

We now recall that for every S ∈ S∗
E , S ∩ V must be a vertex

cover in G. By the assumption we made to derive a contradiction,

every vertex cover has size at least k + 1, so for all S ∈ S∗
E ,

|S ∩ V | ≥ k + 1. This implies

∑

v∈V

∑

S∈S∗

E
:

v∈S

w(S) =
∑

S∈S∗

E

w(S)|S ∩ V |

≥
∑

S∈S∗

E

w(S)(k + 1) = (k + 1)p >
n(k + 1)

n+ 1
(7)

Again, using Inequality 2, we obtain n ≥
∑

v∈V

∑

S(A:
v∈S

w(S) ≥

∑

v∈V







∑

S∈S∗

E
:

v∈S

w(S) +
∑

S∈SV :
v∈S

w(S)






, which is at least

n(k+1)
n+1

+

∑

v∈V

∑

S∈SV :
v∈S

w(S) by Inequality 7. Hence,

∑

v∈V

∑

S∈SV :
v∈S

w(S) ≤ n−
n(k + 1)

n+ 1
(8)

Combining Inequality 8 with Inequality 5 we get

∑

S∈SV

w(S)v(S) ≤
1

n(n+ 1)

(

n−
n(k + 1)

n+ 1

)

=
1

n+ 1
−

k + 1

(n+ 1)2
=

n− k

(n+ 1)2
(9)

Finally, using Inequality 9 and 4 together with p ≤ 1, we get
∑

S∈SE
w(S)v(S)+

∑

S∈SV
w(S)v(S) ≤ |E|−1+p+ n−k

(n+1)2
≤
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|E|+ n−k
(n+1)2

≤ |E|+ n−k
n(n+1)

× 2n+1
2n+2

= v(A), which contradicts

Inequality 3.

So far, we have said nothing about superadditivity. It can be

checked that the VERTEX-COVERSILT game is superadditive when

the graph G has no isolated vertex (which of course we can as-

sume without affecting the hardness of VERTEX-COVER). How-

ever, some of the individual issues are not superadditive—in fact,

they are not even monotone. Specifically, the value of a vertex is-

sue may decrease to 0 if a0 is added. We would like the hardness

result to hold even under the stronger condition that every issue is

required to be superadditive (and therefore, given that all values

are nonnegative, also monotone). We next show that we can rear-

range the issues in VERTEX-COVER SILT games so that the game

remains the same but each issue is superadditive.

LEMMA 3. If graph G has no isolated vertex, then the cor-

responding VERTEX-COVER SILT game can be rewritten as an

equivalent SILT game each of whose individual issues is superad-

ditive, monotone and nonnegative. This also implies that the whole

game is superadditive, monotone and nonnegative.

PROOF. Recall that the original issue set is T = E∪V . We now

construct a new set of issues T ′ = E all of which are superadditive,

monotone and nonnegative. We leave gA unchanged and prove the

equivalence of T and T ′ (the overall value function is the same).

For each new issue e = {i, j} ∈ E = T ′, let its relevant agent

set be Ce = A0 ∪ {i, j}. Let d(i) denote the degree of vertex i in
G. Let VCondition = [(a1 ∧ a2 ∧ ((¬a3 ∧ ¬a4)∨ ¬a0)) ∨ (a3 ∧
a4 ∧ ((¬a1 ∧¬a2)∨¬a0))], i.e., the condition on auxiliary agents
to allow vertex issue contributions in the original VERTEX-COVER

SILT game. Similarly, let ECondition = a0 ∧ ((a1 ∧ a3) ∨ (a2 ∧
a4)), i.e., the condition to allow edge issue contributions. We recall

that VCondition and ECondition cannot hold simultaneously. For

a coalition S ⊆ A, the new issue’s contribution is v′e(S) = 1 if

(i∨ j)∧ECondition, v′e(S) =
1/d(i)+1/d(j)

n(n+1)
if i∧ j∧VCondition,

v′e(S) =
1/d(i)
n(n+1)

if i ∧ ¬j ∧ VCondition, and v′e(S) =
1/d(j)
n(n+1)

if

¬i ∧ j ∧ VCondition. Otherwise, v′e(S) = 0. To see why this is

equivalent to the original game, note that we have amortized vertex

i’s issue contribution 1
n(n+1)

over all of its adjacent edges, each

with a partial contribution
1/d(i)
n(n+1)

. Because there is no isolated

vertex, T and T ′ are equivalent.

