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ABSTRACT
Planning-based techniques are powerful tools for automated
narrative generation, however, as the planning domain grows
in the number of possible actions traditional planning tech-
niques suffer from a combinatorial explosion. In this work,
we apply Monte Carlo Tree Search to goal-driven narrative
generation. We demonstrate our approach to have an or-
der of magnitude improvement in performance over tradi-
tional search techniques when planning over large story do-
mains. Additionally, we propose a Bayesian story evaluation
method to guide the planning towards believable narratives
which achieve user-defined goals. Finally, we present an in-
teractive user interface which enables users of our framework
to modify the believability of different actions, resulting in
greater narrative variety.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Multiagent systems

Keywords
Monte Carlo Tree Search; Upper Confidence Bounds; UCB;
MCTS; Exploration versus Exploitation

1. INTRODUCTION
Computer generated narratives can be important for many

types of immersive virtual environments, with potential ap-
plications in diverse areas such as training, education, and
entertainment. For example, computer games could ide-
ally create new plots for player characters on each play
through. Likewise, virtual libraries of computer generated
books could appear in games, each with their own unique
stories. Ultimately, automatic narrative technologies can
lead to author assistance tools and simple stories for prac-
ticing reading skills.

While there has been great progress in many aspects of
interactive media, the ability to automatically generate nar-
ratives has not similarly improved. This is due in part to
inherent challenges of natural language processing, but also
difficulties in producing believable and artistic narratives
from realistic, interesting story domains. In this paper, we
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focus on the latter, generating stories where the actions of
multiple characters believably come together to achieve in-
teresting, user-defined goals. At a high-level, this problem
can be well formulated as a planning problem. However, if
there are large number of possible actors, actions, and places
there is an exponential explosion in the search space being
planned over.

To overcome this difficulty, we propose leveraging the re-
cently developed planning technique called Monte Carlo Tree
Search (MCTS). MCTS has shown promising results in sev-
eral domains with large search spaces and has been a game
changer for several AI problems [8]. One of the most notable
examples is computer Go, where computers have shown the
ability to beat top human professionals (on a 9x9 board) [9]
despite Go’s large search space. Inspired by this success,
we exploit MCTS within the context of narrative generation
from rich domains with many actors, places, etc..

Rather than just finding a single narrative which meets the
given user-defined goals, we are interested in being able to
generate a variety of different stories which meet narrative
goals in a believable fashion. To this end, we introduce a
believability metric which allows users to guide MCTS as
it plans within a given story domain. Our formulation of
this metric assigns a contextually sensitive believability score
to each possible action in the story domain. By varying
the believability of actions, we allow a high degree of user-
controlled variation in the generated narratives.

Main Results: Our main contributions are as follows:

• A new algorithm for computer narrative generation
based on MCTS and evaluation of the effect of various
search heuristics in terms of performance and memory
usage.

• A novel metric based on contextual believability to
guide the planning processing efficiently towards sto-
ries which believably reach user-defined goals.

• A graphical-interface which allows user-driven varia-
tion in the generated narratives.

Organization The rest of this paper is organized as fol-
lows. Section 2 highlights related work and Section 3 presents
a high-level overview of our approach to the narrative gen-
eration problem. In Section 4, we present results from our
system along with their analysis, and in Section 5 we discuss
the resulting interactive framework for user-driven narrative
variation. Finally, Section 6 concludes the paper with limi-
tations of our approach and future work.
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2. PREVIOUS WORK
In this section we briefly discuss previous work in the area

of automated narrative generation and highlight some re-
lated work which makes use of Monte Carlo Tree Search for
different problem domains.

2.1 Automated Narrative Generation
Narrative generation problem has been studied with an

increased focus within the last decade. We will present dif-
ferent approaches and also discuss related work similar to
our approach in literature.

2.1.1 Data-driven approach
Data-driven techniques are employed to exploit story cor-

pus to either learn important parameters to be used for plan-
ning phase or to improve planner’s decisions with similar
cases during narrative generation. For example, McIntyre
et al. [14] presented a story generation system that uses a
database to automatically infer a story domain which would
otherwise have to be manually entered by a user. Gervas et
al. [11] proposes a case-based system for story generation
process. Their framework has a sample story database and a
given a new story query, they generate the overall structure
of story plots with case comparisons.

