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ABSTRACT
It is generally known that cooperation can be achieved in com-
plex real-world interactions that are not limited to direct interac-
tions only. In particular, cooperation can consider prior interac-
tions with other players, i.e., indirect reciprocity. Moreover, coali-
tion based mechanisms have shown to facilitate cooperation among
self-interested agents. Also, research on games over dynamic topolo-
gies has found empirical evidence showing that partner switching
leads to cooperative behavior. In this paper we present a new mech-
anism to improve cooperation among self-interested agents placed
in a complex network. Our mechanism is based on three main
pillars: indirect reciprocity, coalitions and rewiring. Thus agents
play against each other an indirect reciprocity game where they can
create coalitions to share information about agents’ reputation or
change their personal network (social contacts). Altogether, we ex-
plore the conditions to enhance cooperation in complex networks.
Finally, in our experiments we determine how, by using our mech-
anism, cooperation is improved in our reputation-based game, and
how topology highly influences cooperation in our scenario.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence-
Multiagent Systems

Keywords
donation game, indirect reciprocity, coalitions, rewiring

1. INTRODUCTION
Games are useful mathematical constructs to abstract and model

real-world problems involving strategic decision-making in a vari-
ety of contexts ranging from politics, economics, to biology among
others [2]. In particular, they can capture the intrinsic properties
of these problems through the specification of rules that constrain
strategies to certain behaviors (legal moves they can make as re-
sponses to stimulus, such as historical plays), goals for strategies
to meet (to win the game), and rewards under finite resources (pay-
offs) [6]. There are many settings with which games have been
proposed as models for study. For example, the prisoner’s dilemma
game embodies the dilemma of two interacting individuals (play-
ers) who are better off mutually cooperating than mutually defect-
ing, being vulnerable to exploitation by one who defects [4]. In
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multi-player games, there is an interesting situation known as the
Tragedy of the Commons. Such framework reflects the tragedy
of all players pursuing self-maximizing behaviors that lead to the
worst outcome for the community, rather than collectively cooper-
ating for a better result [11, 15].

It is generally known that cooperation can be achieved in com-
plex real-world interactions that are not limited to direct interac-
tions only [16]. In particular, cooperation can consider prior in-
teractions with other players, i.e., indirect reciprocity. In a highly
simplified example, the donation game is used to show how the
mechanism of indirect reciprocity operates using players’ reputa-
tion to promote cooperation [17]. Unlike the case of direct reci-
procity, whereby any altruistic act of helping to another player is
returned, in indirect reciprocity the altruistic act of helping others is
perceived by the community as helpful, providing good reputation,
and receiving help in return by other players. Indirect reciprocity
is also associated with interactions having short encounters (e.g.,
one-shot interactions) whereby the effects of direct reciprocity on
the interaction outcome are minimized.

Indirect reciprocity has been used by players that compare repu-
tation of potential recipients and cooperate only when the recipient
has the same or higher reputation than the donor’s strategy. It can
be shown that a population of such players can evolve cooperative
plays through discriminators that can distinguish players with high
reputation (those that have cooperated with other players in past in-
teractions) and cooperate only with such players [17]. Other studies
have applied the mechanism of indirect reciprocity in complex in-
teractions where cooperative plays are difficult to evolve. Chong
et al. [7] have shown that the mechanism of indirect reciprocity
through repeated interactions is less effective in promoting coop-
eration for interactions with higher number of alternative choices
and shorter encounter (e.g., lower number of rounds in a repeated
game). However, strategies can evolve to use reputation as a mech-
anism to estimate behaviors of future partners and to elicit cooper-
ation right from the start of interactions. Cooperation occurs when
strategies evolve to maintain high reputation scores.