It remains to prove superadditivity for each issue e’s value func-
tion v′e (which will imply monotonicity of v′e as well by nonneg-

ativity, and will imply superadditivity and monotonicity for the

whole game too, because it is the sum of these issues and the grand

coalition contribution which is also superadditive). Consider two

disjoint coalitions B,C ⊆ Ce where B ∩ C = ∅. We prove

v′e(B ∪C) ≥ v′e(B) + v′e(C) by considering three cases. Without

loss of generality, assume v′e(B) ≥ v′e(C).
(1) If v′e(B) = 0 (and therefore v′e(C) = 0), by nonnegativity

v′e(B ∪ C) ≥ 0 = v′e(B) + v′e(C).
(2) If v′e(B) = 1, then ECondition must be true for both B and

B ∪ C, while VCondition and ECondition must be both false for

C (because B contains an entire diagonal and B ∩ C = ∅, C can

contain neither a0 nor one of the columns). So v′e(B∪C) = 1 and
v′e(C) = 0, and we have v′e(B ∪ C) = 1 ≥ v′e(B) + v′e(C) = 1.
(3) Finally, if 0 < v′e(B) < 1, VCondition must be true for

B. If VCondition is also true for B ∪ C, then v′e(B ∪ C) ≥
v′e(B) + v′e(C) because (1) C cannot make ECondition true as

it does not include a diagonal, and (2) the amortized vertex con-

tributions that result from B and C correspond to disjoint sets of

vertices. On the other hand, if VCondition is false for B ∪ C, then

B ∪ C includes a diagonal and hence its ECondition is true. Thus

v′e(B ∪ C) = 1 ≥ v′e(B) + v′e(C) (because B and C can only

have vertex contributions from disjoint sets of vertices).

From Lemma 2, Lemma 3, and the fact that VERTEX-COVER

is NP-hard (even when restricted to instances without isolated ver-

tices), we obtain the following theorem.

THEOREM 2. The CORE-EMPTINESS problem is NP-hard for

SILT games, even when the value function for every issue is super-

additive, monotone, and nonnegative (and hence the game’s overall

value function is also superadditive, monotone, and nonnegative).

5. MARGINAL CONTRIBUTION NETS
A Marginal Contribution Net (MC-net) [14] represents a coop-

erative game using a set of patterns P ; furthermore, each pattern

P ∈ P is associated with a value vP . A pattern P is a boolean

expression whose truth value depends on the coalition S ⊆ A. Its

variables correspond to the agents; a will be shorthand for a being

in the coalition. Denote by P (S) the truth value of P on coalition

S. The value of coalition S is then v(S) =
∑

P∈P:P (S)=true vP .

For example, we may have one pattern (a1∧¬a2) with value 1 and
another pattern (a2) with value 2. This implies v({a1}) = 1+0 =
1 and v({a1, a2}) = 0 + 2 = 2.

We consider a variety of subclasses of MC-nets, which are de-

fined by whether they allow the use of: (1) negative pattern values,

(2) the ∧ operator, (3) the ∨ operator, and (4) the ¬ operator. By

enumerating all possible combinations of these four attributes, we

define 16 subclasses of MC-nets, as shown in Table 1. (A possi-

ble fifth attribute is whether brackets are allowed; fortunately, as

we discuss in Remark 1, that attribute is irrelavant to the computa-

tional complexity of our problems, except in one case.)

To enumerate the subclasses, we write four binary indicators

consecutively (corresponding to the four attributes), and interpret

the result as a binary number. For example, Class 0 (0000 in bi-

nary) MC-nets have all indicators equal to 0, which means this

subclass allows neither negative pattern values nor the use of any

of the operators ∧, ∨, and ¬. Hence, in Class 0, each pattern is ei-

ther empty (true) or consists of one agent a only. Class 13 (1101 in

binary) MC-nets can have negative pattern values as well as ∧ and

¬ operators, but not ∨ operators. These are the original MC-nets

introduced by [14]. The complexity results obtained in this section

are summarized in Table 1.