2.1.2 Character-centric approach
Character-centric approaches deal with narrative genera-

tion by granting some of the narrative characters the role
of story level design so that these characters ease the global
planning process. For example, the work of Theune et al.
[29] on Virtual Storyteller models autonomous agents and
assigns them roles within the story by an external plot-
agent. Brenner [3] studied the narrative generation problem
within the domain of multi-agent planning. More recently,
Teutenberg et al. [28] combined intentional planning with
the multi-agent planning of Brenner [3].

2.1.3 Interactive systems
Skorupski et al. [25] proposed a very detailed interactive

framework as an author tool that enables the user to inter-
act with the ongoing story either by being a third person
character or acting on behalf of any AI character during the
generation process. The work proposed by Barber et al. [2]
presents an interactive framework named GADIN aiming
to generate narratives that have dramatic tensions. Their
framework works with a global story goal, and they studied
children story domains. Lastly, Cavazza et al. [5] proposed
a character based interactive story telling system where the
user interacts any time with the ongoing story by either con-
trolling an agent or speaking with the story agents through
a speech recognition system.

A more recent work on interactive narrative generation
is presented in [23] which proposes a real-time event cen-
tric story generator that can handle both cooperative and
adversary user interactions in a flexible way so that given
goals are still satisfied. Lastly, Permar et al. [17] presented
a computational model for cognitive script generation for
interactive narratives.

2.1.4 Other approaches
Author-centric methods such as analogy-based story gen-

eration of SAM [15] and MEXICA [16] attempt to generate

narratives from the point-of-view of the author. Riedl et
al. [19] presented a story generation scheme that considers
both story plot coherence and intentions of story characters
during planning. Swartjes et al. [27] proposed a simula-
tion based formulation to generate narratives in an emergent
manner. Riedl et al. [20] also proposed a novel approach to
evaluate believability of computer generated narratives by
establishing the causal relationship with actions and char-
acters’ intention and perception of the story world. Lastly,
story-centric methods, such as Fabulist [21], reason over in-
tentions and corresponding actions from the point of view
of the audience. In doing so, story-centric methods generate
narratives which more clearly communicate character moti-
vations to the audience.

2.2 Multi-Agent Planning for Narrative Gen-
eration

There are several deterministic planners which can be em-
ployed for the narrative generation problem. For Example,
Richter et al. [18] proposed an anytime planner, LAMA.
Helmert et al. [12] presented the planner named Fast Down-
ward Stone Soup which uses several heuristics and different
planner sequentially to accomplish the search. Other ap-
proaches includes LPG-d [26] which can create a set of so-
lutions specified by the parameter d for a given problem.

2.2.1 Monte Carlo Tree Search
Monte Carlo Tree Search is a powerful method, that has

shown particular success in searching over large domains by
using random sampling approaches. It is an anytime algo-
rithm that will improve its solutions provided more time and
memory. Its success has been particularly recognized after
its performance in the game Go [9]. MCTS has been further
employed in real-time games [22] and Solitaire puzzles [6]
where it can outperform humans. MCTS has also been used
for other domains including optimization [24] and planning
problems [7]. For more information, we refer reader to the
excellent survey presented in [4]. We employed MCTS with
UCB (Upper Confidence Bounds) following the approach
from [13] which balances exploration vs. exploitation dur-
ing planning.

3. MCTS FOR STORY GENERATION
In this section, we first introduce a new story domain in

which we evaluate our method. We then introduce our be-
lievability metric that guides the MCTS search, and provide
a detailed explanation of our planning method.

3.1 Story Domain
Planning based story generation typically works over a

user-specified story domain. We support a custom domain
based on a simplified PDDL-type [10] of environment spec-
ification. While our approach is generic, we demonstrate it
using the following crime-story inspired domain.

Our domain has three types of entities: Actors, Items,
and Places. Actors, which are intended to represent people
or other characters, can pick up or use various Items, or
move to other places. Each Item allows different actions
for an Actor. Items and Actors can be located at different
Places.

Each entity has several attributes which allows the planner
to keep track of what effect various actions have on the Ac-
tors, Items, and Places. For example, actors have a “health”
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attribute which is decreased when they are attacked. Below
is an abbreviated list of the various actions allowed in our
story domain followed by a brief description of its affect:

• Move(A, P): A moves to place P.

