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ABSTRACT 

We introduce Directions Robot, a system we have fielded for 

studying open-world human-robot interaction. The system brings 

together models for situated spoken language interaction with 

directions-generation and a gesturing humanoid robot. We describe 

the perceptual, interaction, and output generation competencies of 

this system. We then discuss experiences and lessons drawn from 

data collected in an initial in-the-wild deployment, and highlight 

several challenges with managing engagement, providing 

directions, and handling out-of-domain queries that arise in open-

world, multiparty settings. 

Categories and Subject Descriptors 

H.1.2 [Models and Principles]: User/Machine System – Human 

Information Processing; H.5.2 [Information Interfaces and 

Presentation] User Interfaces – Natural Language; I.4.8 [Scene 

Analysis]: Tracking, Sensor Fusion  

Keywords 

Human-robot interaction; directions giving; engagement.  

1. INTRODUCTION  
We are pursuing computational systems that can interact with 

people in a natural manner with spoken language in the open world. 

Conducting effective dialog in physically situated settings requires 

the handling of multiple nuances and uncertainties that cannot be 

easily identified or emulated in the laboratory. In open 

environments, people may come and go, as individuals or as 

groups, and complex and evolving social relationships may be in 

play. The focus of attention is often shared, and people may 

intermittently attend to and interact with a system, while engaging 

in conversations with others, or glancing at the screen of a 

smartphone or other attractors in their field of view. There is 

uncertainty about intentions and goals, the sources, targets, and 

meanings of utterances, and the rationale for patterns of movement 

and attention over time.  

Learning about and testing the real-world interactive competencies 

of such open-world dialog systems requires situating them in the 

wild—e.g., placing them in a workspace or location where people 

can engage with them at will. Here, we introduce Directions Robot, 

a humanoid robot that gives directions inside a building, and 

provides a research testbed for open-world human-robot 

interaction. We describe the system and the key components it 

harnesses for perception, reasoning, learning, path-generation, 

dialog, and gesturing. We then discuss lessons learned from an 

initial live deployment, with a focus on conversational engagement, 

handling out-of-domain queries, and providing directions. 

2. RELATED WORK  
Several research projects have investigated the problem of 

providing directions in natural language, and with embodied 

conversational agents. A framework and architecture for generating 

natural language directions are presented in [1]. In [2], a 

representation of locations is used for generating descriptive 

directions. The MACK [3, 4, 5], and later NUMACK [6] efforts 

have explored the use of embodied conversational agents to give 

directions on a college campus. These systems have been used to 

investigate topics such as the synchronized generation of gaze, 

gesture, and speech [3, 5], face-to-face verbal and non-verbal 

grounding [4], and models for generating iconic gestures from 

communicative intentions [6]. The Virtual Guide [7] is an 

embodied conversational agent that provides natural language 

directions in a virtual 3D environment and uses a corpus-based 

approach for generating beat gestures [8]. Recently, the GIVE 

challenge has fostered research on generating instructions for 

guiding users within 3D environments [9].  

Directions-giving tasks have also been investigated in the human-

robot interaction community. In [10], a model that integrates 

utterances, gestures and timing is presented and evaluated for a 

directions-giving task with the Robovie robot. The experiments 

explore the influence of gestures and highlight the importance of 

timing in the directions-giving task. Other researchers [11] have 

studied the use of spatial language when giving directions to robots.  

A comparison of the use of different embodiments for performing 

a directions-giving task found no significant differences in the 

effectiveness of using a physical robot versus a virtual avatar [12]. 
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However, participants interacting with the virtual agent performed 

more complementary gestures. The study also found that listener-

perspective gestures led to a reduction of errors in a directions 

retelling task. Another investigation [13] of listener- and speaker-

perspective gestures, with a human directions giver, found no 

significant differences in their effectiveness. 

Directions giving remains an active area of research with numerous 

open questions. Although we frame our studies around a directions 

task, our primary motivation and goals in developing the Directions 

Robot are broader. We report on the development of the system as 

a testbed for studying human-robot interaction in open-world 

settings. The work follows on the trajectory of several other 

research efforts, where robots or embodied conversational agents 

have been deployed in real-world environments—in an effort to 

identify and address the challenges of performing for long periods 

of time as competent social actors, i.a. [14, 15, 16, 17]. We discuss 

lessons learned from an initial deployment of the Directions Robot, 

which highlighted both expected and unforeseen challenges, and 

we outline directions for future work. 

3. SYSTEM 
The Directions Robot interacts using natural language with one or 

multiple participants and provides directions to people’s offices, 

conference rooms, and other public areas inside our building such 

as the kitchen, cafeteria, and bathrooms. The system couples 

robotics hardware with an existing platform for multimodal, 

physically situated spoken language interaction and a mapping and 

directions-generation framework. An example interaction with the 

robot is presented in Figure 2; videos are available at [18]. 