5.1 Classes Where All Problems Are Unam-
biguously Hard

In this subsection, we will prove the following theorem, which

shows that all three problems are NP-complete for a number of

subclasses of MC-nets. It is based on several lemmas that will be

stated and proved afterwards. There are two other subclasses for

which we will prove in later subsections that all problems are hard

if we make some further assumptions, namely the ability to specify

the grand coalition’s value in one case (Section 5.2), and the ability

to use brackets in the other case (Remark 1). All of these results

are by reduction from SILT games. For other classes, the CORE-

EMPTINESS problem is in P, and so SILT games cannot be reduced

to them (unless P=NP).

THEOREM 3. All three problems, CORE-EMPTINESS,NOT-IN-

CORE, and MOST-VIOLATED-COALITION are NP-complete for

Class 5, 6, 7, 11, 12, 13, 14, and 15 MC-nets.4

4Again, our general reduction from CORE-EMPTINESS to NOT-
IN-CORE and MOST-VIOLATED-COALITION is a Turing reduc-
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Class − ∧ ∨ ¬
CORE-

EMPTINESS

NOT-IN-
CORE

MOST-
VIOLATED-
COALITION

0 0 0 0 0 P P P

1 0 0 0 1 P P P

2 0 0 1 0 P P NP-c

3 0 0 1 1 P† P† NP-c

4 0 1 0 0 P P P

5 0 1 0 1 NP-c NP-c NP-c

6 0 1 1 0 NP-c NP-c NP-c

7 0 1 1 1 NP-c NP-c NP-c

8 1 0 0 0 P P P

9 1 0 0 1 P P P

10 1 0 1 0 NP-c∗ NP-c NP-c

11 1 0 1 1 NP-c NP-c NP-c

12 1 1 0 0 NP-c NP-c NP-c

13 1 1 0 1 NP-c NP-c NP-c

14 1 1 1 0 NP-c NP-c NP-c

15 1 1 1 1 NP-c NP-c NP-c

Table 1: Complexity results for MC-nets. The four binary in-

dicators correspond to whether (1) negative values, (2) ∧ op-

erators, (3) ∨ operators, and (4) ¬ operators are allowed. For

entries with NP-c∗, we only proved NP-hardness when we are

allowed to specify the grand coalition value directly. For entries

with P†, the result changes to NP-c if brackets are allowed.

PROOF. From Lemma 4, it will follow that CORE-EMPTINESS

is NP-hard for Class 5 MC-nets. This hardness extends to Class 7
MC-nets, which are more expressive. From Lemma 5, it will follow

that CORE-EMPTINESS is NP-hard for Class 12 MC-nets, which

extends to Class 13, 14, and 15 MC-nets. From Lemma 6 and

Lemma 7 respectively, it will follow that CORE-EMPTINESS is NP-

hard for Class 11 and 6 MC-nets, respectively. By Proposition 1

this also implies NP-hardness for the other two problems. Finally,

by Lemma 1, all problems are in NP.

LEMMA 4 (CLASS 5 MC-NETS). Any SILT game with non-

negative issues can be represented in polynomial size by an MC-net

that uses neither negative pattern values nor the ∨ operator (but it

may use the ∧ and ¬ operators).

PROOF. First, construct a pattern
∧

a∈A a with value gA to rep-

resent the grand coalition marginal contribution. Then, for each

issue t with relevant agent set Ct, we add 2|Ct| (which is a con-

stant number) patterns, as follows. For each subset S ⊆ Ct, we

add the pattern PS =
∧

a∈S a ∧
∧

a/∈S ¬a with value vt(S).

LEMMA 5 (CLASS 12 MC-NETS). Any SILT game can be rep-

resented in polynomial size by an MC-net that uses neither the ∨
operator nor the ¬ operator (but it may use the ∧ operator and

negative pattern values).

PROOF. Again, we construct a pattern
∧

a∈A a with value gA.