• Arrest(A, B): B’s place is set to jail.

• Steal(A, B, I): A takes item I from B. This increase
B’s anger.

• Play Basketball(A, B): A and B play basketball.
This decreases A’s and B’s anger.

• Kill(A, B): B’s health to zero (dead).

• FindClues(A): A searches for clues at its current lo-
cation

• ShareClues(A, B): A shares with B any clues he has
found.

• Earthquake(P): An earthquake strikes at place P.
This causes people at P to die (heath = 0), items to
be stuck, and place P to collapse.

Associated with each action are methods to convert the
action and corresponding Actors, Items, and Places to En-
glish text.

For Actors we have several citizens: Alice, Bob, Charlie,
David, etc. There is also a detective named Sherlock, and
an inspector named Inspector Lestrade. For Places there
are several homes, recreation areas (e.g., basketball courts),
and a downtown. Items include flower vases, basketballs,
baseball bats, guns and handcuffs. As discussed below, the
believability of an actor taking a certain action will depend
on where they are, what items they have, and their past
experiences with other people.

We assume that the user specifies both an initial config-
uration and a goal for the story (e.g., who is in their own
house, who is in downtown, where are the guns and vases).
An example goal might be, “at least two people are dead and
the murderer is arrested”. For the purpose of running exper-
iments, we can make the domain more complex by adding
more citizens, items and places, and by changing the goal.

3.2 Believability
Our approach focuses on goal-oriented narrative genera-

tion. However, rather than searching to find any story which
satisfies a user’s goal we search for the best-possible story
as evaluated by our metric. For this work, we chose a broad
evaluation criteria based on how believable an action is con-
textually, given the current state of the story. The believ-
ability of each action is a user-defined measure on a scale
from 0 to 1, which we treat as a Bayesian probability. That
is, given the current state of the world, how likely it is that
an event happens conditioned on the current state of the en-
vironment. For example, character A attacking character B
may be more believable if A is angry. Likewise, a character
arresting someone may be more believable if the character
is an inspector. Some key examples from our domain are
presented below.

• Arrest(A, B) More believable if A is an inspector.
More believable if A has clues to a crime.

• Steal(A, B, I) More believable if item I is valuable.

• Kill(A, B) More believable if A is angry. More be-
lievable if A has previously killed someone.

• FindClues(A, P) More believable if A is an inspector
or a detective.

• ShareClues(A, B) More believable if B is an inspec-
tor.

• Earthquake(P) Very low believability.

For a series of actions, we evaluate the overall believability
as the product of the believability of each individual action:

B(a1, a2, ..., an) =

n∏
i=1

Bai (1)

3.3 Approach Overview
Our approach uses the MCTS algorithm to find the chain

of actions which accomplishes the user-defined goals with
the maximum amount of believability. To apply MCTS we
must first define a function which evaluates the extent that a
given story believably reaches the user’s goals. This function
will shape the expansion of the Monte Carlo search tree.

Formally, we represent a given story as a set of actions
A = {a1 · · · an}. We define a story evaluation function E
as:

E(A) = G(A)B(A) (2)

where G(A) is the percentage of the user-defined goals the
current story accomplishes, and B(A) is the believability of
the story as specified in Eqn 1.

There is a tradeoff between overall believability of a gener-
ated story and the number of goals it achieves; a story that
maximizes the value of E(A) simply finds such an optimal
tradeoff which does not necessarily completes all the goals.

Importantly, this formulation allows for a series of actions
that are not very believable to occur in the story if it is the
only way to achieve the user’s specified goals.

