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ABSTRACT
Social networks are increasingly being used to conduct polls. We
introduce a simple model of such social polling. We suppose agents
vote sequentially, but the order in which agents choose to vote is
not necessarily fixed. We also suppose that an agent’s vote is influ-
enced by the votes of their friends who have already voted. Despite
its simplicity, this model provides useful insights into a number of
areas including social polling, sequential voting, and manipulation.
We prove that the number of candidates and the network structure
affect the computational complexity of computing which candidate
necessarily or possibly can win in such a social poll. For social
networks with bounded treewidth and a bounded number of can-
didates, we provide polynomial algorithms for both problems. In
other cases, we prove that computing which candidates necessarily
or possibly win are computationally intractable.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—computations on discrete struc-
tures; I.2.11 [Artificial Intelligence]: Distributed Artificial Intelli-
gence—multiagent systems

General Terms
Algorithms, Economics, Theory

Keywords
Social polls; social choice; possible winner; necessary winner; com-
putational complexity

1. INTRODUCTION
A fundamental issue with voting is that agents may vote strategi-

cally. Results like those of Gibbard-Satterthwaite demonstrate that,
under modest assumptions, strategic voting is likely to be possible
[20, 32]. However, such results do not tell us how to vote strategi-
cally. A large body of work in computational social choice consid-
ers how we compute such strategic votes [14, 13]. Typically such
work starts from strong assumptions. For example, it is typically
assumed that the manipulators have complete information about the
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other votes. The argument given for this assumption is that com-
puting a strategic vote will only be computationally harder with
incomplete information. In practice, of course, we often only have
partial or probabilistic information [34, 8]. It is also typically as-
sumed that manipulators will vote in any way that achieves their
ends. However, in practice, agents may be concerned about peer
pressure and may not want to deviate too far from either their true
vote or that of their peers [28]. Bikhhardani et al. [4] identified sev-
eral factors that limit strategic voting by an individual agent such
as sanctions on deviation, and conformity of preferences. A third
strong assumption is either that all voting happens simultaneously
or that the manipulators get to vote after all the other agents.

These issues all come to a head in social polling. This is a con-
text in which voting meets social networks. Startups like Quipol
and GoPollGo use social networks to track public opinions. Such
polls are often not anonymous. We can see how our friends have
voted and this may influence how we vote, as for example in [21,
26]. By their very nature, such polls also happen over time. The
order in which agents vote can therefore be important. The struc-
ture of social networks is also important. For example, a distinctive
feature of social networks is the small world property which allows
members of these communities to share information in a highly ef-
ficient and low cost manner. A rumor started in the Twitter network
reaches about 90% of the network in just 8 rounds of communica-
tion [11]. In a similar way, one member of a social network can
quickly create and publicize a poll among a large group of agents
starting from his friends. The massive size of social networks, like
Facebook, Twitter and Google+, gives statistically significant polls.

To study social polling, we set up a general model that captures
several important features of voting within a social network. First,
our model supposes agents vote sequentially and the order in which
they vote is not under their control. For example, when you vote
may depend on when one of your friends chooses to invite you to
vote. Second, our model supposes that agents are influenced by
their friends in the social network. In fact, an agent’s vote is a
function of their true preferences and of the votes of their friends
that have already voted. We can obtain different instances of our
model by choosing different functions.

To study this model, we consider a particular instance that cap-
tures some of the features of a Doodle poll. More precisely, each
agent has a set of k preferred candidates and is indifferent about
other candidates. Among these k preferred candidates, one candi-
date is her top choice. If a particular candidate among her k pre-
ferred candidates has a majority amongst her friends that have al-
ready voted, then she mimics their choice. Otherwise, she votes for
her top choice. Note that any computational lower bounds derived
for this particular instance also hold for the general model.
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Even though this instance of the model is simple and lacks some
of the subtleties of social influence in practice, it nevertheless pro-
vides some valuable insights. For example, we prove that it is com-
putationally hard to determine if a given candidate has necessarily
won a social poll, irrespective of how the remaining agents vote.
We also show that this intractability holds even if the social graph
has a simple structure like a disjoint union of paths. Of course, in
practice social influence is much more complex and subtle. In ad-
dition, social graphs often have much a richer structure than simple
paths. Finally, agents in general do not know precisely how all the
other agents will vote. However, all these issues will only increase
the computational complexity of reasoning about a social poll.

We focus on computing the possible and necessary winners of a
social poll. A candidate is a possible winner if there exists a vot-
ing order such that this candidate is a plurality winner over the cast
votes. Similarly, a candidate is a necessary winner if he is a plural-
ity winner over the cast votes for each voting order. The possible
and necessary winner problems are interesting in their own right.
In addition, they provide insight into several related problems. For
example, in the control problem the chair chooses an order of par-
ticipation for the agents that favors a particular outcome. In partic-
ular, the chair can control the result of the election in this way iff
their desired candidate is a possible winner. If their desired can-
didate is even a necessary winner, the chair might want to check
whether their second-most desired candidate is a possible winner,
etc. A strategic voter may even want to change her vote to a lesser
preferred candidate if it turns out her most preferred candidate is a
necessary winner or not a potential winner.