On the one hand, the notion of coalitions has been studied by
the game theory and multi-agent community for decades. In fact,
coalition formation [21, 22] is one of the fundamental approaches
for establishing collaborations among self-interested agents. For
instance, coalition-based mechanisms as [3, 12, 20] confirm that
coalitions indeed facilitate cooperation among self-interested agents.
However, those works consider that there is a leader imposing the
behavior of the whole coalition, and that it gets taxes for it. Also,
in those approaches, the decision to join a coalition is based on the
benefits that the coalition provides to its members. Not only that,
but most approaches in coalitions formation consider that agents
within a coalition must cooperate and/or agree to act in a prede-
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fined way. However, coalitions may also be seen as flat groups
where agents join to share some information since they may get
benefits from it, even if part of such information is private. Not
only that, but in this case an agent may use the coalition reputation
as a group to decide whether to join or not, instead of its benefits.

On the other hand, research on games over dynamic topologies
has found empirical evidence showing that partner switching leads
to cooperative behavior. Along this line, Fu et al. [9] propose a
coevolutionary model of the prisoner’s dilemma that allows agents
to either adjust their strategies or switch their defective partners.
Thus, they show that partner switching may help to stabilize coop-
eration. Also in [8], Fu et al. focus on the effect of reputation on
an individual’s partner switching problem in a network, showing
that using their mechanism, cooperation can prevail. Although in a
different framework (the investigation of tag-based coordination),
Griffiths et al. [10] show that partner switching can help to increase
coordination resilience in the face of malicious behavior. How-
ever, previous work in partner switching considers that agents can
only interact with their direct neighbors only, while it may be the
case that, even having their social networks, an agent may interact
with any other agent from the population. Moreover, previous ap-
proaches consider only the individual reputation of the neighbors,
while using the group reputation may be also beneficial.

In this paper we present a mechanism to improve cooperation
among self-interested agents placed in a complex network, where
agents play the donation game with any other members of the popu-
lation. Our mechanism is based on three main pillars: indirect reci-
procity, coalitions and rewiring. Our coalition formation mecha-
nism differs from previous approaches since agents in a coalition do
not agree to control or behave in a certain way neither with agents
inside the coalition, nor with agents outside of it. Instead, coali-
tions are groups of agents that share information regarding reputa-
tion that might result beneficial for them. This is why we propose
to use a coalition reputation measurement to decide to which coali-
tion to join. Concerning the dynamics of agent behavior, and as
our agents are placed in a social network, they may imitate their
neighbors’ strategies, if they seem successful in terms of payoff.
Finally, to improve cooperation even further, we include a rewiring
mechanism that uses the reputation of the neighbors to change their
social links (i.e., rewire). In our experiments we determine that co-
operation is improved when we include our coalition and rewiring
mechanism. Moreover, we analyze how topology influences coop-
eration in this scenario.

The rest of the paper is organized as follows. First, in Sect. 2
we consider the basic donation game model that we consider in our
framework. Then, in Sect. 3 we extend such model using coali-
tions and partner switching (rewiring). In Sect. 4 we describe the
simulation results obtained from our framework. Finally, Sect. 5
presents the conclusions, and points out some promising directions
for future work.

2. DONATION GAME RULES
Our donation game is based in the classic donation game pub-

lished by Nowak and Sigmund [17] involving image scoring strate-
gies which are a measure of reputation. As described in their paper,
the game is composed of several rounds where N agents play the
donation game. In each round, a small set of m donor-recipient
pairs are chosen. Therefore, the chance that a given player meets
the same player again is negligibly small. Thus, direct reciprocity
cannot work here.

From each each pair of agents, one is selected as the donor, and
the other one as the recipient. Every agent i has a strategy repre-
sented by the integer k

i

2 [�5, 6] and an image score (reputation)

given s
i

2 [�5, 5] that depends on its behavior in the past. The
donor i has to decide, depending on its strategy (k

i

), and its the op-
ponent j score (s

j

), if it cooperates (donates) with the other agent.
If k

i

 s
j

, then agent i donates a benefit b to agent j at a cost c
to itself, and increases its image score (s

i

) by 1. Otherwise (i.e.,
k
i

> s
j

), no donation or cost are involved (both obtain zero pay-
off) but the image score of the donor (s

i

) is decremented by 1. Note
that the image score of the recipient does not change in any case.