While E(A) provides a natural way to evaluate a com-
pleted story, it is of limited use for partial narratives that
will be encountered during a tree search. This is because
until a story satisfies some of the goals, the evaluation will
always be 0. We address this issue by adding a random
rollout to the story, that is a series of random actions that
is added to the partial story until all the goals are met (or
until a story grows past a length threshold). We denote this
randomized extension of A as A′:

A′ = {a1, a2, ...an, r1, r2, ...rn}. (3)

where r1 · · · rn are randomly generated actions. This allows
a probabilistic evaluation of A even when A does no yet
reach the goal. We denote this probabilistic evaluation as
E′:

E′(A) = E(A′). (4)

We can now formulate story generation as a Monte Carlo
tree search problem. Each node in the tree will represent
the complete state of the world. Each link in the tree repre-
sents one possible action from that state, and that child of
the node represents the resulting world state after applying
that action. The root of the tree is the initial state of the
world. The MCTS algorithm proceeds by repeatedly adding
one node at a time to the current tree. For each poten-
tial action, we keep track of how many times we have tried
that action, and what the average evaluation was. Choos-
ing which child node to expand (i.e., choosing which action

71



to take), becomes an exploration/exploitation problem. We
want to primarily choose actions that had good scores, but
we also need to explore other possible actions in case the
random rollout was “unlucky” and does not represent their
true potential of that action.

The exploration/exploitation dilemma has been well stud-
ied in other areas. Here, we chose to use the Upper Confi-
dence Bounds (UCB) approach proposed by [1]. This overall
process of combining MCTS with UCB is often referred to as
Upper Confidence Trees (UCT)[13]. Applied to our frame-
work, this means that each node chooses its child n with the
largest value of f(n):

f(n) = E′(An) +

√
2 ln v

nv
(5)

where An is the parent’s story so far updated to include
action n, v is the total number of times this node has been
visited, and nv is the total number of times that given child
action has been previously tried.

Choosing which node to add is then a recursive process.
For each node, a child action with the largest value of the
UCB equation (Eqn. 5) is chosen and expanded. When a
node with unexplored child is reached (nv = 0) a new node is
created for one of the unexplored children. The process then
starts again from the root of the tree, each time adding one
new node. This way, the tree can grow in an uneven manner,
biased towards nodes with high value for E′(An), which are
likely to be good narratives. This process is summarized in
Algorithm 1, the algorithm takes as input a budget of the
maximum number of nodes to explore and returns a series
of actions which comprise the story.

Algorithm 1: MCTS Story Generation

Input : Budget
Output: Best story
while budget > 0 do

Node ← ucbSelection(root) ;
result ← rolloutStory(node) ;
backpropagate(result) ;
if result > bestScoreSoFar then

updateBestScore();
saveBestStory();

end

end
return Best Story;

3.4 Iterative Implementation
The MCTS algorithm as presented in Algorithm 1 keeps

the entire tree in memory and can exhaust memory when ex-
ploring domains with large branching factors (see Figure 5).
This can be alleviated by pruning sections of the search tree
that are unlikely to be productive. To this end, we pro-
pose an iterative approach which plans the story only one
action at a time. This approach first grows the tree for a
fixed number of actions. Then, only the current best ac-
tion is kept, and its sibling actions’ and their subtrees are
pruned. This action forms the new initial condition and the
tree search continues. Pseudocode for the iterative approach
is presented in Algorithm 2.

As only a fixed number of nodes are added between each
pruning step, the amount of memory used is bounded. We

Algorithm 2: Iterative Story Generator

Input : Budget and max iterations
Output: Best story
for i← 1 to max iterations do

while budget > 0 do
Node ← uctSelection(root);
result ← rolloutStory(node);
backpropagate(result);
if result > bestScoreSoFar then

updateBestScore();
saveBestStory();

end

end
root ← root’s most visited child;
Prune all other subtrees;

end
return Best Story;

should note that this iterative approach is no longer proba-
bilistically complete, as it is possible to prune a promising
branch early on, leading to a local maxima rather than the
global optimum. However, in practice we are still able to
generate high scoring narratives while using much less mem-
ory than the non-iterative approach.

3.5 Search Heuristics
Monte Carlo Tree Search can be improved by applying

heuristics to help guide the search. We incorporate two do-
main independent heuristics. For both heuristics, we keep a
history table that stores average evaluation results, E′, for
each action (independent of it’s depth in the tree). We ex-
plore two ways of using this history table: selection biasing
and rollout biasing.

3.5.1 Selection Biasing
Here we modify Eqn. 5 to incorporate the average value

for the action stored in the history table. We introduce a
parameter α which weighs the history average value more
strongly when very few (less than k) rollouts have been per-
formed. Formally:

f(n) = αE′(An) + (1− α)H(n) +

√
2 ln v

nv
(6)

where H(n) is the average value stored in history table and
α = nv/k.