3.1 Hardware setup 
We used a NAO robot from Aldebaran Robotics [19], shown in 

Figure 1. Its small humanoid form factor and high degree of 

maneuverability make it well suited for giving directions, and, 

more specifically, for producing gestural outputs. Its reduced size 

and clean design foster a positive attitude and curiosity on the part 

of people that encounter it on a busy hallway.  

While the NAO provides on-board sensors and computation, given 

the complexity of the task at hand and the associated processing 

needs, we use separate, fixed sensors and a multicore desktop 

computer to control the robot. The robot stands in a fixed position 

on a table, with an external wide-angle camera and microphone 

array placed above its head, as seen at the top right of Figure 1. A 

Flea3 PointGrey camera with a wide-angle lens (140° field-of-

view), captures video at a resolution of 2048x1080 pixels. The 

microphone array in a Kinect sensor is used to collect audio and 

sound source localization data. Audio output is produced on the 

computer and is rendered via external speakers placed behind the 

robot, which enables acoustic echo cancellation on the audio input. 

3.2 System components 
The software infrastructure for the robot subsumes components for 

making inferences from audio-visual signals (e.g., face tracking, 

speech recognition, and scene analysis) and combines them with 

interaction planning, decision making, output generation, and with 

a mapping and directions-generation component. A high-level 

diagram of the system components is shown in Figure 1. Next, we 

describe them in more detail. 

3.2.1 Vision  
Interaction in physically situated settings hinges critically on the 

ability to accurately perceive and track actors in the environment. 

The Directions Robot tracks people using a face detector that 

recognizes faces in frontal and side orientations, coupled with a 

mean-shift tracker that seeks the corresponding image patches for 

each face in the next frame. To increase robustness, we 

implemented several additional heuristic mechanisms, including 

one for resolving occlusions, and for aligning and shrinking tracked 

faces based on the head crowns detected in the foreground mask. 

Furthermore, we trained a face-confidence model that assesses the 

correctness of each tracked face at every frame. Faces with 

confidence below a threshold are discarded. 

3.2.2 Speech recognition  
We use the recognition engine distributed with the Kinect for 

Windows SDK to perform speech recognition on the audio 

collected from the Kinect microphone array.  

The speech recognizer is configured with dialog-state—specific 

grammars: depending on the interaction context, a particular subset 

of grammar rules is enabled. Some of the rules were manually 

authored to capture expected user questions and responses at 

different points in the dialog. In addition, a subset of rules that 

model the names of people, places, and office numbers were 

automatically generated from existing office directory and building 

map information. In principle, the automatic generation of the 

building-specific grammar rules should enable easy relocation of 

the Directions Robot to other buildings.  

3.2.3 Conversational scene analysis 
Information from the speech recognition and vision components is 

used to analyze the scene in real-time and model communicative 

processes such as engagement and turn taking.  

Engagement. Engagement is the process by which participants 

initiate, maintain, and break their connection during interactions 

that they jointly undertake [20, 21]. Human-human engagement is 

a mixed-initiative, highly coordinated process, regulated by signals 

across multiple modalities, including proxemics, head and hand 

gestures, mutual gaze and speech. Modeling engagement in multi-

party open-world settings is a challenging problem: people come 

and go, and initiate, break and interleave interactions with the robot 

and with each other at will. Within groups, the focus of attention is 

divided between the robot and the other participants. 

Directions Robot uses an engagement model introduced in [22], 

which makes real-time inferences about the engagement state, 

actions, and intentions of each detected actor in the scene. The 

engagement state captures whether an actor is engaged or not-

engaged in an interaction with the robot. In contrast, the 

engagement intention represents whether an actor desires to be 

engaged or not. Finally, the engagement action models whether an 

actor is performing a maintaining versus a disengaging action (if 

the actor is currently engaged), or an initiating action versus no-

action (if not currently engaged).  

In the initial implementation of this engagement model, the 

probability of engagement actions is assessed via a soft, heuristic 

rule. The rule fuses information about the centrality of the face in 

the scene, the size of the face, and the number of times the face was 

detected in a frontal orientation, and aims to model whether or not 

actors are close by, in front of the robot, in an f-formation [23] with 

it (the natural configuration that two or more people assume when 

they coordinate with each other.) If so, we assume they are 

performing an initiating action (if they are not already engaged) or 

a maintaining action (if they are engaged). The default model also 

assumes that an actor intends to be engaged in a conversation if and 

only if an initiating or maintaining action is performed. In effect, 

we make an assumption that intentions are the same as actions. 

Finally, the state is updated based on the joint actions of the actor 
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and the robot; for instance, to transition from not-engaged to 

engaged, both the actor and the robot have to be performing an 

initiating action.  