Hence, strategies with k  0 are termed cooperative, because in-
dividuals with these strategies cooperate with individuals that have
not had an interaction. Then, we can observe two extreme game-
playing strategies, i.e., the strategy with k

i

= �5 represents co-
operation regardless other agent’s score, while the strategy k

i

= 6
represents defection in all cases. Other strategies represent various
degree of discriminating play, e.g., k

i

2 [�4, 0] are discriminators
that lean towards cooperation [17].

In our case, after finishing a round, agents imitate the best strate-
gies in their neighborhood, while in [17] agents reproduce them-
selves, to produce a new population, depending on their obtained
payoff. Note that that in both cases, depending on the value of m
and the random selection, it may happen that there are differences
in the amount of times that different agents have played the dona-
tion game in a round. However, what is relevant is the evolution of
the whole game, and not what happens to a particular agent.

3. MODEL
We consider a population of N agents where any agent can in-

teract with any other agent (i.e., panmictic interaction) to play the
donation game (see Sect. 2). However, agents are connected in a
complex network, having each of them a set of peers that consti-
tute their neighborhood. We want to model real world interactions
over social networks, so agents’ neighbors are their close related
contacts from which agents obtain information. However, in real
world, apart from having a set of direct contacts, people usually
belong to several clubs, associations, organizations, or groups in
general. We model this second set of contacts with the notion of
coalitions, as a way that agents may share some information about
the environment where they play. Thus if an agent agrees to become
a member of a coalition, it also agrees to share information with
the rest of the coalition members. This information sharing helps
agents while interacting with the whole population in the panmictic
game.

In Algorithm 1 we present the basic game behavior, that will be
explained detail in the following sections. As a short description,
we can see how pairs of agents (line 3) play the donation game
during a round (set of encounters), and that any agent has to decide:

• Its action (to donate or not) depending on its own strategy,
and the other’s image score (line 4). This influences its pay-
off and image score (line 5).

• To keep independent or join a coalition, and if joining, to
which one (line 8).

• Deciding its new strategy for the next round (line 9).

• Changing their neighbors, depending on the image score of
the neighborhood (line 10).

• Finally, the payoff and image score are reset for the next
round (line 11).
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Algorithm 1 Game Behavior

1: function PlayRound(m  N )
2: for m times do
3: (a

i

, a
j

) = FindP layers(i, j 2 [1, N ]; i 6= j)
4: a

i

.DecideAction(s
i

, k
j

)
5: a

i

.ChangePayoffScore()
6: end for
7: for all a

i

do
8: a

i

.ChangeCoalition()
9: a

i

.ChangeStrategy()
10: a

i

.Neighborhood = Rewire()
11: a

i

.ResetPayoffScore()
12: end for
13: end function

3.1 Reputation Sharing
In order to decide their strategy, and to maximize their payoff,

agents need to know their opponents’ image score. This is a chal-
lenging issue, since each of the agents can play with any other in
the population. In Nowak’s model [17], they use two approaches
to solve this problem. First, they consider that image score is pub-
lic, and that all agents know the image score of any other agent in
the population. Second, the authors consider that there exist a small
percentage of agents (neighbors) that can observe a particular inter-
action; and only those agents, plus the recipient, update the other
agent’s image score. The first scenario is an idealistic one, while in
the second scenario, each agent has a different perception about the
image score of the others.

In this paper, we model reputation sharing in a different manner.
Each agent has a set of neighbors, and this neighborhood repre-
sents the direct contacts (friends or mates) that an individual has.
We assume that each agent knows the image score of its neighbors.
At the same time, we assume that agents may belong to coalitions,
that models groups of interest, or organizations, that shares reputa-
tion information among its members. Therefore it models a global
exchange of information biased by the different coalitions.