2. PROBLEM STATEMENT
We consider a scenario where each agent votes for exactly one

candidate. We are given a social network graph G = (V, E) whose
n vertices are the agents x1, . . . , xn, a set C = {c1, . . . , cm} of m
candidates, a distinguished candidate c∗ ∈ C, and a choice function
h, which for every agent xi, every subset S ⊆ NG(xi) of its neigh-
bors in G, and every vote of an agent in S, assigns the candidate
that xi votes for. Each agent casts exactly one vote according to the
following model. For a given voting order π = (xπ(1), . . . , xπ(n)),
let Si denote the set {xj : π−1(j) < π−1(i)} ∩ NG(xi), i.e., the
neighbors of xi that vote before xi. Each agent xi votes for the
candidate that the choice function h assigns for the given candidate
xi, the subset Si and the votes of the agents in Si. The score of a
candidate c is the number of agents that vote c in the voting order π.
A candidate c ∈ C is a (co-)winner in the voting order π if no other
candidate has higher score than c. A candidate is a possible winner
if there exists a voting order where c is a winner. A candidate is a
necessary winner if for every voting order, c is a winner.

Simple model. We introduce a particular instance of the choice
function h. This is defined via two preference functions p1 : V →
C and P : V → 2C . Each agent x ∈ V has a set P (x) ⊆ C of k
preferred candidates, where k > 1 is a constant. Among the pre-
ferred candidates, one candidate p1(x) ∈ P (x) is the top preferred
candidate. Let x be an agent and S be the subset of NG(x) that
voted before x. If there exists a candidate c ∈ P (x) such that more
than half of the agents from S voted for c, then x votes for c. Oth-
erwise, x votes for p1(x). Note that all complexity lower bounds
for the simple model also hold in the general model, and for any
model generalizing the simple model.

The unweighted possible (necessary) winner problem, UPW
(UNW ), is to determine whether c∗ is a possible/necessary win-
ner. The weighted possible (necessary) winner problem, WPW
(WNW ), is defined similarly, except that integer weights are as-

sociated with agents and the score of a candidate is the sum of the
weights of the agents that vote him. Weighted voters would occur
naturally when some voters have more decision-power than others
(share holders in companies, electoral representatives, group mem-
bers versus outsiders, etc.).

3. OVERVIEW OF RESULTS
We show that the computational complexity of the possible and

necessary winner problem depends on the structure of the under-
lying social graph and the number of candidates. If the under-
lying social graph is arbitrary, the UPW and WPW problems
are NP-complete and the UNW and WNW problems are co-NP-
complete. These intractability results hold even when the graph is
bipartite and the number of candidates is upper bounded by a con-
stant. If the underlying social graph has bounded treewidth, UNW
and WNW can be solved in polynomial time. However, UPW
and WPW remain NP-complete even when the graph is a disjoint
union of paths of length 1. When the treewidth and the number
of candidates are bounded, UPW becomes polynomial whereas
WPW remains NP-complete, even for paths of length at most 2.

For UPW with a constant number of candidates and a social
network graph with constant treewidth, the degree of the polyno-
mial bounding the running time of our algorithm is a function of
the number of candidates and the treewidth of the social network
graph. We give evidence that this cannot be avoided. Our results,
which are summarised in Table 1, demonstrate that the possible
winner problem is inherently computationally harder than the nec-
essary winner problem. We refer the reader to [19] for a full version
of the paper.

4. RELATED WORK
The possible and necessary winner problems were introduced in

the context of simultaneous voting to capture uncertainty in pref-
erences. For example, due to incomplete preference elicitation, we
may have only have partial orders over the candidates as the pref-
erences of the voters. Konczak and Lang considered two questions
over a profile with partial orders [24]. Let c∗ be a distinguished
candidate. The first question is whether there is an extension of
the partial orders to linear orders such that the candidate c∗ wins.
The second question is whether the candidate c∗ wins for every
extension of the partial orders to linear orders. Our definitions of
possible and necessary winner problems are inspired by these two
questions, but with uncertainty introduced by the voting order.

Xia and Conitzer [35] identified connections between possible
and necessary winner problems and a number of important prob-
lems in computational social choice, including manipulation and
preference elicitation problems. The computational complexity of
the possible and necessary winner problems under many commonly
used voting rules has been extensively investigated [35, 34]. If the
number of candidates is bounded and votes are unweighted then
these problems can be solved in polynomial time for any voting rule
that itself is polynomial [34, 7, 29]. If the number of candidates is
unbounded and votes are weighted, these problems become com-
putationally hard [34, 7]. Xia and Conitzer also investigated the
setting where the number of candidates is unbounded and votes are
unweighted [35]. They showed that the computational complexity
in this case depends on the voting rule. Their results also demon-
strate that the possible winner problem is computationally harder
than the necessary winner problem for many rules, including a class
of positional scoring rules, Maximin and Bucklin voting rules. We
observe a similar relation between the computational complexity of
possible and necessary winner problems in social polls.
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# cands graph class UPW UNW WPW WNW

O(1) bounded treewidth P (Cor 1) P (Cor 1) NPC (Thm 4) P (Cor 2)
(paths of length ≤ 2)

O(1) bipartite NPC (Thm 5) co-NPC (Thm 6) NPC (Thm 5) co-NPC ( Thm 6)

O(n) bounded treewidth NPC (Thm 7) P (Cor 2) NPC (Thm 7) P (Cor 2)
(paths of length 1) (paths of length 1)

Table 1: Overview of results

Perhaps closest to this work is Alon et al. [1]. However, the
problems studied there are rather different. In their model, agents
have private preferences and vote strategically. An agent experi-
ences disutility if the winning candidate differs from his vote. The
authors derive an equilibrium voting strategy as a function of previ-
ously cast votes. As soon as a candidate accumulates a (small) lead,
all future votes are cast in his favor independent of private prefer-
ences. This “herding" behavior is compared across simultaneous
and sequential voting equilibria. Simultaneous and sequential vot-
ing mechanisms have also been compared based on how well pref-
erences are aggregated in equilibria of corresponding games [9, 2].
Preference aggregation over multiple issues in the presence of in-
fluence has also been studied by Maudet et al. [26].