For each issue t with relevant agent set Ct, we add 2|Ct| patterns,

as follows. For each subset S ⊆ Ct, in order of nondecreasing

size, we add the pattern PS =
∧

a∈S a. We determine its value as

follows. We know that for the coalition S, this pattern will apply;

also, we have already specified the values for all the other patterns

that will apply, because these involve coalitions that are subsets

tion. If it is desired to avoid Turing reductions, it can be noted
that [4] already showed that NOT-IN-CORE is NP-hard for SILT
games, even when the grand coalition’s marginal contribution is
zero (and hence so is MOST-VIOLATED-COALITION).

of S. Let vpartialt (S) denote the sum of the values of these previ-

ously specified patterns. Then, set the value of the new pattern to

vt(S) − vpartialt (S), thereby guaranteeing that S obtains the correct

value. (In fact, the value for the pattern PS will turn out to be
∑

S′⊆S(−1)|S|−|S′|vt(S
′). See, e.g., [3].)

LEMMA 6 (CLASS 11 MC-NETS). Any SILT game can be rep-

resented in polynomial size by an MC-net that does not use the ∧
operator (but it may use the ∨ and ¬ operators as well as negative

pattern values).

PROOF. By Lemma 5, we can represent any SILT game in poly-

nomial size by an MC-net that uses only the ∧ operator (and possi-

bly negative values). Let the set of patterns of that MC-net be P . In

what follows, we construct a new MC-net with pattern set P ′ that

has only ∨,¬ operators (and possibly negative values), and show

that P and P ′ result in the same value for each coalition.

For the jth pattern Pj = z1 ∧ z2 ∧ . . . ∧ zm ∈ P with value

vj , we add a pattern P ′
j = ¬z1 ∨ ¬z2 ∨ . . . ∨ ¬zm with value

v′j = −vj to P
′. P ′

j evaluates to true if and only if Pj evaluates to

false. Finally, we add one additional dummy pattern P ′
0 = a ∨ ¬a

for some arbitrary a ∈ A (or, equivalently, simply P ′
0 = true),

with value v(A), i.e., the value of the grand coalition (not just

its marginal contribution). The dummy pattern always contributes

value v(A) to any coalition S. Now we check that for any coalition

S, its value v′(S) under the new patterns P ′ is equal to its value

v(S) under the old patterns P . Let J = {j | Pj is true for S} and

J ′ = {j | P ′
j is true for S}. Then v(S) =

∑

j∈J vj =
∑|P|

j=1 vj −
∑

j /∈J vj = v(A)−
∑

j /∈J vj =
∑

j∈J′ v
′
j = v′(S).

LEMMA 7 (CLASS 6 MC-NETS). Any SILT game with non-

negative and monotone issues can be represented in polynomial

size by an MC-net that uses neither negative pattern values nor the

¬ operator (but it may use the ∧ and ∨ operators).

PROOF. For any such SILT game, we construct an MC-net with

patterns P =
⋃

t∈T Pt ∪ {Pg}, where Pg =
∧

a∈A a with value

gA represents the grand coalition’s marginal contribution. Pt is a

set of patterns for issue t that only concerns agents in Ct.

All that remains to be done is to show how to construct Pt and

to prove its equivalence to issue t. Let {S1,S2, . . . ,Sm} be a par-

tition of 2Ct based on vt. That is, there exists a strictly increas-

ing sequence of values v1 < v2 < . . . < vm such that for all

S ∈ Si, vt(S) = vi. Define S+
i =

⋃m
j=i Sj . We then construct

Pt = {P1, P2, . . . , Pm} where Pi =
∨

S∈S+

i

∧

a∈S a has value

vi − vi−1, defining v0 = 0. (We note that this expression does not

require brackets because ∧ has higher priority than ∨.)
Since v1 ≥ 0 (due to nonnegativity) and by construction vi <

vi+1, all pattern values vi − vi−1 are nonnegative. For any subset

S ⊆ Ct, there exists some i such that S ∈ Si. For any j ≤ i,
S will satisfy Pj because S ∈ Si ⊆ S+

j . We next show that for

any j > i, S does not satisfy Pj . For the sake of contradiction,

suppose that S does satisfy some Pj with j > i. Then, there exists
S′ ∈ S+

j such that S′ ⊆ S. However, because i < j, it follows

that vt(S) < vt(S
′). This contradicts the monotonicity of issue

t. Hence, S ∈ Si satisfies Pj if and only if j ≤ i. Therefore, S’s
value under pattern Pt equals

∑i
j=1 v

j−vj−1 = vi = vt(S).