Thus, differing to [17] and as in [8], in our model agents are con-
nected to others in a complex network, where each of the agents
has a neighborhood. However, as in [17] and differing to [8], each
agent may interact with any other agent of the population. We do
not consider agents playing only in their neighborhood, since then
agents could have a direct reputation from its neighbors. There-
fore, as each player may interact with any other in the population,
direct reciprocity does not work, since the chances of one player
interacting again with the same player are negligibly small [17].

3.2 Action Selection
In previous sections we have presented the donation game and

how reputation information flows among the agents. Now, in Algo-
rithm 2 we proceed to explain how a donor acts in our model when
it encounters with a recipient (line 4, Algorithm 1).

Once a random pair of agents a
i

and a
j

has been randomly se-
lected to interact, and their roles are defined, the donor (a

i

) checks
if the recipient (a

j

) belongs either to its neighbors or to its coali-
tion mates (line 2, 2). If it belongs to any of those groups, then we
assume that the donor knows the score of the recipient. In the con-
trary case, as it has no information, it assumes that the image score
of a

j

is 0 (following [17]). After this, the donor has to decide, de-
pending on its strategy (k

i

), if it donates to the recipient, providing
a benefit b with a cost c to itself (line 7). This action increases its
image score (line 8). On the contrary, if a

i

does not donate, both

individuals receive zero pay-off, but the image score of the donor
is decreased by one (lines 10 and 11).

Algorithm 2 Behavior of a donor a
i

1: function ChangePayoffScore(a
i

, a
j

)
2: if a

i

.InCoaOrNeighbor(a
j

) then
3: s

ij

= a
j

.GetScore()
4: else
5: s

ij

= 0

6: if k
i

 s
ij

then
7: a

i

.Donate(a
j

, b, c)
8: a

i

.ChangeScore(+1)
9: else

10: a
i

.Donate(a
j

, 0, 0)
11: a

i

.ChangeScore(�1)

12: end function

3.3 Coalition Formation
In our approach, we allow agents to form coalitions in order to

share reputation information and therefore to improve cooperation.
We consider that when an agent joins a coalition, it agrees to share
its image score with the rest of the coalition members, but also
obtains the image score of the other members of that coalition. We
impose that any agent can only belong to a unique coalition at a
time, since we consider that coalitions somehow compete in the
game. Moreover, it is a simplified assumption in the model to avoid
excessive complexity. Finally, agents belonging to a coalition are
not necessary neighbors.

Each coalition has an image score that depends on the average
image score of its members. Let Coa

j

represent the coalition j
with coalition member agents indexed by i. The size of the coali-
tion |Coa

j

| gives the number of agents in the coalition. The coali-
tion score, CS

j

, is specified as follows:

CS
j

= ln|Coa
j

| ·
P

i2Coaj
s
i

|Coa
j

| (1)

where s
i

is the image score of member agent i. We include a scal-
ing factor ln|Coa

j

| to model that larger-sized coalitions have more
influence to attract agents to join those coalitions, as the amount
of information they may share is bigger. At the same time, if a
cooperative agent joins a bigger coalition it has more chances to
be identified as a cooperator (if behaving as a donor) in successive
encounters, and obtaining more donations in average than if it was
isolated or in a smaller coalition. Thus, the benefits for the agent are
double: a higher probability to obtain donations, and better options
to rewire.

In Algorithm 3 we present the rules for coalition dynamics, which
we adapt from other approach that considers direct interactions
[12]. The decision to join a coalition is based on simple rules, as in
[3], which precludes modeling sophisticated agents that can learn
about the rules to form coalitions.