5. PRELIMINARIES

Graph theory. We refer to [10] for basic notions of graphs and
digraphs. The path on k vertices is denoted Pk. For our algorithmic
results, a central notion is the treewidth of graphs [30]. A tree
decomposition of a graph G = (V,E) is a pair ({Bi : i ∈ I}, T )
where the sets Bi ⊆ V , i ∈ I , are called bags and T is a tree with
elements of I as nodes such that:

1. for each edge uv ∈ E, there is an i ∈ I such that {u, v} ⊆
Bi, and

2. for each vertex v ∈ V , T [{i ∈ I : v ∈ Bi}] is a tree with at
least one node.

The width of a tree decomposition is maxi∈I |Bi| − 1. The
treewidth of G is the minimum width taken over all tree decom-
positions of G.

A social network graph is a graph whose vertices represent indi-
viduals and edges represent friendship relations.

NP-complete problems. Our hardness reductions rely on the NP-
completeness of several classic problems [18]. A PARTITION in-
stance contains a set of integers A = {k0, . . . , kn−1} such that∑n−1

j=0 kj = 2K. The problem is to determine whether there exists
a partition of these numbers into two sets which sum to K. A 3-
HITTING SET instance contains two sets: Q = {q0, . . . , qn−1} and
S = {S1, . . . , St}, where t ≥ 2 and for all j ≤ t, |Sj | = 3
and Sj ⊆ Q. The problem is to determine whether there ex-
ists a set H , a so-called hitting set, of size at most k such that
H ∩ Si 	= ∅, i = 1, . . . , t. Consider a set of Boolean variables
X = {x1, . . . , xn}. A literal is either a Boolean variable xi or
its negation x̄i. A clause is a disjunction of literals. A Boolean
formula in conjunctive normal form (CNF) is a conjunction of m
clauses, {c1, . . . , cm}. A (3≤, 3≤)-SAT instance is a CNF for-
mula such that every clause has at most 3 literals and each variable
occurs at most 3 times. The problem is to check whether there ex-
ists an instantiation of Boolean variables X to make the formula
evaluate to TRUE, which is an NP-complete problem [33].

6. TRACTABLE CASES
In this section we describe algorithms for the polynomial time

solvable cases in Table 1. To simplify the description, we use the

concept of nice tree decompositions. A tree decomposition ({Bi :
i ∈ I}, T ) is nice if each node i of T is of one of four types:
Leaf node: i is a leaf in T and |Bi| = 1;
Insert node: i has one child j, |Bi| = |Bj |+ 1, and Bj ⊂ Bi;
Forget node: i has one child j, |Bi| = |Bj | − 1, and Bi ⊂ Bj ;
Join node: i has two children j and k and Bi = Bj = Bk.
An algorithm by Kloks [23] converts any tree decomposition into a
nice tree decomposition of the same width in linear time.

A score function of C is a function # : C → N. A score function
# can be achieved by an instance if there is a voting order where c
is voted by #(c) agents, for every candidate c ∈ C.

Our tractability results all rely on the algorithm of the next the-
orem. It is a dynamic-programming algorithm proceeding bottom-
up from the leaves to the root of a nice tree decomposition. The
main difficulty is to bound the amount of information that needs to
be transmitted when proceeding from child nodes to parent nodes
in the tree decomposition. Once one has identified what informa-
tion needs to be transmitted, the computation relies on dynamic
programming recurrences as is standard for such algorithms.

THEOREM 1. There is a polynomial time algorithm, which,
given a social network graph G = (V,E)with treewidth t = O(1),
a set C of m = O(1) candidates, and preference functions P and
p1, computes all possible score functions that can be achieved by
this instance.

PROOF. By Bodlaender’s algorithm [5], compute a minimum
width tree decomposition ofG in linear time. Let t denote the width
of this tree decomposition. Using Kloks’ algorithm [23], convert
it into a nice tree decomposition of width t with O(n) nodes in
linear time. Select an arbitrary leaf of this tree decomposition, add
a neighboring empty bag r and root the tree decomposition at r.
Denote the resulting tree decomposition by ({Bi : i ∈ I}, T ).

In the description of our algorithm, we denote by G↓i the sub-
graph induced by the subset of all vertices occurring inBi and bags
associated to descendants of i in T .

First, observe that the vote of a given agent does not depend on
the ordering of the agents that voted before her, but solely on which
subset of her friends were ordered before her. Therefore, instead
of storing partial orderings of agents that have already been pro-
cessed, we may merely store acyclic orientations of subgraphs of
the friendship graph, where an edge oriented from x to y repre-
sents that x votes before y. Any linear ordering extending a given
acyclic orientation of the friendship graph will produce the same
voting outcome.