3.5.2 Rollout Biasing
In this heuristic we use the history table to bias the ran-

dom rollouts in Eqn. 4. Rather than choosing pure random
actions, we preferentially choose actions which have had a
higher evaluation score as stored in the history table.

4. RESULTS
We tested our approach on an instance of the crime story

domain described above. We utilized 5 actors (including
1 policeman and 1 detective), 5 places, and 5 items. The
story goal is set as 2 people dead and the murderer arrested.
Because each actor can use multiple items and travel to dif-
ferent places the resulting search space was fairly large with
an average of 50 total actions available across all the actors
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at any given time (resulting in a search tree with an average
branching factor of 50).

4.1 Search Method Comparison
We first compare our method to the traditional search al-

gorithms of Breadth-First Search, Depth-First Search, and
Best-First Search. We chose these search algorithms be-
cause, like MCTS, none of them require a search heuristic.
Furthermore, Breadth-First Search and Best-First Search al-
gorithms are guaranteed to find an optimal solution given
sufficient time and memory. Additionally, Best-First Search
and Depth-First Search will explore longer paths earlier which
can potentially find optimal solutions earlier in the search
process. All search algorithms are implemented such that
they maximize score from Eqn. 4. Figure 1 shows a compar-
ison of the best story found by the different methods both
for small and large search budgets (results averaged over 3
trials).
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Figure 1: Comparison of Search Methods Our pro-
posed approach using Monte Carlo Tree Search
(MCTS) outperforms other search techniques such
as Breadth-First Search, Depth-First Search, and
Best-First Search. (a) Even for a small search bud-
get, MCTS outperforms other methods (b) The
gains improve dramatically for larger budgets.

Depth-First search was observed to use very little mem-
ory, however, it failed to find narratives which met any goals.
Best-First search suffers from delay caused by trying to ac-
complish the goals through a set of believable actions due to

Alice picked up a vase from her house. Bob picked up a ri-
fle from his house. Bob went to Alice’s house. While there,
greed got the better of him and Bob stole Alice’s vase! This
made Alice furious. Alice pilfered Bob’s vase! This made
Bob furious. Bob slayed Alice with a rifle! Bob fled to down-
town. Bob executed Inspector Lestrade with a rifle! Charlie
took a baseball bat from Bob’s house. Sherlock went to Al-
ice’s house. Sherlock searched Alice’s house and found a clue
about the recent crime. Bob fled to Alice’s house. Sherlock
wrestled the rifle from Bob! This made Bob furious. Sher-
lock performed a citizen’s arrest of Bob with his rifle and
took Bob to jail.

Figure 2: High Scoring Story (Score: 0.68)

Sherlock moved to Alice’s House. An Earthquake occurred
at Alice’s House! Sherlock and Alice both died due to the
earthquake.

Figure 3: Low Scoring Story (Score: 0.016)

its high exploratory behavior. As a result, it tends to require
higher budget to eventually find the optimal solution.

While Breadth-First search outperforms the Best-First
search and Depth-First search methods, it is unable to find
a believable means to achieve the goal even with a budget
of several million nodes. In contrast, our MCTS approach
outperforms all the other search techniques for both small
and large budgets, and is able to find a high score story.

The difference in narratives generated by the various search
approaches is highlighted in the illustrative sample narra-
tives in Figures 2 and 3. These narratives are direct outputs
from our code. We note that we automatically combine two
consecutive related actions into a single sentence to improve
readability of the narratives.

Figure 2 shows a sample of a high quality story, that has
been generated by our MCTS algorithm. The story achieves
the goals while containing several plausible actions (such as
revenge killing).

Figure 3 shows a story found by Breadth-First search.
While the story is short and accomplishes the goal of two
people being killed, it fails to achieve the more complex goal
of somebody being arrested. Furthermore, the story makes
use of an earthquake to reach its goals, which has a very low
believability score.

4.2 Heuristic Comparison
We also experimented to determine the effect of our two

proposed heuristics on search performance. Figure 4 sum-
marizes our results (averaged over 3 trials). For low search
budgets, the selection biasing heuristic improves performance
over standard MCTS (Fig 4(a)). However, this heuristic gets
stuck at a local minima and fails to improve the story even
with large search budgets. In contrast, the rollout biasing
heuristic leads to a substantial improvement over standard
MCTS for large search budgets (Fig 4(b)).