Firstly, if an agent that belongs to a coalition is isolated from its
coalition mates, i.e., none of its neighbors belongs to its coalition,
then it becomes independent (line 4). We do this since we consider
that each agent in a coalition must have at least one connection to
another coalition member to transmit/receive information. Other-
wise, it checks the payoff of its neighbors to see if its payoff P

i

has been the worst in its neighborhood (line 5). If this is the case, it
searches among its neighbors the agent or the coalition with the best
reputation (s

j

and CS
j

, lines 6 and 7) to join them depending on
the value of CS

j

with respect to s
j

(lines 9 and 11, respectively).
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Algorithm 3 Rules for coalition formation and independence

1: function ChangeCoalition
2: Coa

i

= GetCoalition(a
i

)
3: if ((Coa

i

6= ;) & a
i

.Isolated(Neighbors, Coa
i

)) then
4: a

i

.GetIndependence()
5: else if WorstPayoff(Neighbors, P

i

) then
6: (s

j

, a
j

) = BestIndScore(IndepNeighbors)
7: (CS

j

, Coa
j

) = BestCoaScore(CoaNeighbors)
8: if CS

j

� s
j

then
9: JoinCoalition(Coa

j

)
10: else
11: CreateCoalition(a

i

, a
j

)

12: end function

3.4 Changing the Strategy
At the beginning of the game, each agent is randomly assigned a

strategy. However, depending on the payoffs it is obtaining, it may
change it in order to increase its benefits. When agents are neigh-
bors (directly connected in the network), we consider that they
know each other’s image score, as well as their payoff and their
strategy in the previous game. Thus we assume that agents have
access to local information about reputation, payoff and strategies
from their neighbors, since they can directly observe them. With
that information, an agent changes its strategy to copy the one with
the highest payoff in its neighborhood, if higher than its own pay-
off.

3.5 Network Topologies
We place agents in a complex network since they provide a real-

istic model of the topological features found in many nature, social
and technological networks [19, 18, 23] (e.g., computer and so-
cial networks). For our experiments, we focus on small-world and
scale-free network topologies, since they model the most common
networks appearing in our human societies and in nature.

• Small-world networks: They model real world complex sys-
tems, as neural networks, food webs, scientific collabora-
tion networks, and computer networks [13]. These networks
present the small-world phenomenon, in which nodes have
small neighborhoods, but yet it is possible to reach any other
node in a small number of hops. This type of networks
are highly-clustered (i.e., have a high clustering coefficient).
Formally, we note them as W k;p

V

, where V is the number
of nodes, k the average connectivity, i.e., the average size
of the node’s neighborhood, and p the rewiring probability.
We used the Watts & Strogatz model [23] to generate these
networks.

• Scale-free networks: They model real-world networks, as the
world-wide web [1], the Internet, and some biological net-
works [14]. These networks are characterized by having a
few nodes acting as highly-connected hubs, while the rest of
them have a low connectivity degree. Scale-free networks are
low-clustered networks. Formally we denote them as Sk;��

V

,
where V is the number of nodes, and its degree distribution
is given by P (k) ⇠ k�� , i.e., the probability P (k) that a
node in the network connects with k other nodes is roughly
proportional to k�� . We used the Barabasi-Albert algorithm
[19] to generate these networks.

3.6 Rewiring
In most real-world network interactions, relationships are not

static, i.e., agents can change the individuals that they are linked

to. We denote this change in the network topology as rewiring. By
using rewiring agents can modify their neighborhood if they are not
satisfied with their neighbors.

As a difference with [8], where one agent is randomly chosen
to change its neighbors, in our model, we specify a neighborhood
measure of satisfaction to decide if an agent wishes to change it or
not. In Eq. 2 we define the probability of rewiring for an agent i,
which depends on the aggregate image score of all the neighbors,
i.e., it depends on the average neighborhood reputation.

prew
i

=
(10�

PF
j=1(sj+5)

F

)

10
(2)

where s
j

is the image score of each of the neighbors of a
i

and F
is the number of neighbors (friends) that the agent a

i

has. Observe
that s

j

2 [�5, 5], thus the maximum difference between scores
is 10. Once agent a

i

computes this probability, then it samples
a Bernoulli distribution to decide if rewiring or not (Algorithm 1,
line 10). If agent a

i

decides to rewire, then it leaves its neighbor
with the lowest image score, and joins the one with the highest
one in its coalition. The reason for this is that, as we stated above,
we consider that coalitions are communities that share reputation
information, so agents can benefit from it to change their neighbors.
We point out that this rewiring procedure only happens if the agent
with the lowest image score does not become isolated, i.e., we do
not allow disconnected nodes in our network.