Based on the inferred state, actions and intentions, the robot selects 

its own engagement actions. With the default policy, the robot 

initiates a new engagement, i.e. starts a new conversation, when it 

detects that the probability that an actor intends to engage exceeds 

a preset 0.8 threshold (except if the actor had just disengaged, in 

which case the robot waits for a few seconds to elapse before a new 

engagement is started). The system adds actors to an existing 

engagement if the probability of their engagement intention 

exceeds a preset 0.8 threshold, until a maximum of three actors are 

engaged. In the example displayed in Figure 1, the two participants 

in front are in an f-formation and engaged with the robot, while the 

third one is not. The system disengages with actors when their not-

engaged intention exceeds a 0.8 probability. When the last engaged 

actor becomes disengaged, the conversation is terminated.  

The robot’s engagement actions are rendered into coordinated gaze, 

gesture, and speech behaviors. Initiation with the first actor is 

performed with a verbal greeting “Hi!” accompanied by a gesture. 

The final disengagement action (towards the last disengaging actor) 

is contextualized based on the dialog state. If disengagement 

happens close to the beginning of the dialog, the robot terminates 

the interaction without any speech or gesture: this mostly covers 

cases when the engagement was in fact incorrectly initiated as a 

person goes by. If the engaged participant(s) leave in the middle of 

the dialog, the robot stops speaking and triggers a verbal “Well, 

catch you later then.” communicating its surprise at the early user-

initiated disengagement. Finally, if the engagement terminates after 

directions are given, a simple salutation such as “Bye-bye!” is 

performed, accompanied by a hand-waving gesture.  

Turn taking. Once engagement is established, the robot must 

coordinate with the participants on the production of spoken signals 

in a process known as turn taking. The Directions Robot manages 

turn taking based on a model described in [24]. The model uses 

information from the microphone array sound source localizer, 

coupled with additional heuristics based on several observations, 

including duration of utterances, level of understanding, and visual 

focus of attention to track who is talking to whom at every point in 

time and to infer the floor control actions of each participant in the 

conversation (e.g. who is releasing the floor to whom, who is trying 

to take the floor, etc.). Based on these inferences, the model makes 

floor control decisions, and signals to the dialog manager when it 

should take the floor and generate outputs. The turn-taking model 

enables a diversity of behaviors in multiparty interaction settings.  

3.2.4 Dialog management 
A finite-state based dialog manager controls the conversation. A 

sample dialog is shown in Figure 2. The interaction begins with the 

Directions Robot greeting the user and, once the user is engaged, 

the robot asks if they need directions. Assuming the user responds 

affirmatively, the robot asks who or what they are looking for. If 

the recognized response includes a room number, place, or person 

within the grammar, spoken directions to the destination are 

generated, coupled with appropriate arm and hand gestures. The 

robot can answer multiple sequential requests for directions. 

Finally, if the user remains engaged after receiving directions and 

makes no further request, the robot asks if they want anything else 

and decides whether to continue or terminate the interaction.  

Speech recognition is challenging with a far-field microphone array 

in open environments. Given background noise (including from the 

robot’s motors), as well as acoustic, language modeling, and out-

of-domain challenges, a fair number of misunderstandings and non-

understandings arise. To mitigate such situations, the dialog 

manager uses error handling mechanisms such as asking for 

clarification or confirmation, e.g. “Pardon me?”, “You’re looking 

for the cafeteria, correct?” Rarely, when consecutive errors occur 

repeatedly, the dialog manager determines that it is futile to 

continue the interaction. In this case, the robot apologizes for not 

Figure 1. Directions Robot, from top-left to bottom-right: Robot interacting with one participant; robot interacting with two 

participants; robot in offline position; real-time robot scene analysis; system diagram. 
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being able to understand, and tries to gracefully end the interaction 

by inviting the user(s) to stop by later. 

3.2.5 Directions backend 
The Directions Robot uses a building map framework [25] which 

represents the building floor plan overlaid with markups describing 

the traversable route segments and connectors to valid endpoints. 

Directions from the robot to other locations in the building are 

computed using an A* search with a Euclidean distance metric. The 

resulting path consists of a sequence of segments describing the 

distance and direction of travel, with references to the underlying 

route segments, connectors or places traversed.  

Natural language navigation instructions, along with synchronized 

robot gestures are generated based on the computed path, as 

illustrated in Figure 3. For each segment, a spoken phrase and 

gesture may be generated to describe the navigation step action 

implied by the distance and direction of the segment. At the 

beginning of the navigation sequence, deictic gestures are used, 

coupled with spoken references, e.g. “Go to the end of this hallway” 

to provide a clear initial trajectory (see Figure 3). For subsequent 

navigation steps, the robot switches to route-perspective gestures 

indicating orientation at the current point on the path, e.g. “Turn 

right and keep walking down the hallway.” 