4.3 Large Scale Scenarios
While the MCTS approach we described in Algorithm 1

works well, it consumes large amounts of memory. This large

73



0 

0.01 

0.02 

0.03 

0.04 

0.05 

100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000 

S
to

ry
 E

va
lu

at
io

n 

Nodes Explored  

MCTS 

Rollout Biasing 

Selection Biasing 

(a) Low Budget

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

S
to

ry
 E

va
lu

at
io

n 

Nodes Explored (in Millions) 

MCTS 

Rollout Biasing 

Selection Biasing 

(b) High Budget

Figure 4: Effect of Heuristics (a) For small search budgets (<500K nodes explored) the search heuristics
tested had only a moderate effect on performance. (b) For large search budgets, the advantage of the rollout
biasing heuristic can be clearly seen. Additionally, while the selection bias heuristic helps with small budgets
it tends to get stuck in local minima.

memory usage can restrict its applicability on very large
scenes. To illustrate this limitation, we extend the crime
story domain above to contain 20 actors, 7 places, and 7
items. This increases the branching factor to 150 potential
actions on average.

Figure 5 compares standard MCTS with our iterative ap-
proach described in Algorithm 2. Importantly, the non-
iterative approach fails to complete its execution when the
search budget is larger than 5 million nodes. This failure
happens because the non-iterative approach is using over
100GB of memory for such large search trees. In contrast,
our proposed iterative approach produce better results for
lower budgets, and can run much larger budgets without
failure. In fact, we were able to run with a budget over 50
million nodes on the same machine with no memory issues.

Runtime For the 5 actor story domain, our method was
able to find detailed stories in under 5 seconds, and find the
optimal story in less than 1 minute (using a single core on
an Intel 2.2 GHz laptop processor). For the 20 actors story
domain, stories took much longer to generate, though a high
quality story could generally be found in under 1 hour with
the iterative approach.

5. USER-DRIVEN NARRATIVE VARIETY
We have developed an interactive framework that can gen-

erate narratives with parametric narrative goals and config-
urable context-sensitive believability metrics for each avail-
able action. Our framework employs a graphical user in-
terface (see Appendix) which allows users to modify the
believability of various actions by dragging several sliders.
By changing believability of actions, users can influence the
actions present in generated narratives via Eqn 1. For ex-
ample, the user can generate a narrative where the goal is
preferentially accomplished through earthquakes by increas-
ing the believability of the earthquake action. In this case,
given the story goal of “two people dead”, the resulting story
is similar to the story presented in Figure 3.

As additional examples, we present two user-selected be-
lievability configurations in Figure 6. In the choice of believ-
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Figure 5: Iterative vs Non-iterative For very large
story domains, MCTS can run out of memory trying
to store the entire search tree. In the 20-person do-
main, the non-iterative approach could only explore
trees up to 5 Million nodes before failing. Our pro-
posed iterative approach uses tree pruning to reduce
memory and can explore much large trees (produc-
ing higher value narratives).

abilities shown in Figure 6(a), the user set the believability
of “eartquake” and “play basketball” actions to a very low
value, and the believability of “Citizen arrest” is set very
high. Ideally, these choices of believabilities should gener-
ate a story where the arrest is performed by a citizen. As
Figure 7 shows, the resulting story meets this expectation.
In contrast, the second believability setup (shown in Fig-
ure 6(b)) has a lower belivability of citizen’s arresting each
other. The resulting story is shown in Figure 8, with the ar-
rest ultimately made by Inspector Lestrade. Note that the
two stories have similar beginnings, but they are resolved
in different fashions in accordance with the user specified
believabilities.
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Further options are presented to the user to modify other
parameters associated with our narrative generation approach.
For example, selecting between iterative and non-iterative,
setting the budget of maximum nodes explored, and other
similar parameters. This allows the user to control the trade-
off between story quality and story generation time.

(a) Citizen arrest configu-
ration

(b) Officer arrest configu-
ration

Figure 6: Users can set believability of actions to
generate diversity in generated stories.