4. EXPERIMENTS
In this section, we present the performance of our mechanism,

using the final strategy selected by the agents, after the simulation
has converged, as a measure of the cooperation level achieved by
the population. Firstly, in Sect. 4.1 we present the empirical setting
for our experiments. Secondly, in Sect. 4.2 we analyze how our
mechanism of coalitions and rewiring allows for the emergence of
cooperation. Finally, in Sect. 4.3, we analyze the differences on
results depending on the initial topology.

4.1 Experimental Settings
We have performed a in-depth experimental study. However, due

to space constraints, we only show the most relevant ones. Thus in
these experiments we perform simulations in which the number of
agents N is set to 400. Each run is composed of a set of iterations
in which agents repeatedly play the donation game. The number of
iterations varies in each particular run depending on the simulation
convergence and stability. We consider convergence when there
are no changes in the strategy of the agents during ten consecutive
iterations. Finally, the parameters used for building the networks
are W 5;0.1

400 and S5;�2
400 .

4.2 Emergence of Cooperation
In this section we analyze the effects in cooperation using coali-

tions and the rewiring mechanism in the networked donation game.
Firstly, in Fig. 1 we see the results of a typical simulation when

we do not use coalitions nor rewiring. In the histogram we rep-
resent the percentage of agents with a certain strategy when the
simulation has converged. We see that all the agents end up play-
ing k � 0. This means that agents lean toward playing defective
(remember that k = 6 means that an agent defects independently
to the other agent image score).

Secondly, we allow agents to use only rewiring to change their
neighborhood. We have observed that both for scale-free and small-
world networks, the results are similar to the case where we do not
use coalitions nor rewiring, since k > 0 for all agents (we do not
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Figure 1: Percentage of agents’ strategies with no coalitions, no
rewiring, in a scale-free network.

depict it since it is similar to Fig. 1). This differs to the results
obtained by Fu et al. [8], where they successfully use rewiring to
improve cooperation among agents. However, here we propose a
different environment, where even if agents are connected to others,
they can play with any agent in the population. In fact, as they have
no information about other agents’ reputation, since there are no
coalitions for information sharing, the rewiring is done randomly,
and it might even worsen their neighborhood.

Thirdly, we endow agents only with our coalition formation mech-
anism, but without allowing them to rewire. We find that in scale-
free networks, allowing them to join coalitions is enough to achieve
cooperation. In Fig. 2 we present the final percentage of agents per
strategy when convergence is reached, as well as the evolution of
strategies in time. We see that in this case all agents converge to
strategy k = �3. Moreover, we have observed that in different
simulations the results vary from one strategy to other, but being
k  0 in all cases. However, when using small-world networks,
we have observed that agents converge to a single strategy, which
is not cooperative (k > 0). In Fig. 3a we show an example where
all agents converge to k = 2. Moreover, in Fig. 3b we see the
evolution of strategies on time, where to ease the display, we only
name the two strategies that survive longer. We see that the strate-
gies k = �3 and k = 2 compete to dominate the divided popu-
lation. However, in the end the non-cooperative strategy prevails.
This pattern is repeated in different simulations, but with different
strategies arising.

Now, we study if cooperation is improved when we add rewiring
to the coalition formation mechanism. In Fig. 4 we present the per-
centage of strategies after one simulation when using our mecha-
nism, both starting with an initial scale-free and small-world topol-
ogy (Fig. 4a and Fig. 4b, respectively). We see that in both cases,
all agents end up a using a cooperative strategy (k  0). More-
over, not only agents converge to a cooperative strategy, but we
have observed that in every simulation, all agents converge to the
same cooperative strategy (but different in sucessive runs).