Information about traversed or passed places, and their relationship 

to path segments, is used to augment the description of navigation 

steps. For instance, if a path segment traverses only a short portion 

of the hallway, the qualifier “for a bit” may be inserted, as in the 

example shown in Figure 3. In addition, underlying map features 

may be used to inform the relative position of the destination, for 

example by providing the ordinal, type and side of the destination 

place, e.g. “the first room on your right”. To avoid generating long 

and verbose directions and to increase naturalness, we apply a 

number of simplification rules. When the path contains a single 

segment, an absolute reference and pointing gesture to the 

destination is generated, e.g. “The restroom is just down this 

hallway on your right”. Insignificant or short path segments are 

skipped (step 2 in Figure 3), and coincident path segments are 

merged prior to generating directions (step 3 in Figure 3). If the 

path is still overly long, we short-circuit the directions after a 

maximum number of navigation steps and provide a summary for 

the remainder of the path, e.g. “Room 1234 will be in that wing of 

the building,” coupled with a deictic gesture. If the destination is 

on a different floor, the final pointing gesture is performed with an 

elevation angle, indicating the straight-line direction to the 

destination in both the horizontal and vertical planes.  

3.2.6 Output planning and behavioral control 
The output planning component receives high-level semantic 

outputs from the dialog manager and renders them into speech 

coordinated with gestures on the robot. For each output, a plan is 

constructed, consisting of spoken utterances and gestures. The 

execution of the output plan is governed by an output behavior, 

which takes into account scene analysis information, e.g. whether 

the robot currently has the floor or is talking. Other low-level robot 

behaviors, such as gazing towards people that walk by when it is 

not engaged in a conversation, are controlled from this layer. 

3.2.7 Robot control 
The robot is controlled via a set of behaviors activated by signals 

received from the output planner. For example, the robot moves its 

head to follow people when a new actor is detected in the scene, 

providing a strong signal of attention and awareness. The position 

of the actor in the scene and an estimate of distance from the robot 

based on face size are translated into head joint angles (yaw and 

pitch) that are sent to the robot and updated periodically, causing 

the robot to appear to be actively looking at the actor. Robot-

relative gestures are performed by a gesture behavior which selects 

from a set of pre-authored timelines defining robot joint angle key 

frames, and sends them to the robot. For absolute, directional 

pointing gestures, the behavior computes at runtime the key frame 

angles based on the horizontal angle and elevation as specified in 

the output plan, which may also define the duration of the gesture. 

An expression behavior controls the LEDs on the robot to indicate 

its engagement state. When idle, LEDs on the robot’s body are 

dimmed and during interactions their intensities are raised. In 

addition, to prevent the robot from appearing too stiff and lifeless, 

a behavior periodically performs small joint motions and activates 

the eye LEDs to simulate blinking.  

Robot: Hi! Do you need directions? 

User:  Yes. 

Robot: What room number can I direct you to? 

User:  I’m looking for Conference Room 3800. 

Robot:  To get to Conference Room 3800, go to the end of this 
hallway. Turn right and keep walking down the hallway for a 
bit. Conference Room 3800 will be the 1st room on your right. 

User: Also, where can I find John Doe? 

Robot: John Doe is in office number 4120. To get there, take the 
elevator up to the 4th floor. Turn right as you exit the elevator 
and walk to the end of this hallway. John's office will be in 
that wing of the building. 

User:  Thank you. 

Robot:  No problem. Can I help you find anything else? 

User:  No. 

Robot:  Well, it was nice talking with you. Goodbye. 

Figure 2. Sample dialog with Directions Robot. 

Path(ConfRoom_3800) 

1. Start(Hall_3004) 
“To get to conference room 3800,” 

2. Nudge(7ft, 180°, Hall_3004) 

3. Walk(83ft, 85°, Hall_3004, Hall_3000, Hall_3802) 

Walk(43ft, 90°, Hall_3004, Hall_3000) 

Walk(40ft, -9°, Hall_3000, Hall_3802) 

4. Walk(31ft, -91°, Hall_3802) 

5. End(2ft, -90°, ConfRoom_3800) 

“go to the end of this hallway.” [Point at 85° �] 

“Turn right and keep walking down the hallway 
for a bit.” [Gesture Right] 

“Conference Room 3800 will be the first room 
on your right.” [Gesture Right �] 

Figure 3. Above: Path conversion to directions 

Below: � deictic gesture, � route-relative gesture 

� � 
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4. DEPLOYMENT 
We deployed the Directions Robot in a space close to the elevators 

on a floor of our building (Figure 1). The traffic in this area includes 

people with offices on the floor, as well as visitors who come to see 

people on the floor and to attend meetings in various conference 

rooms. Numerous visitors are unfamiliar with the surroundings.  