5.2 MC-nets with Only OR Operators
If only the ∨ operator is available, it is impossible for MC-nets to

compactly represent the grand coalition’s marginal contribution gA.
For example, suppose v(S) = 0 for any S 6= A and v(A) = gA =
1. The ∨-only MC-net (with possibly negative pattern values) to
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specify this game uses 2n − 1 patterns: for each nonempty subset

∅ 6= S ⊆ A, construct a pattern
∨

a∈S awith value (−1)|S|−1 [21].

Hence, we cannot hope to compactly represent SILT games with

this subclass of MC-nets; we need to add some additional repre-

sentational power to do so. The minimal additional representational

power that will do the trick is to simply allow the direct specifica-

tion of the value of grand coalition, so this is what we do here.

At the end of the paper, we discuss the open problem of determin-

ing the complexity of CORE-EMPTINESS for SILT games without

a marginal contribution for the grand coalition (i.e., games consist-

ing only of small issues). If this problem is still NP-hard, then we

could drop the additional power in this subsection, because we do

not need it to represent the small issues. In fact, [4] already showed

that NOT-IN-CORE is NP-hard for such games (and hence so is

MOST-VIOLATED-COALITION). So for these problems we do not

need the additional power. This results in the following theorem:

THEOREM 4. NOT-IN-CORE and MOST-VIOLATED-COALITION

are NP-complete for Class 10MC-nets. CORE-EMPTINESS is also

NP-complete for Class 10MC-nets if they are given the additional

power to specify the value of the grand coalition.

The theorem is implied by the following lemma.

LEMMA 8 (CLASS 10 MC-NETS). Any SILT game can be rep-

resented in polynomial size by an MC-net that uses neither the ∧
operator nor the ¬ operator (but it may use the ∨ operator and

negative pattern values, as well as the additional power to specify

the value of the grand coalition in case gA 6= 0).

PROOF. For each issue t with relevant agent set Ct, we add a

set Pt of 2
|Ct| patterns, as follows. First, we add the empty pattern

P∅ = true, with value vt(∅) (which in most circumstances would

be 0). For each subset S ⊆ Ct (S 6= ∅), in order of nondecreas-

ing size, we add the pattern PS =
∨

a∈S a to Pt. We determine

its value as follows. Our goal is to ensure that if we apply Pt to

Ct, as well as to Ct \ S, this results in two values whose differ-

ence is exactly dt(S) = vt(Ct) − vt(Ct \ S). (dt is also known

as the dual of vt [10].) Ct will satisfy every pattern; the only pat-

terns that are not satisfied by Ct \ S concern only agents in S.
One such pattern is

∨

a∈S a, whose value we are seeking to specify
now; for all the other such patterns, we have already specified their

values. Let dpartialt (S) denote the sum of the values of these previ-

ously specified patterns. Then, set the value of the new pattern to

dt(S)− dpartialt (S), thereby guaranteeing that the difference in val-

ues is correct. (In fact, when vt(∅) = 0, the value for the pattern

PS will turn out to be
∑

S′⊆S(−1)|S|−|S′|+1vt(Ct \ S′), by an

inclusion-exclusion principle.)

With these patterns, we obtain a value function v′t. By construc-

tion, for any ∅ 6= S ⊆ Ct, we have v
′
t(Ct)−v′t(Ct\S) = vt(Ct)−

vt(Ct \ S). Moreover, v′t(∅) = vt(∅). Therefore, v′t(Ct) =
v′t(Ct \Ct) + vt(Ct)− vt(Ct \Ct) = v′t(∅) + vt(Ct)− vt(∅) =
vt(Ct). Hence, also for all S ( Ct, v

′
t(S) = v′t(Ct \ (Ct \ S)) =

vt(Ct \ (Ct \S))+ v′t(Ct)− vt(Ct) = vt(S). Hence, the patterns
correctly represent the issue.