In order to see that our combined mechanism allows only coop-
erative strategies to arise (k  0), in Fig. 5 we present the results
for ten different simulations. We represent the percentage simula-
tions in which all agents end with each strategy, keeping in mind
that in each simulation, all agents converge to the same strategy.
We only present it for a scale-free initial topology, since results for
small-world are similar. We see that in 30% of the simulations, all
agents converge to k = �4, while other three cooperative strate-
gies (k = �5,�3,�2) appear in 20% of the simulations each.
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(a) Percentage of agents’ strategies. All agents end
with k = �3.
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(b) Evolution of strategies on time. All agents end
with k = �3.

Figure 2: Strategies in scale-free without rewiring. Convergence to
cooperative strategy k=-3.

Only 10% of agents use k = 0, which is the most discriminating
among cooperative strategies.

Thus, we found that by using coalitions and rewiring coopera-
tion emerges. This happens mainly by two reasons: firstly, because
one single super coalition is formed (see Fig. 6, where we see the
evolution of the number of coalitions along a simulation). As an
agent has information not only about its neighbors, but also about
its coalition mates, this results in agents having more information
about the image score of the whole population as the simulation
evolves. Secondly, as an agent can change its neighborhood, it can
discover and join other agents with higher image score. This allows
an agent to donate with higher probability, also increasing its image
score, and therefore its chances for obtaining a donation next time
it becomes a recipient.

We have further investigated the effects of adding rewiring to
the coalition formation mechanism. For this, we used Pajek [5],
which is a tool for analysis and visualization of large networks.
We have observed that in scale-free networks, hubs (agents with
higher number of connections) have a strong influence over the rest
of agents, and also more information than them. This eases the
process of convergence to one single coalition, where all the agents
use the same cooperative strategy. This happens even when we only
use our coalition formation mechanism. But, when we introduce
rewiring the process of convergence is even faster. This happens
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(a) Percentage of agents’ strategies.
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(b) Evolution of strategies along time.

Figure 3: Strategies in small-world, with coalitions but without
rewiring. All agents end with k = 2.

because, as we allow agents to choose their neighbors, hubs are the
most successful ones, making their own influence even higher, and
also the influence of the coalition they belong to.

In the case of small-world networks, all agents have more or less
the same number of connections, meaning that all agents have a
similar level of information at the beginning. However, when we
add rewiring, agents start to create influence groups composed by
some agents which have higher connections than the others. In
Fig. 7 we depict an example of a final configuration when we start
with a small-world network topology (here we used only 25 agents
to ease its display). We see that agents self-reorganize in a struc-
ture, where some of them have much more links than the others.
Thus, as in the scale-free case, bigger and more influential coali-
tions (regarding their image score and size) are formed.

Finally, we compare our results with the ones obtained in [17],
which is the basis for our work. The comparison is not easy as
that paper presents a panmictic scenario, and genetics are used to
evolve the most popular strategies in the population. In the scenario
with public image score, the obtained strategy was k = 0. But
in a second scenario where agents have a limited view of others’
image score, agents tend to be defective (k > 0). In our case, our
coalitions and rewiring mechanism allows to achieve cooperation
even in this second scenario with limited information.

4.3 Topology Influence
In previous section, we have presented how regardless of the ini-
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(a) Percentage of agents’ strategies in a simulation
with a scale-free topology. All agents end with
k = �3.
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(b) Percentage of agents’ strategies in a simulation
with a small-world topology. All agents end with
k = �4.

Figure 4: Strategies obtained after two simulations with scale-free
and small-world initial topologies, using coalitions and rewiring.
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Figure 5: Average percentage of strategies after ten simulations.

tial network configuration, all agents converge to the same cooper-
ative strategy, with k  0 (Fig. 4 and Fig. 5), and one single super
coalition emerges (Fig. 6). However, we have noticed differences
between scale-free and small-world about how they reach conver-
gence. Salazar et al. [20] also addressed this issue, although in a
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(a) Scale-free.
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(b) Small-world.

Figure 6: Evolution of the number of coalitions along the iterations.

Figure 7: Final topology, after starting with a small-world network
with 25 agents, using coalitions and rewiring.

different problem, and with a different focus. Now we investigate
the reasons for those differences in our scenario.