The robot is setup on a table located directly ahead of the elevators, 

and interactions occur at eye level (Figure 1). Signs about the robot 

are posted inside the elevators, on approach corridors, and near the 

robot, and alert people to the presence and basic operation of the 

robot, as well as disclose that the system is recording for research 

purposes. The robot operates during business hours: it is manually 

started each morning, and each evening it turns off automatically 

and returns to a resting position (Figure 1). 

The robot was deployed for several weeks, including multiple 

development and testing cycles. Below, we discuss lessons learned 

by observing interactions with the robot over a period of two weeks. 

During the first week, it employed the heuristic engagement model 

described above. In the second week a machine-learned model was 

used to infer engagement actions. In total, the robot initiated 565 

interactions. We eliminated one interaction that was terminated due 

to a fatal error, and 14 interactions with one of the authors. In 

addition, we excluded from the second week an atypical sequence 

of 51 engagements with an employee’s small child whose height, 

small face, and location at the edge of the table frequently led to 

incorrect engagement decisions being made in quick succession.  

5. DISCUSSION 
The open-world deployment made salient several interesting 

challenges. The robot frequently has to grapple with multiparty 

situations. An analysis of interactions from the second week shows 

that groups of two or more (up to six) people were detected in 57% 

of interactions. The presence of multiple people leads sometimes to 

parallel, side conversations, and a divided focus of attention, where 

people attend to and communicate with others before, during, and 

after their engagement with the system. This leads to important 

challenges in correctly managing engagement. It also increases the 

challenges of accurate turn taking and speech recognition, affecting 

the system’s performance. For example, natural breaks in a 

conversation with the robot to speak to others about the robot (of a 

nature that might be assumed to be easily detected in a social 

engagement where all actors are people) can be confusing to the 

robot and lead to inappropriate actions.  Also, people sometimes 

ask the robot about topics outside its expertise on employees, 

locations, and directions, highlighting the need for the graceful 

handling of out-of-domain requests. Visitors also may react to the 

novelty of the system and its engaging and intelligent appearance 

with curiosity and tests of its abilities, as well as humorous 

utterances. We see the need for distinguishing between genuine 

requests for directions versus interactions driven by curiosity and 

playfulness, for developing more social awareness, and engaging in 

friendly chit-chat. Below, we discuss some of these observations in 

more detail, and highlight directions for future work. 

5.1 Engagement  
During the first week, the robot used the heuristic engagement 

model we described in subsection 3.2.3, with minor tuning to the 

camera properties and to the specific location of the robot. A back-

off rule was used in situations where the face tracker lost an already 

engaged actor: the actor was temporarily persisted, but the 

engagement action probability was decreased over time, at a 

constant rate, from the last known value toward zero. 

During this first week, 18% of the 249 engagements were 

incorrectly started by the robot. Most of the initiation errors 

occurred because the heuristic overestimated the probability of 

engagement when people passed by on a close trajectory to the 

robot. In addition, 8% of the 203 correctly initiated engagements 

were incorrectly terminated by the robot prematurely. These were 

based in speech recognition errors (the system misunderstood that 

the user wanted to terminate the interaction when in fact they did 

not), face tracking problems, and incorrect predictions by the 

engagement action heuristic.  

Previous work [14, 26] has shown that additional features about the 

visual focus of attention and the temporal dynamics of location and 

attention are important in estimating engagement actions and 

intentions. In an effort to improve performance, we constructed a 

predictive model via supervised learning to predict at every frame 

whether a given actor is in an f-formation with the robot. Labels 

were acquired by manual annotation of three days of data, collected 

during the first week (2358 actor traces, about 537K frames) with 

the help of a professional tagger who was contracted to watch 

logged videos and use a multimodal annotation tool that we 

developed. For learning, we used features describing the location 

and size of the actor’s face and the face-frontal indicator from the 

tracker. To model temporal dynamics, we constructed temporal 

features over these streams, including measures of slope, mean, 

standard deviation over windows of 0.25, 0.5, 1, 2, 4, and 8 

seconds. Additional features, such as the total number of actors in 

the frame and the time since the actor was first observed were 

included. A logistic regression model was trained to predict the 

existence of an f-formation. In a batch evaluation, it obtained a 

frame-based classification error rate of 4.9% (in a 5-fold cross-

validation), a significant lift over the majority baseline of 22.2%.  