Our dynamic programming algorithm will process bottom-up
from the leafs to the root of the tree decomposition. The com-
putation at an internal node i looks up the already computed results
stored at its children. Note that we cannot afford to remember all
oriented paths in all relevant orientations of G↓i that were com-
puted at descendants of node i. All we need to remember at node
i is whether for two vertices x, y ∈ Bi, our computations rely on
orientations of subgraphs ofG↓i that contain a directed path from x
to y. If so, we remember that there is a path from x to y by adding

615



an arc (x, y) to a directed acyclic graph (DAG) with vertex set Bi

to the local information stored at this node. Additionally, for every
edge xy in G[Bi], we also need to decide (resp., go over all possi-
ble decisions), whether x votes before y, or y votes before x. This
is again stored by orienting the edge xy accordingly. Therefore, at
a node i, we process all DAGs on the vertex set Bi whose underly-
ing undirected graphs are supergraphs of G[Bi]. For such a DAG
D, we also process all votes of the vertices in Bi (a voting function
v : Bi → C), all potential scores of candidates resulting from the
votes of vertices in G↓i (a score function # : C → {0, . . . , n}).
In addition, in order to do a sanity check to determine whether an
agent x ∈ Bi has indeed cast her vote according to our model
after we have seen the votes of all her friends, we store for each
candidate in P (x) \ p1(x) how many friends voted that candidate
(an influence function s mapping an agent x ∈ Bi and a candi-
date c ∈ P (x) \ p1(x) to a natural number in {0, . . . , n}) and
how many of her friends voted before her (an anterior function
a : Bi → {0, . . . , n}).

A voting function v : X → C on a subset of agents X ⊆ V is
legal if v(x) ∈ P (x), for every agent x ∈ X . A voting func-
tion v : X → C extends a voting function v′ : X ′ → C if
X ′ ⊆ X and v(x) = v′(x) for every x ∈ X ′. An anterior
function a : X → {0, . . . , n} is compatible with an influence
function s : X × C → {0, . . . , n} if for every x ∈ X, we
have that

∑
c∈P (x)\p1(x) s(x, c) ≤ a(x). A voting function v is

compatible with two compatible anterior and influence functions
a : X → {0, . . . , n} and s : X×C → {0, . . . , n} if for every ver-
tex x ∈ X with NG(x) ⊆ X , we have that v(x) = c if there exists
a c ∈ P (x) \ p1(x) such that s(x, c) > a(x)/2, and v(x) = p1(x)
otherwise. A voting function v : X → C is compatible with a
score function # : C → {0, . . . , n} if for every candidate c ∈ C,
|{x ∈ X : v(x) = c}| = #(c). The function s is compatible with
a DAG D with vertex set X and a voting function v if for every
agent x ∈ X and every candidate c ∈ P (x) \ p1(x), we have that
s(x, c) = |{y ∈ N−

D (x) : v(y) = c}|. The function a is com-
patible with D if for every agent x ∈ X , a(x) = |N−

D (x)|. We
say that v, D, #, s, a are mutually compatible if a is compatible
with s, v is compatible with a and s, v is compatible with #, s is
compatible with D and v, and a is compatible with D.

The algorithm computes a table entry for every relevant set of
parameters (i, v,D,#, s, a), which is a Boolean and is TRUE if
and only if there is an acyclic orientation D↓i of G↓i such that:

• if there are two vertices x, y in Bi and a directed path from
x to y in D↓i, then the arc (x, y) is in D,

• the voting function v : Bi → C can be extended to a legal
voting function v′ : V (G↓i) → C, and

• v′, D↓i, #, s, a are mutually compatible.
Now that we have identified the relevant information stored at

each node of the tree decomposition, the actual dynamic program-
ming recurrences are fairly straightforward. We only need to ensure
that the computations rely on already-computed table entries that
are compatible with the entry that is being computed. For simplic-
ity, we disregard issues arising from out-of-bounds table parame-
ters and undefined values by assuming those entries to be FALSE.

Leaf. Suppose i is a leaf withBi = {x}. We set T (i, v,D,#, s, a)
to TRUE if D = ({x}, ∅), v : {x} → C is legal, and v, D, #, s, a
are mutually compatible, and to FALSE otherwise.

Insert node. Suppose i is an insert node in T with child j. Let x be
the unique agent in Bi \Bj . We set T (i, v, D,#, s, a) to FALSE if
v is not legal or s(x, c) is not the number of y ∈ N−

D (x) such that
v(y) = c, for every c ∈ P (x) \ p1(x), or a(x) 	= |N−

D (x)|. Oth-
erwise, set T (i, v,D,#, s, a) := T (j, v′, D′,#′, s′, a′) where:

• v′ = v�Bj
,

• D′ = D − x,
• #′ is obtained from # by decrementing #(v(x)) by one,
• s′ is obtained from s�Bj×C by decrementing s(y, v(x)) by

one for every y ∈ N+
D (x) such that v(x) ∈ P (y) \ p1(y),

and
• a′ is obtained from a�Bj

by decrementing a(y) by one for

every y ∈ N+
D (x).

Here, f�A denotes the restriction of a function f : B → C to a
subdomain A ⊆ B.

Forget node. Suppose i is a forget node in T with child j.
Let x be the unique agent in Bj \ Bi. Since x occurs only in
Bj and its descendants in T , all neighbors of x are in V (G↓i).
Therefore, we now do a sanity check and disregard all situa-
tions where x does not vote according to our model. We set
T (i, v,D,#, s, a) to FALSE if v is not legal, or v(x) = p1(x) but
there exists a candidate c ∈ P (x) \ p1(x) with s(x, c) > a(x)/2,
or v(x) 	= p1(x) but s(x, c) ≤ a(x)/2 for every candidate
c ∈ P (x) \ p1(x). Otherwise it is obtained by computing a dis-
junction of all T (j, v′, D′,#′, s′, a′) such that:

• v′ extends v,
• D = D′ − x,
• # = #′,
• s = s′,
• a = a′,
• if v′(x) = p1(x) then s(x, c) ≤ a(x)/2 for every c ∈

P (x) \ p1(x), and
• if v′(x) 	= p1(x) then s(x, v′(x)) > a(x)/2.