Alice got a vase from her house. Bob picked up a rifle
and a baseball bat from his house. Sherlock stopped by the
basketball court on his way to Alice’s house. Charlie went
to Alice’s house. Charlie took Alice’s vase! This made Al-
ice furious. Alice stole Charlie’s vase! This made Charlie
furious. Alice killed Charlie with a flower vase, very inter-
esting! Bob went to Alice’s house. Meanwhile Sherlock went
to the basketball court. Inspector Lestrade stopped by Bob’s
house on his way to Alice’s house. Alice fled to the basketball
court. Bob searched Alice’s house and found a clue about the
recent crime. Sherlock went to Bob’s house. Meanwhile Bob
went to downtown. Alice stopped by Alice’s house on her
way to Bob’s house. Inspector Lestrade went to downtown.
Meanwhile Bob went to Alice’s house. Alice executed Sher-
lock with a flower vase, very interesting! Bob went to Bob’s
house. Bob arrested Alice with his baseball bat and took Alice
to jail.

Figure 7: Story generated from believability setup
shown in Figure 6(a). In this configuration, the be-
lievability of “citizen arrest” action is set high, re-
sulting Bob arresting the murderer.

6. CONCLUSION
We have presented a framework capable of generating

believable narratives which satisfy user-defined goals from
large story domains. By using Monte Carlo Tree Search, we
were able to balance exploiting the most promising branches
along with exploring other potentially good choices at each
level of the tree. The resulting framework generates com-
plex, believable narratives with only a few seconds of compu-
tation time for small domains, and a few minutes for larger
ones. We also introduced a user-friendly tool that can be
used by authors and teachers to generate full or partial nar-
ratives for specific scenes.

Alice secured a vase from her house. Bob secured a baseball
bat and a rifle from his house. Bob went to Alice’s house.
Alice pilfered Bob’s rifle! This made Bob furious. Inspector
Lestrade went to the basketball court. Bob slayed Alice with a
baseball bat! Bob slayed Charlie with a baseball bat! Bob fled
to the basketball court. Meanwhile Sherlock went to Bob’s
house. Sherlock went to Alice’s house. Meanwhile Inspector
Lestrade went to Bob’s house. Inspector Lestrade went to
Alice’s house. Inspector Lestrade searched Alice’s house and
found a clue about the recent crime. Inspector Lestrade went
to the basketball court. Meanwhile Bob went to Alice’s house.
Bob stopped by the basketball court on his way to downtown.
Bob and Sherlock both went to the basketball court. Sherlock
picked up a basketball from the basketball court. Inspector
Lestrade arrested Bob with his police gun and took Bob to
jail.

Figure 8: Story generated from believability setup
shown in Figure 6(b). In this configuration, the In-
spector Lestrade arrests the murder due to low be-
lievability of “citizen arrest” action.

Limitations: While our method is capable of exploring
large story domains, our approach still has some limita-
tions. The size of the tree being stored in memory still grows
exponentially as the number of potential actions increases.
Therefore, a narrative involving hundreds of characters is
likely to run out of memory on consumer hardware. We have
also focused only on domain-independent heuristics. Usage
of domain specific heuristics can alleviate memory problems
and reduce runtime. Another limitation of our work is that
defining believability for actions must be done by the user
and can become onerous as the number of actions increases.
We aim to resolve this issue by utilizing a data-driven ap-
proach in order to discover believability of actions automat-
ically.

Future Work: Beyond addressing the above limitations,
we think there are exciting directions for future work. We
would like to explore other forms of evaluation criteria be-
yond our believability metric. For example, a user might
want to specify the pacing of a narrative to ensure rising ac-
tion and climax which might require dynamically changing
believability parameters during the narrative generation, or
use of a different metric altogether.
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APPENDIX
A. GRAPHICAL USER INTERFACE

Figure 9: Graphical User Interface (GUI)

Figure 9 shows a graphical user interface utilizing our
story generation framework. Users can modify believabil-
ities of various actions, set story goals, select a planning
strategy, and choose a planning budget. As the generation
process unfolds, the best story found so far is displayed along
with a graph of the story evaluation score progress.

A video showing our system running can be found at:
http://motion.cs.umn.edu/r/StoryMCTS
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