During the second week of the observational study, we used the 

trained model. The model backed-off to the original heuristic when 

features were missing e.g., on the first tick some derived features 

like slope, standard deviation, etc. are not available, and used the 

same lost faces back-off method described earlier. With the new 

model, 6% of the 250 interactions were incorrectly initiated. This 

represents a sizable reduction from the first week. However, we 

saw an increase in the number of incorrect (early) terminations of 

engagement to 22%. We note that the incorrect initiations of 

engagement observed during the first week generally did not appear 

to be costly: the robot says “Hi!” to people passing close-by. In 

contrast, the incorrect, abrupt disengagements observed in the 

second week with the use of the data-driven model appeared to be 

significantly more costly. In these cases, the robot assumed that the 

participant was disengaging, interrupted itself, and terminated the 

interaction right away, sometimes much to the surprise of the 

participant. These disengagements happened as the engagement 

model predicted with confidence greater than 0.8 that an actor had 

left the f-formation with the robot. We found that this often 

occurred as participants turned temporarily towards other engaged 

participants or bystanders, or performed quick body or head 

motions, such as when laughing heartily or shifting positions during 

the interaction. In fact, the rate of incorrect disengagements was 

twice as large when two or more people were present, compared to 

when only one person was present: 28% versus 14%. 

The data analysis we present focuses on inspecting interactions 

initiated by the robot. As such, we do not identify potential missed 

opportunities for engagement, or finer-grain issues related to the 

timing of engagement decisions, i.e., how early or late these 

decisions are made, as people approach or depart from the system. 

Nevertheless, a closer look at the errors identified in this analysis 

brings to the fore a number of insights, highlighting the limitations 
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of our current inference and decision making mechanisms. We 

discuss these below.  

5.1.1 Engagement inferences 
Better visual tracking. A number of incorrect disengagements 

were related to errors in the face tracker. We found that fast 

motions, including the turning of body and head by participants, 

where their faces did not remain in a frontal pose sometimes led to 

a loss of tracking of faces, compounding the challenges of inferring 

engagement. We expect that improvements in the lower-level 

tracking infrastructure will lead to further reductions in engagement 

and interaction errors.  

Beyond proximity and attention. Often, the estimated probability 

of f-formation dropped sharply when an actor simply turned their 

head and focus of attention towards other bystanders, or to look in 

the direction the robot is pointing. While loss of attention and head 

motion can indicate a loss of f-formation, the data highlights the 

need to take more context into account when making inferences 

about engagement. Engagement is really not just about the actor, 

and proxemics and attention, but also about the interaction between 

the actor, robot and others. First, we must include the robot in the 

equation: features that characterize the robot’s state, e.g. is the robot 

pointing somewhere, could provide additional relevant context for 

engagement inferences. Second, including additional features about 

the state of the conversation would be informative. For example, 

more robust inferences might take into consideration whether the 

robot is talking, waiting for the participant, giving directions, or 

asking a question. Finally, the wider context, including the presence 

of other bystanders and their behaviors, could be taken into 

account. We observed nuanced differences in behaviors with 

groups of different sizes, and depending on whether or not 

bystanders were part of the same group as the engaged participants. 

We believe models that reason jointly about all actors present, their 

group relationships, and engagements hold promise for further 

gains in the accuracy of inferences. Finally, additional sensory data 

(e.g. skeletal tracking) and more sophisticated base-level classifiers 

may lead to further improvements.  

Engagement intentions versus engagement actions. In some of 

the incorrect disengagements participants turned and broke the f-

formation, but did so temporarily, only to turn back moments later. 

This indicates that equating engagement intentions with actions, or 

with being in an f-formation, as our current implementation did, is 

problematic, especially in multiparty settings. Actors might briefly 

break an f-formation but still have an intention to maintain 

engagement. A better approach might be to train machine learning 

models that directly predict intentions, and take into account 

broader contextual factors, such as the presence of others, whether 

side conversations are going on, the history and rate of connection 

events [27] between the participant and the robot. 

5.1.2 Engagement decisions 
While better inferences may lead to better decisions, we believe an 

even more important limitation highlighted by the data has its roots 

in the framing of the decision making of the current system. Shifts 

in the decision making approach, and in the design of the action 

space could address the observed problems with engagement, as 

well as enable new scenarios. 

Decision making. The robot used a myopic approach, where it 

made decisions to engage or disengage by comparing the 

probability of the user’s estimated intention at every frame, against 

a preset 0.8 threshold. We have seen that this creates significant 

problems, especially in conjunction with the intention-same-as-

action assumption. To a degree, these poor decisions are also a 

result of the choice of threshold, which did not reflect well the high 

cost of a decision to incorrectly terminate an engagement, as 

opposed to incorrectly continuing and reassessing at the next frame.  