Join node. Suppose i is a join node in T with children
j and j′. Since all agents that occur in both G↓j and
G↓j′ , also occur in Bi, we can easily correct any overcount-
ing resulting from summing values for the subproblems at j
and j′ when computing the functions #, s, and a at node
i. We set T (i, v,D,#, s, a) to be a disjunction over all
T (j, v′, D′,#′, s′, a′) ∧ T (j′, v′′, D′′,#′′, s′′, a′′) with:

• v = v′ = v′′,
• D = D′ = D′′,
• #(c) = #′(c) + #′′(c) − |{x ∈ Bi : v(x) = c}| for each

c ∈ C,
• s(x, c) = s′(x, c) + s′′(x, c)− |{y ∈ N−

D (x) : v(y) = c}|
for each x ∈ Bi and c ∈ P (x) \ p1(x), and

• a(x) = a′(x) + a′′(x)− |N−
D (x)| for each x ∈ Bi.

After all table entries have been computed, we inspect the en-
tries at the root node r of T . Since Br is empty, all table entries
associated with node r have an empty voting function v, a vertex-
less DAG D, and empty anterior and influence functions a and s.
The only relevant information still contained in these entries are
the score functions # that can be achieved by the instance. The
algorithm returns these score functions.

Let us now upper bound the number of table entries. The number
of nodes of T is O(n). For each node i of T , |Bi| ≤ t. Thus,
the number of legal voting functions v : Bi → C is at most kt.
Denoting by qt the number of labeled directed acyclic graphs on t
nodes, qt can be expressed by the recurrence relation

qt =
t∑

k=1

(−1)k−1

(
t

k

)
2k(t−k)qt−k

with q1 = 1 [22, 31]. Asymptotically, qt = O(t!2(
t
2)1.488−t)

(see, e.g., [25]). The number of distinct score functions is bounded
by n|C|. The number of influence functions is bounded by nt(k−1).
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The number of anterior functions is bounded by nt. Finally, the

number of table entries is O(n · kt · t!2(t2) · n|C| · nt(k−1) · nt).
Each table entry can be computed in time O(n|C|+tk). Indeed,

the computations at the leaf and the insert nodes can be done in
time O(1). A table entry computed at a forget node i ranges
over all legal extensions v′ of v and all digraphs D′ such that
D = D′ − x. Since |V (D′)| ≤ t, there are O(3t) such digraphs:
each vertex from D is either not a neighbor or an in-neighbor or
an out-neighbor of x in D′. The number of legal extensions of
v to the domain Bi ∪ {x} is k. Thus, table entries at a forget
node can be computed in time O(3t) which is in O(n|C|+tk) if
n > 1. Computations at join nodes range over all possibilities
to sum #′(c) and #′′(c) to #(c) + |{x ∈ Bi : v(x) = c}|
for each c ∈ C, all possibilities to sum s′(x, c) and s′′(x, c) to
s(x, c) + |{y ∈ N−

D (x) : v(y) = c}| for each x ∈ Bi and each
c ∈ P (x) \ p1(x), and all possibilities to sum a′(x) and a′′(x) to
a(x)+ |N−

D (x)| for each x ∈ Bi. Thus, the computation of a table
entry at a join node looks up O(n|C|+tk) table values. All in all,

our algorithm has running time O(n1+2|C|+2tk · kt · t! · 2(t2)) =

O(n1+2|C|+2tk · 2t log k+t log t+t2).

After executing this algorithm, one can easily identify whether a
candidate c is a possible or necessary winner by inspecting the
score functions that can be achieved by the instance.

COROLLARY 1. For any class of instances where the treewidth
of the social network and the number of candidates are bounded by
a constant, UPW and UNW can be solved in polynomial time.

Theorem 4 shows that the weighted version of the possible win-
ner problem is NP-hard under the same restrictions. The necessary
winner problem can be reformulated as m − 1 subproblems of the
following type: is there a voting order where candidate d achieves a
higher score than candidate c? If some other candidate can achieve
a higher score than our distinguished candidate c∗, then c∗ is not
a necessary winner. Testing whether a candidate d can achieve a
higher score than a candidate c can be done by a slight variation of
our previous algorithm, even for the weighted version of the prob-
lem and for an unbounded number of candidates.

COROLLARY 2. WNW can be solved in polynomial time for
social network graphs with treewidth O(1).

PROOF. We need a polynomial time test of whether a candidate
d achieves a higher score than a candidate c. We modify the algo-
rithm in the proof of Theorem 1 as follows. Remove the function
# from the table parameters. Instead, each table entry is an integer,
representing the maximum possible value of the score of candidate
d minus the score of candidate c in this subinstance. This change
implies some other changes in the computation of the table entries
(a disjunction of table entries becomes a maximum, setting a ta-
ble entry to FALSE becomes setting its value to −∞, etc.), all of
which are straightforward. In the end, there is a voting order where
d achieves a higher score than c if the unique table entry at the root
of the tree decomposition is positive. Since all factors of the form
n|C| in the running time bound of Theorem 1 are due to the ta-
ble parameter #, this variant is polynomial even for an unbounded
number of candidates.

Although the algorithm from Theorem 1 is polynomial whenever
|C| and t are upper bounded by a fixed constant, its running time
seems prohibitive even for relatively small values of |C| and t. This
is largely due to the degree of the polynomial bounding the run-
ning time depending on |C| and t. Therefore, a natural question is

whether the problems can be solved in time f(|C|, t) · nc, where
c is a constant independent of |C| and t, and f is a function inde-
pendent of n. Formulated in the terms of multivariate complexity
[12, 15, 17, 27]: are the problems fixed-parameter tractable (FPT)
parameterized by |C|+ t? We conjecture that they are W [1]-hard,
and give supporting evidence in terms of finite-state properties of
graphs [3, 6, 16].