We have noticed that the time required for the convergence varies
depending on the topology. In Fig. 8 we see the evolution of strate-
gies along iterations. It is noticeable that to reach cooperative con-
vergence, starting with a scale-free topology the convergence is
much faster.
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(a) Scale-free.
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Figure 8: Evolution of agents’ strategy along the iterations.

On the one hand, the faster convergence with scale-free is due to
the strong influence that hub agents have over the rest of the popula-
tion. As a hub has a considerable higher number of neighbors than
the rest of the agents, it has more information to play initially (as
agents know the image score of their neighbors), which increases
its chances to get higher benefits. This puts them in an excellent
influence position, since as they are the ones with highest bene-
fits, other agents copy their strategy. Moreover, as there are several
agents with only one link to the hubs, they promptly join the hub to
form a coalition, thus less and bigger coalitions are formed faster.
Besides, as they belong to bigger coalitions, and have more neigh-
bors, those hubs are very popular to rewire to them. This causes that
they increase even more their individual and coalition influences.

On the other hand, in small-world networks each agent has a
similar number of neighbors, so all the agents have more or less the
same level of influence. Hence, this explains why multiple coali-
tions coexist longer (Fig. 6b). Therefore the path to form one single
coalition, and converge to the same strategy, is slower. However,
with the use of rewiring, agents with highest score start having
more neighbors than the others, which results in more influence
(see Fig. 7). Afterwards, more agents imitate them, and the coali-
tions they belong start to grow faster, allowing to finally reach a
single cooperative strategy.

5. CONCLUSIONS
In this paper, we have presented a new scenario where agents

are connected in a network, but where any agent may interact with
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any other in the population. Agents’ neighbors are their close re-
lated contacts from which agents obtain information, as strategy,
payoff and reputation. Thus the neighborhood of an agent mod-
els a friendly exchange of information. However, in real world,
apart from having a set of direct contacts, people usually belong
to several clubs, associations, organizations, or groups in general.
We model this second set of contacts with coalitions, as a way that
agents may share information about the environment where they
play. Contrary to most approaches, we do not consider coalitions
as a way for agents to coordinate and act together, but as a way
for them to share some information. Moreover, we also introduce a
measure of the coalition image score, in order to decide which one
an agent should join. Finally, we include a rewiring mechanism
using the neighbors’ reputation as a criteria to change their worst
social links, and coalitions information as a way to rewire to the
best coalition members.

We have confirmed that the use of coalitions and rewiring indeed
improves cooperation when we play the donation game in our so-
cial scenario. Moreover, we have analyzed the differences between
the results obtained when we use a scale-free or a small-world
topology. In our experiments, firstly we determined that only us-
ing rewiring does not allow cooperation to emerge. This is because
rewiring is done mainly randomly to any other agent, which can
even worsen the neighborhood. Secondly, we determined that us-
ing our coalition formation mechanism only, cooperation emerges
only in the case of scale-free networks. However, in small-world
networks, we observed that the use of coalitions is not enough to
achieve convergence to a cooperative strategy. The reason is that,
in scale-free networks, hubs have a strong influence; allowing to
create bigger coalitions in less time, and speeding up the appear-
ance of cooperation. Finally, when using rewiring together with
coalitions, both in scale-free and small-world networks; all agents
in the population converge to a cooperative strategy. In the case of
scale-free, the convergence to a cooperative strategy is faster, since
again hubs speed up the convergence process. Thus, we have seen
the positive effects that grouping and social networking have over
cooperation in complex networks with indirect reciprocity.

As future work, we plan to study how much improvement can be
obtained avoiding non-cooperative agents. We also plan to study
mechanisms to cope with malicious agents, that may not share their
real image score with the rest of the coalition. We will also build
new simulations using more real-world topologies, together with
in-depth research about the changes in the networks along the simu-
lations. Finally, we will also study the influence of allowing agents
to belong to multiple coalitions at a time.
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