The disengagement problem reflects a wait-versus-act tradeoff, 

where the robot must balance the costs of inappropriately 

disengaging against the costs of continuing the interaction while 

participants are leaving. Less myopic approaches that reason about 

how the belief over the engagement intention might evolve in the 

future, and about different costs of incorrectly disengaging or 

incorrectly maintaining at different points in the interaction may 

lead to better outcomes. In reasoning about the future, the robot 

may attempt to distinguish between temporary disengagements, in 

which case it could suspend the conversation momentarily, and 

permanent ones, in which case the robot could terminate the 

engagement and bid goodbye.  

Engagement initiation. We have seen that using a machine learned 

model that predicts whether actors are in an f-formation helps to 

eliminate some of the incorrect initiations of engagement. The 

robot lets the user initiate the engagement and responds to the 

initiation. Another situation however that is interesting to consider 

is creating robot-initiated engagements at a distance. For instance, 

if the robot detects that a person is lost, e.g. they are hesitant in their 

motion, glance back-and-forth, look at their smartphones, etc., the 

robot could proactively initiate an engagement at a distance: 

“Excuse me, can I help you find something?” Another scenario we 

would like to support is that of a fly-by user-initiated engagement, 

where a person in a hurry quickly quips “3042?” as they go by, and 

the robot responds: “Second room on the left!,” understanding the 

situation of a user needing help in stream with getting to a location. 

This could be accomplished by broadening the scope of recognized 

engagement actions to also include user utterances, even if spoken 

from a distance and while the actor is in motion. 

The data also highlights the importance of leveraging short- and 

long-term memories of interactions in determining how to start 

each conversation. Currently, the robot begins each conversation 

anew, as if it is seeing the participant for the first time. However, 

sometimes interactions happen in bursts, where one person 

disengages, and then he or she, or someone else in their group, 

initiates another engagement. In these cases, contextualizing the 

engagement in an appropriate manner, e.g. “Oh, is there something 

else?” if directions were previously given, or “Oh, I thought you 

were leaving” if no directions were given, would help create more 

natural interactions and mitigate prior incorrect disengagements. 

Managing groups. For the majority of interactions, groups of 

people were present. We believe more sophisticated policies can be 

designed that consider when bystanders enter or leave an existing 

interaction, and generally, how the robot manages the group of 

actors and the f-formation. For instance, the robot may act to 

identify groups and bystanders, e.g. “Are you all together?”, “Are 

they with you?,” or to encourage bystanders to approach or to 

indicate that they are not part of the group: “You guys can come 

closer if you want,” or to stand back: “Okay, I let me work with two 

people at a time here, can you guys step back for a second?”. 

Controlling the number of participants in an engagement may help 

improve performance, as speech recognition accuracy is affected 

by distance, overlapping speech, and background noise. 

Termination. The data also highlights the value of custom-

tailoring the system’s output during disengagement actions to the 

situational context. For instance, in some cases, as the robot began 

giving directions, the human actor started walking in the direction 

indicated. In this case, the immediate (mid-word) ending of the 

robot’s spoken directions, followed by “Well, I’ll catch you later 
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then” is inopportune. The system should continue for a bit longer, 

or encourage the user to stay: “Wait, wait, I’m not done.” We plan 

to investigate further improvements in the speech and gesture 

generation components to allow for re-planning, and continuously 

taking the scene context into account.  

5.2 Task performance 
Next, we discuss some observations regarding the overall task 

performance and the contents of the interactions. 

5.2.1 In-domain interactions 
We inspected the 235 interactions correctly started by the robot 

during the second week and determined when users asked for 

directions in the known robot domain, and whether the robot 

provided the corresponding directions by the end of the interaction. 

In 59% of them, one or more questions for directions in the building 

were asked. The total number of questions asked was 154, and for 

83% of these questions, the correct answer was given by the end of 

the interaction. We are encouraged by the high completion rate. At 

the same time, we observe that speech recognition problems and 

misunderstandings are still quite frequent, and sometimes users 

have to repeat the question multiple times to be understood. In 

future work, we plan to investigate challenges with speech 

recognition in this open-world setting.  

Given the novelty of the robot, especially following a recent 

deployment, numerous interactions are driven by curiosity rather 

than a genuine need for directions. We estimated whether the in-

domain questions stemmed from a real need for directions or 

whether people were simply testing the robot. Discrimination of 

these intentions is sometimes difficult, and we aimed for a 

conservative estimate of need-based interactions: if there was an 

indication that people might be testing, e.g. repeated interactions, 

people not walking after the directions were provided, asking for 

well-known locations like cafeteria or elevators, etc., we marked 

the interaction as a test. According to this analysis, 23% of the 138 

interactions with in-domain questions asked (14% of the 235 

correctly initiated interactions) were genuine, need-based 

engagements. While the presence of a novel robot attracts attention 

and curiosity-based interactions, it is also serving a real need. 

Furthermore, the robot correctly gave directions in 100% of these 

need based-interactions. 