DEFINITION 1. An l-boundaried graph is a triple (V,E,B)
with (V,E) a simple graph, and B ⊆ V an ordered subset of l ≥ 0
vertices. Vertices in B are called boundary vertices.

DEFINITION 2. The operation ⊕ maps two l-boundaried
graphs G and H , l ≥ 0, to a graph G ⊕ H , by taking the dis-
joint union of G and H , then identifying corresponding boundary
vertices, i.e., for i = 1, . . . , l, identifying the ith boundary vertex of
G with the ith boundary vertex of H , and removing multiple edges.

If F is an arbitrary family of (ordinary) graphs, we define the
following canonical equivalence relation ∼F,l induced by F on the
set of l-boundaried graphs.

DEFINITION 3. G1 ∼F,l G2 if and only if for all l-boundaried
graphs H , G1 ⊕H ∈ F ⇔ G2 ⊕H ∈ F .

The graph family F is of finite index if ∼F,l has a finite number of
equivalence classes for all l ≥ 0. Slightly abusing notation, we use
the previously defined terms for instances of our problems instead
of graphs.

THEOREM 2. The class of unweighted instances where the so-
cial network graph has treewidth at most 1, the number of candi-
dates is at most 2, and c∗ is a possible (respectively, necessary)
winner is not of finite index.

We skip the proof of this theorem since it will follow from Theo-
rem 3. An explicit proof can be found in the full version [19].

Consequently, finite-state automata are not amendable to give an
FPT algorithm, even for the parameter treewidth when the number
of candidates is upper bounded by a constant. Intuitively, Theorem
2 implies that the amount of information that the usual kind of algo-
rithms need to transmit when transitioning from one bag of the tree
decomposition to the next cannot be upper bounded by a function
depending only on the width of the tree decomposition. It could
still be upper bounded by an FPT function though, in which case
the other standard algorithmic technique for bounded-treewidth in-
stances, dynamic-programming, could still give an FPT algorithm.
However, the following theorem shows that the index cannot be
upper bounded by an FPT function.

THEOREM 3. For every integer n, the class of unweighted in-
stances whose social network graph has n vertices and treewidth
at most 1, the number of candidates is k, and c∗ is a possible (re-
spectively, necessary) winner has index at least �n/k�k−1.

PROOF. Let Fn be this class of instances. We consider the
equivalence relation ∼Fn,0 and show that it has at least �n/k�k−1

equivalence classes. Let � := �n/k�. For positive integers
i1, . . . , ik−1 ≤ �, define the 0-boundaried instance Li1,...,ik−1

whose social network graph is a disjoint union of paths Pij , j =
1, . . . , k − 1, and every voter x on the path Pij has P (x) =
{c∗, aj} and p1(x) = aj . For positive integers i1, . . . , ik ≤ �,
define the 0-boundaried instance Ri1,...,ik whose social network
graph is a disjoint union of paths Pij , j = 1, . . . , k, and every
voter x on the path Pij with ij < k has P (x) = {c∗, aj} and
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Figure 1: The construction from Theorem 4

p1(x) = aj and every voter x on the path Pk has P (x) = {c∗, a1}
and p1(x) = c∗. Now, if (i1, . . . , ik−1) 	= (i′1, . . . , i

′
k−1), then

Li1,...,ik−1 	∼Fn,0 Li′1,...,i
′
k−1

. To see this, suppose, w.l.o.g., that

i1 < i′1. Then c∗ is a winner in Li1,...,ik−1 ⊕R�−i1,...,�−ik−1,� for
every ordering of the voters, but c∗ is not a winner in Li′1,...,i′k−1

⊕
R�−i1,...,�−ik−1,� for any ordering of the voters. Thus, every
Li1,...,ik−1 , 0 ≤ ij ≤ �, is in a different equivalence class of the
relation ∼Fn,0.

Thus, for any dynamic-programming algorithm for UPW or
UNW based on boolean tables, like the one of Theorem 1, the
running time cannot be upper bounded by an FPT function. There-
fore, we have little hope that the running time of the algorithm from
Theorem 1 can be improved significantly.

7. INTRACTABLE CASES
We observe that an isolated agent that has no friends always

votes for her top preferred candidate. To simplify notations, we
call the score of a candidate that comes from all isolated agents the
basic score. Our intractability results hold even if each voter has
two preferred candidates. We denote the two preferred candidates
of a voter (x, y), where x is the top preferred candidate.

THEOREM 4. WPW is NP-complete even if the social net-
work graph is a disjoint union of paths of length at most two, the
number of candidates is constant, and each agent has two preferred
candidates.

PROOF. We reduce from the PARTITION problem to WPW
with three candidates {a, b, c}.

For each integer kj , j = 0, . . . , n − 1 we introduce 3 agents
3j, 3j+1 and 3j+2, with preferences (c, b), (a, c), (b, c), respec-
tively. The weights of the (3j)th agent and the (3j+1)th agent are
one. The weight of the (3j+2)th agent is kjB, where B is a large
integer, for instance 2n + 1. Agents 3j, 3j + 1 and 3j + 2 form
the jth path of friends, ((3j, 3j + 1), (3j + 1, 3j + 2)), that cor-
responds to the kj th element. An additional agent without friends
has preferences (a, c) and weight KB + 2n. We ask whether a is
a possible winner. Fig. 1 illustrates the construction.