Finally, if gA 6= 0, we can use the ability to specify the grand

coalition value to represent this.

5.3 Classes with Some Easy Problems
Note that there is no superadditivity constraint in what follows.

LEMMA 9. The MOST-VIOLATED-COALITION problem is in

P for MC-nets without the ∨ and ∧ operators (but possibly using

the ¬ operator and negative pattern values).

PROOF. LetA = {a1, a2, . . . , an}. Besides (possibly) the empty

pattern, there are at most 2n distinct patterns, namely a1, a2, . . . , an

and¬a1,¬a2, . . . ,¬an. Let their respective values be b1, b2, . . . , bn
and c1, c2, . . . , cn (possibly 0). The most violated coalition is S =
{ai | bi− ci−xi > 0}, which can be computed in linear time.

Therefore, by Proposition 1, we conclude:

THEOREM 5. All three problems, CORE-EMPTINESS,NOT-IN-

CORE and MOST-VIOLATED-COALITION, are in P for Class 0, 1, 8
and 9MC-nets.

We now consider MC-nets that use neither ∧ nor negative values

(but ∨ and ¬ may occur). We show that this necessarily results in

subadditive games. (A game is subadditive if S1 ∩ S2 = ∅ implies

that v(S1 ∪ S2) ≤ v(S1) + v(S2).) From that, we prove that their

NOT-IN-CORE and CORE-EMPTINESS problems are easy. How-

ever, the MOST-VIOLATED-COALITION problem is still hard.

LEMMA 10. MC-nets that use neither ∧ nor negative values

are subadditive.

PROOF. First consider an MC-net with just a single pattern, so

that every coalition has value vP or 0. Let the pattern be P =
∨

a∈S+

P

a ∨
a∈S−

P

¬a. Then, subadditivity could only be violated if

there are some S1, S2 with S1 ∩ S2 = ∅, v(S1) = 0, v(S2) = 0,
but v(S1∪S2) = vP . But this means either (1) that there exists a ∈
(S1∪S2)∩S+

P , in which case either a ∈ S1∩S+
P or a ∈ S2∩S+

P ,

contradicting that v(S1) = 0 and v(S2) = 0; or (2) that there exists
a ∈ S−

P \ (S1∪S2), in which case also a ∈ S−
P \S1, contradicting

that v(S1) = 0. Hence, subadditivity holds if there is only a single

pattern. If there are multiple patterns, the resulting game is the sum

of single-pattern games, which is also subadditive.

LEMMA 11. If a game is subadditive and the value of each sin-

gleton coalition v({a}) can be computed in polynomial time, then

the NOT-IN-CORE problem is in P.

PROOF. Wewill show that it is sufficient to check only singleton

subsets {a}. If for some a ∈ A, v({a}) > x(a), x is not in the

core. Otherwise, if x(a) ≥ v(a) for all a ∈ A, then x must be

in the core because by subadditivity, v(S) ≤
∑

a∈S v({a}) ≤
∑

a∈S x(a) = x(S).

LEMMA 12. TheMOST-VIOLATED-COALITIONproblem is NP-

hard for MC-nets with neither the ∧ operator nor negative values

(but possibly using the ∨ and ¬ operators).

PROOF. We reduce from an arbitrary HITTING-SET instance,

in which we are given m subsets H1,H2, . . . ,Hm ⊆ N with

N = {1, . . . , n} and a number k ≤ n, and are asked whether

there is a subset H ⊆ N with |H | ≤ k such that for all 1 ≤ i ≤
m, H ∩ Hi 6= ∅. We construct an MC-net with n + 1 agents