5.2.2 Out-of-domain utterances 
About a quarter of the interactions (22%) contained at least one out-

of-domain query or assertion addressed to the robot. An important 

category of our-of-domain utterances includes social commentary 

or questions and attempts at chit-chat, e.g. “What’s your name?” 

“You’re cute”, “What is your favorite food in the cafeteria?” With 

the current grammar-based recognition approach, such utterances 

at best lead to non-understandings, and a “Pardon me?” from the 

robot. At worst, out-of-domain utterances are misunderstood as in-

domain directions queries. The data highlights the need to develop 

the robot’s capabilities in this social dimension. We anticipate that 

as the robot becomes more socially competent, people will also 

engage it in ever more sophisticated ways.  

Other frequent out-of-domain utterances include requests that are 

on-topic per people’s understanding of the system’s competencies. 

These requests include queries about people not in our building, 

about other buildings on campus, or activity-based location queries 

such as “Where can I eat?” In future work, we plan to investigate 

methods for detecting out-of-scope queries, classify them by topic, 

and handle them in a more appropriate manner.  

5.3 Directions giving 
We have not yet conducted a qualitative or quantitative assessment 

of the effectiveness of the robot’s directions. However, we made 

several observations about challenges that came to the fore over the 

development and testing of the Directions Robot, highlighting 

opportunities for future work. 

5.3.1 More effective directions 
We faced the challenge of communicating long paths, resulting in 

directions that are difficult for the listener to understand and retain. 

Taking into account not only the Euclidean distance, but also the 

cognitive complexity of generated directions when scoring paths, 

e.g. number of turns, etc. could help improve the comprehensibility 

and memorability of directions. For long, complicated directions, 

the robot might change its strategy and simply point to the location 

of the destination “as the crow flies,” and allow the user to use the 

persistent visualization of the pointed-out location to navigate on 

their own. So far, we have made limited use of auxiliary map 

information, mainly to identify the ordinal location of a destination 

room on a hallway. However, landmarks could also serve as useful 

discriminators or navigational waypoints, e.g. “turn left at the 

corridor just after the copy room”. Other features such as 

accessibility of alternate routes could also be used to better tailor 

directions to the users’ needs. 

We also seek to leverage the dialog management capabilities of the 

system to chunk [6] directions and make the process more 

interactive. For example, the system may begin by first providing 

summary directions, then establish which additional details (if any) 

to provide to the user. In this back-and-forth, the robot must 

continuously assess levels of grounding, and tailor its instructions 

appropriately. It might elicit and listen for backchannels, head nods, 

or other confirmatory signals at natural points where users would 

communicate comprehension. The analyses could be further 

informed by inferences about user state and intentions, e.g. is the 

user in a hurry or confused? 

5.3.2 Gestures and natural language 
The deictic gestures used to indicate the initial trajectory or the 

general direction of the destination provide strong value. Future 

work could explore combining these with additional gestures to 

convey multiple navigation steps in a single composite gesture. So 

far, we adopted a simple approach that maps path segments directly 

to sentence parts, with random selection of word and phrase 

alternates where possible to provide some variability. The majority 

of the gestures used were pre-authored on fixed timelines. 

We plan also to investigate algorithms for runtime generation of 

speech and gesture that also take into account system state and 

information from the scene analysis. Variables such as the actors’ 

location in the scene, their focus of attention, levels of grounding, 

the previous gestures performed, etc., may all be used to influence 

the timing, surface realization, and parameters of the speech and 

gesture. For example, the system can look in the direction that it is 

gesturing about, but recurrently bring its attention back to the user 

with eye contact and a brief pause to check for understanding—or 

to appear to do that while giving the user a chance to comprehend. 

The ultimate goal is to generate coordinated outputs that are 

congruent with the situation at hand.  

6. CONCLUSION 
We have described Directions Robot, a platform for investigating 

the challenges of open-world human-robot interaction. An initial 

deployment in the wild has highlighted several challenges when the 

system interacts in dynamic, multiparty environments, where 

people come and go, and interleave their interactions with the 
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system and with each other. These include challenges with creating, 

initiating, and terminating conversational engagements in an 

appropriate manner, with out-of-domain utterances, social 

interaction, and directions giving.  

The lessons and insights gained from this initial deployment help 

shape future research. We plan to investigate decision-theoretic 

approaches to managing wait-versus-act tradeoffs related to 

engagement decisions, in conjunction with expanded inferences 

that take into account groups, relationships, and the broader social 

context of the interactions. Future work on engagement will also 

include the development and real-time control of a richer repertoire 

of actions, such as temporary suspensions and reprisals. Beyond 

managing engagement, we plan to explore the design of extended 

social awareness and competencies, as well as more effective 

directions via gesture and speech.  
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