The basic score of a is KB + 2n. The idea of the construc-
tion is to make sure that the preferred candidate a wins iff the
weighted votes of (3j + 2)th agents, j = 0, . . . , n − 1, are par-
titioned equally between candidates b and c. Consider the jth path
((3j, 3j + 1), (3j + 1, 3j + 2)). The (3j + 2)th agent either
votes for b or for c depending on the relative order of the can-
didates in this path. As the weight of the (3j + 2)th agent is
kjB, either c or b increases its score by kjB. Let J be a set of
paths such that the (3j + 2)th agent selects b, j ∈ J , and Jc =
{0, . . . , n−1}\J contains all paths such that the (3j+2)th agent
selects c, j ∈ Jc. Then the total weight that the candidate b gets is∑

j∈J kjB = B
∑

j∈J kj . If
∑

j∈J kj > K then the score of b
is strictly greater than the maximum score of a. Similarly, the total
weight that the candidate c gets is

∑
j∈Jc kjB = B

∑
j∈Jc kj .

Figure 2: The construction from Theorem 5

If
∑

j∈Jc kj > K then the score of c is strictly greater than
the final score of a. Therefore, the only way for a to win is if
there exists a partition

∑
j∈J kj = K and

∑
j∈Jc kj = K. In

this case, score(c) ≤ KB + 2n, score(b) ≤ KB + 2n and
score(a) ≥ KB +2n. Hence, a is a co-winner iff the PARTITION

instance is a YES-instance.
Suppose a partition (J, Jc) of A exists with

∑
j∈J kj =∑

j∈Jc kj . For the jth path, j ∈ J we fix an order 3j ≺ 3j + 1 ≺
3j + 2, where x ≺ y means x votes before y. For the jth path,
j /∈ J we fix an order 3j + 1 ≺ 3j ≺ 3j + 2. This ensures that
the weights of the (3j + 2)th agents in all paths are split equally
between b and c. Hence, a is a co-winner.

THEOREM 5. UPW is NP-complete even if the number of
candidates is constant, the social network graph is bipartite, and
each agent has two preferred candidates.

PROOF. We reduce from 3-HITTING SET. For each element qj ,
j = 0, . . . , n − 1 we introduce 4 agents 4j, 4j + 1, 4j + 2 and
4j+3, with preferences (c, b), (a, c), (b, c) and (b, c), respectively.
Agents 4j, 4j + 1, 4j + 2 and 4j + 3 form a path of friends. We
say that agents 4j, 4j+1, 4j+2 and 4j +3 represent the jth path
that corresponds to the qj th element. In particular, we refer to the
(4j + 1)th agent as an element-agent, as her decision corresponds
to a selection of the qj th element into a hitting set. For each set
Si = (qh, qs, qr), i = 1, . . . , t we introduce D agents {(4n−1)+
D(i− 1)+ p}, p = 1, . . . , D, with preferences (b, a). The ((4n−
1)+D(i−1)+1)th agent is a friend of the (4h+1)th, (4s+1)th and
(4r+1)th agents. Moreover, (4n−1)+D(i−1)+p, p = 1, . . . , D
form a path of friends that starts at (4n − 1) +D(i − 1) + 1 and
ends at (4n− 1) +D(i− 1) +D. We refer to these as set-agents.
Finally, we introduce B− k−Dt isolated agents with preferences
(a, c) and B − 2k isolated agents with preferences (b, c), where B
and D > t are large integers such as n9 and n4. We ask whether a
is a possible winner. Fig. 2 illustrates the construction. The basic
score of a is B − k − Dt and of b is B − 2k. The idea of the
construction is that for a to win it needs at least Dt − k votes.
The construction ensures that at most k of the (4j + 1)th element-
agents, j = 0, . . . , n− 1, can vote for a, otherwise b beats a. This
corresponds to a selection of k elements in the hitting set. The Dt
set-agents must all vote for a, otherwise a loses, which is possible
iff a set of element-agents that selected a forms a hitting set.

Select a set of elements. If the (4j+1)th element-agent in the jth
path selects the candidate a then the agents (4j + 2) and (4j + 3)
will select their choice b. Hence, increasing the score of a by 1
increases the score of b by 2 if we only consider voters in the jth

618



Figure 3: The construction from Theorem 7

path. The basic score of a is B − k − tD, the maximum number
of points that a can gain from set-agents is Dt, and the basic score
of b is B − 2k; hence at most k element-agents can select a.

Check a hitting set. Suppose exactly k′ element-agents selected
a and the corresponding k′ elements cover t′ sets. The remaining
set of element-agents vote for c. Hence, Dt′ set-agents vote for a
and the remaining (t − t′)D vote for b. Then the maximum score
of a is B − (k + Dt) + (k′ + t′D). The maximum score of b in
this case is B − 2k + 2k′ + (t − t′)D. For a to beat b we need
B − (k + Dt) + (k′ + Dt′) ≥ B − 2k + 2k′ + (t − t′)D or
2Dt′ + k ≥ k′ + 2Dt. As D > t, this inequality holds iff t′ ≥ t.
Hence, k′ selected elements must form a hitting set. As at most k
element-agents are allowed to select a, the problem has a solution
iff there is a solution to the hitting set problem.

Order construction. Let H be a hitting set of size k. Then J =
{h : qh ∈ H} and Jc = {0, . . . , n − 1} \ J . First, the agents
{4j, . . . , 4j+3}, j ∈ J vote in the order 4j+1 ≺ 4j ≺ 4j+2 ≺
4j + 3, so that each agent selects his top choice. Then all set-
agents vote in the order (4n − 1) + 1 ≺ (4n − 1) + 2 ≺ . . . ≺
(4n−1)+D(t−1)+D. As the set J corresponds to the hitting set
H , all set-agents vote for a. Finally, the agents {4j, . . . , 4j + 3},
j ∈ Jc, vote in the order 4j ≺ 4j + 1 ≺ 4j + 2 ≺ 4j + 3, so that
each of these agents selects c.