(a0, a1, . . . , an) and m patterns P1 to Pm, where Pi =
∨

j∈Hi
aj

has value 1, and consider payment vector x with x(a0) = m −
n/(n + 1) and for 1 ≤ j ≤ n, x(aj) = 1/(n + 1). Note that

a0 is a dummy agent whose purpose is to ensure x(A) = v(A).
We ask whether a coalition S exists such that v(S) − x(S) >
m − (k + 1/2)/(n + 1). If a hitting set H of size at most k
exists, then the coalition SH = {aj |j ∈ H} has v(SH) = m and

x(SH) ≤ k/(n + 1) < (k + 1/2)/(n + 1), so the answer to our

MOST-VIOLATED-COALITION is yes. Conversely, if a coalition S
with v(S) − x(S) > m − (k + 1/2)/(n + 1) exists, then it must

satisfy all patterns, because otherwise v(S) − x(S) ≤ m − 1 <
m− (k+1/2)/(n+1), and we must have |S| ≤ k, because other-
wise v(S)−x(S) ≤ m−(k+1)/(n+1) < m−(k+1/2)/(n+1).
Therefore HS = {j|aj ∈ S} is a hitting set of size at most k.
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THEOREM 6. For Class 2 and 3MC-nets, the CORE-EMPTINESS

and NOT-IN-CORE problems are in P while theMOST-VIOLATED-

COALITION problem is NP-complete.

PROOF. By Lemma 10, these MC-nets are subadditive, so by

Lemma 11 and Proposition 1, CORE-EMPTINESS and NOT-IN-

CORE are in P. On the other hand, MOST-VIOLATED-COALITION

is NP-complete by Lemma 1 and 12.

Finally, class 4 MC-nets, in which neither ∨, ¬, nor negative
pattern values are used, are equivalent to hypergraph games with

only nonnegative edge values, which were studied in [7] and proved

to be easy (see also Section 2). We omit the proof to save space.

THEOREM 7. CORE-EMPTINESS,NOT-IN-CORE, and MOST-

VIOLATED-COALITION are in P for Class 4MC-nets.

REMARK 1. So far, we have not considered the possibility of

using brackets in the patterns of MC-nets; here we do so. Because

this will only make them harder to solve, all NP-completeness re-

sults still hold. Therefore, let us consider the subfamilies of MC-

nets for which some problems are in P.

For MC-nets without connectives (Class 0, 1, 8, 9), MC-nets with

only ∧ operators (Class 4), and MC-nets with only ∨ operators

(Class 2), brackets make no difference to the patterns. For MC-

nets with both ∨ and ¬ operators (Class 3), adding brackets allows

them to simulate P1∧P2 by ¬(¬P1∨¬P2). Hence they can encode
Class 7 MC-nets, implying NP-completeness for all three problems.

6. CONCLUSION
We settled the complexity of the CORE-EMPTINESS, NOT-IN-

CORE, and MOST-VIOLATED-COALITIONproblems in several sub-

classes of MC-nets, defined by which logical operators and whether

negative pattern values are allowed (see Table 1). (Efficient algo-

rithms for the MOST-VIOLATED-COALITION problem also allow

efficient computation of the least core and, under certain condi-

tions, the nucleolus [9].) To obtain these results, we introduced

SILT games, which may be of interest in their own right, and proved

hardness for them even under the constraint that each of their issues

is superadditive. We showed certain subclasses of MC-nets can ef-

ficiently represent those hard SILT games. (We suspect that many

other representation schemes that are not necessarily subclasses of

MC-nets would be able to efficiently represent these SILT games,

and hence our hardness results apply to such schemes as well.) For

other subclasses of MC-nets, we directly proved results.

Different from previous hardness results, all our hardness results

based on SILT games hold even with superadditivity, an extremely

common constraint for cooperative games. Achieving this for the

CORE-EMPTINESS problem necessarily (as argued at the end of

Section 3.2) requires an involved reduction.

Our results leave open whether the hardness we proved for SILT

games would continue to hold even when the marginal contribu-

tion of the grand coalition is zero (so that the game consists only of

small issues [4]). If this is so, it would give us an even more pow-

erful result that would allow us to prove hardness for even more

representation schemes. As just one example, we would cleanly

obtain hardness for Class 10 MC-nets, rather than just for the ex-

tension of this subclass that additionally allows specifying v(A).
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