THEOREM 6. UNW is co-NP-complete even if the number of
candidates is constant, the social network graph is bipartite, and
each agent has two preferred candidates.

PROOF. We use the construction from Theorem 5 and ask if the
candidate b is a necessary winner. Note that c cannot win the poll
under any order as the maximum possible score of c is 4n. Hence,
b is a necessary winner iff there is no order such that a gets more
points than b. From Theorem 5 it follows that a gets more points
than b iff there exists a solution to the 3-HITTING SET problem.

THEOREM 7. UPW is NP-complete even if the social network
graph is a disjoint union of paths of length at most 1 and each agent
has two preferred candidates.

PROOF. We reduce from (3≤, 3≤)-SAT. We assume that the
formula does not contain unit clauses and pure literals as those can
be removed during a preprocessing step. Therefore, each variable
occurs either twice positively and once negatively or once posi-
tively and twice negatively. Hence, each variable can satisfy at
most 2 clauses. For each literal, xi (x̄i), i = 1, . . . , n, we in-
troduce a candidate labeled with xi (x̄i). For each clause, cj ,
j = 1, . . . ,m, we introduce a candidate labeled with cj . Finally,
we introduce a dummy candidate d and the distinguished candi-
date a. For each variable xi, i = 1, . . . , n, we introduce two
var-agents, {2i, 2i + 1}, with preferences (xi, x̄i) and (x̄i, xi),
respectively. Agents 2i and 2i + 1 are friends. For each clause

cj , j = 1, . . . ,m, of length 3, cj = (lt, ls, lr), j = 1, . . . ,m,
lh ∈ {xh, x̄h}, h ∈ {t, s, r}, we introduce 6 clause-agents,
{2n+6j +1, . . . , 2n+6j +6}, that we split into three groups of
two agents, one group for each literal in a clause. Agents in each
group are friends. The first group contains two agents with prefer-
ences (cj , d) and (lt, cj), the second – two agents with preferences
(cj , d) and (ls, cj) and the third – two agents with preferences
(cj , d) and (lr, cj). For each clause cj , j = 1, . . . ,m of length
2, cj = (lt, ls), j = 1, . . . ,m, lh ∈ {xh, x̄h}, h ∈ {t, s}, we in-
troduce 6 clause-agents: two groups of two agents for each literal in
the clause as described above and two isolated dummy agents with
preferences (cj , d). Finally, we introduce 3 isolated agents with
preferences (lh, d), for each literal lh ∈ {xh, x̄h}, h = 1, . . . , n
and 5 isolated agents with preferences (a, d). We ask whether a is
a possible winner. Fig. 3 illustrates the construction.

The basic score of a is 5, of a literal lh, lh ∈ {xh, x̄h}, h =
1, . . . , n, is 3 and of a clause cj of size 2, j ∈ {1, . . . ,m}, is 2.

Select an assignment. Consider a variable xi and the two corre-
sponding var-agents, 2i and 2i + 1. These agents make sure that
either xi or x̄i gets two points exclusively. As the basic score of
xi and x̄i is 3, if xi (x̄i) gets 2 points from var-agents then it is
not allowed to get any points from clause-agents. We say that the
candidate xi is selected by an assignment iff x̄i gets two points
from var-agents and x̄i is selected otherwise. We emphasize that
candidates that are not selected by an assignment are not allowed
to obtain any additional points from clause-agents.

Check an assignment. Consider a clause cj = (xt, x̄s, xr). Due
to clause-agents, the candidate cj gets at least three points from the
corresponding clause-agents regardless of the voting order. More-
over, the candidate cj can get at most five points from these clause-
agents, otherwise a loses. Hence, at least one point has to be given
to one of the candidates {xt, x̄s, xr}. Hence, at least one of these
candidates must be selected to the assignment. In other words,
the corresponding literal satisfies the clause cj . The analysis for
clauses with two literals is similar. Note that a candidate in an as-
signment can gain at most two points from clause-agents. In other
words, it can satisfy at most two clauses, which is the maximum
number of clauses that a variable can satisfy in the (3≤, 3≤)-SAT
problem that we consider in the reduction. Hence, a wins iff there
exists a solution of the (3≤, 3≤)-SAT problem.

Order construction. Let L be the literals in a satisfying assign-
ment. For i = 1, . . . , n, if xi ∈ L then the agent 2i + 1 votes
at position i and, otherwise, the agent 2i votes at position i. This
fixes the voting order of n first agents. Then all clause-agents cast
their votes. Note that as L is a satisfying assignment, none of the
candidates cj , j = 1, . . . ,m has more than 5 points. The voting
order of the remaining agents is arbitrary.
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We have introduced a general model of social polls in which an
agent’s vote is influenced by her friends that have already voted.
We considered a particular instantiation of this model in which in-
fluence is very simple: an agent votes for her most preferred can-
didate unless one of her k most preferred candidates has already
received a majority of votes from her friends. We considered how
to compute who can possibly or necessarily win such a social poll
depending on the order of the agents yet to vote. These problems
are closely related to questions regarding control and manipulation.
Our results show that the complexity of the possible and necessary
winner problems depends on the structure of the underlying social
graph and the number of candidates. The possible winner prob-
lem is NP-hard to compute, even under strong restrictions on the
structure of the social graph. By comparison, the necessary winner
problem can be computationally easier to compute. For instance, it
is polynomial to compute if the social graph has bounded treewidth.
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