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ABSTRACT
The formal verification of Artifact-centric (AC) systems is a subject
of growing interest in the Service Oriented Computing (SOC) com-
munity, which can benefit from techniques developed for Multi-
agent systems and knowledge reasoning and representation. In the
present contribution we consider the verification of AC systems that
do not necessarily satisfy boundedness and uniformity, the typi-
cal assumptions used to prove decidability of the model checking
problem in this setting. We provide a partial model checking pro-
cedure for agent-based AC systems against a first-order temporal
logic that includes modal operators for agent knowledge. Interest-
ingly, we obtain this result by introducing a counterpart semantics
for first-order modal logic, and by defining notions of simulation
and abstraction for this setting. This allows us to generate finite
abstractions of infinite-state AC systems, even when these are not
bounded nor uniform, thus enabling us to perform verification also
in cases not covered by the current state-of-the-art.

Categories and Subject Descriptors
F.4 [Theory of computation]: Modal and temporal logics

General Terms
Languages, Theory, Verification.

Keywords
Temporal Epistemic Logic, Verification of Agent-based Systems.

1. INTRODUCTION
Artifact-centric (AC) systems have been recently put forward as

a framework for the design, implementation and integration of busi-
ness processes in Service Oriented Computing (SOC) [20, 21]. In
the artifact paradigm the service data model and the business pro-
cesses are seen as equally important components of the interface
specification. This is in marked contrast with most of the tradi-
tional approaches to web-service architectures, which usually ab-
stract data away to reduce the complexity of the system descrip-
tion [24]. In fact, artifacts allow for explicit dependence of state
transitions on information contained in the data model. However,
this enhanced expressiveness comes at a price. The presence of
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data means that the typical questions pertaining to system verifica-
tion are much more difficult to answer. Indeed, the manipulation of
data structures entails a possibly infinite state-space, which cannot
be immediately handled by standard verification techniques.

In this paper we advance the state-of-the-art on artifact verifica-
tion by developing a methodology to model check a class of AC
systems that includes agents to account for the services operating
on artifacts. Model checking is a success story on the application of
formal methods in computer science [11, 2]. It has allowed for the
rigorous verification of complex systems against rich specifications
[10, 22, 23]. Hence, it is only natural that this technique has al-
ready been applied to the formal verification of AC systems. Since
the model checking problem for AC systems in their most general
setting is undecidable, the contributions in this area have focused
on finding syntactic and semantics restrictions on either the system
specifications or the class of relevant models, in order to ensure a
decidable model checking problem, while still admitting most sce-
narios of interest [6, 19, 18]. Recently, a condition known as uni-
formity has been proved sufficient to ensure decidability of model
checking when combined with a boundedness assumption on the
number of active elements in each state [5, 6]. Also, uniformity
was shown to be satisfied by a number of AC frameworks appear-
ing in the literature [19, 6], thus highlighting the relevance of this
condition. Therefore, a natural question is whether uniformity and
boundedness are really necessary to model check AC systems. For
practical purposes, the latter condition is usually difficult to check,
thus more general techniques would be welcome.

In addition, most contributions on the verification of AC sys-
tems disregards the services operating on artifacts, hence modelling
the system evolution in a monolithic manner. Hereafter we de-
part from this approach and formalize AC systems within an agent-
based framework that accounts for processes operating on artifacts.
We do so by relying on results on Multi-agent system (MAS) and
knowledge reasoning and representation. Specifically, we model
services as autonomous and proactive agents [26], and consider
a specification language containing epistemic operators to express
agent knowledge [17].

The main contribution of this paper can then be summarized as
follows. We first introduce a formalisation of AC systems as a par-
ticular type of artifact-centric multi-agent systems (AC-MAS) [5,
6]. The latter can intuitively be seen as databases that evolve in
time and are manipulated by agents. Differently from the refer-
ences above, the AC-MAS presented hereafter are not necessarily
uniform. This feature makes the verification techniques appear-
ing in the state-of-the-art not applicable to the present framework.
We state the model checking problem with respect to a first-order
temporal epistemic logic including function symbols. We remark
that the presence of functions increases the expressive power of our
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specification language. However, it has not previously considered
in the literature to our knowledge, as AC systems on such a lan-
guage are not uniform in general. Most importantly, we develop
a novel verification methodology for non-uniform and unbounded
AC-MAS inspired to [3], and introduce a sound, albeit incomplete,
model checking procedure with respect to formulas in the universal
fragment of our first-order temporal epistemic logic. We deem the
proposed technique of interest for the model theory of first-order
modal logic (FOML) as well. Indeed, to obtain finite abstractions
of infinite AC systems we make use of the counterpart semantics
for FOML [9, 12], we define a notion of simulation for counterpart
models, and then introduce quotient structures and similar finite ab-
stractions. Thus, we believe that our contribution has a theoretical
interest for modal logicians beyond the verification of AC systems.

Scheme of the paper. In Section ?? we fix the notation, give
the syntax of the first-order temporal epistemic logic FO-CTLK, as
well as an agent-based setting for AC systems. A counterpart se-
mantics for AC systems and a notion of simulation are presented
in Section 3. Section 4 contains the main result of the paper, i.e.,
the definition of finite abstractions for non-uniform and unbounded
AC-MAS. Section ?? explores constructive methods to derive ab-
stract AC-MAS. We conclude in Section 5 by discussing the results
obtained and point to future work. For reasons of space and sake of
presentation all proofs are omitted.

2. PRELIMINARIES
In this section we present the artifact-centric multi-agent sys-

tems (AC-MAS) as a multi-agent setting for AC systems [5, 6],
we introduce a first-order version of the temporal epistemic logic
CTLK, including function symbols for individuals, and state the
corresponding model checking problem. We first present the basic
terminology on databases that is used throughout the paper [1].

DEFINITION 1 (DATABASE SCHEMA AND INSTANCE).
A database schema is a finite set D = {P1/q1, . . . , Pn/qn} of
predicate symbols Pi with arity qi ∈ N.

Given a (possibly infinite) interpretation domainU , aD-instance
over U is a mapping D associating each predicate symbol Pi to a
finite qi-ary relation on U , i.e., D(Pi) ⊆ Uqi .

The set D(U) contains all the D-instances on the domain U .
The active domain adom(D) of a D-instance D is the finite set of
all individuals occurring in some predicate interpretation D(Pi).
Also, the primed version of a database schema D as above is the
schema D′ = {P ′1/q1, . . . , P ′n/qn}. Then, the disjoint union D ⊕
D′ of D-instances D and D′ is the (D ∪ D′)-instance s.t. (i) D ⊕
D′(Pi) = D(Pi), and (ii) D ⊕D′(P ′i ) = D′(Pi).

We now introduce the notion of service agent, i.e., an agent op-
erating a service in an artifact-centric system.

DEFINITION 2 (SERVICE AGENT). Given an interpretation do-
main U , a service agent is a tuple A = 〈D, Act, Pr〉, where

• D is the local database schema;
• Act is the finite set of action types α(~p), where ~p is a tuple of

abstract parameters;
• Pr : D(U) 7→ 2Act(U) is the local protocol function, where
Act(U) is the set of ground actions α(~u), for α(~p) ∈ Act, and
~u ∈ U |~p| a tuple of ground parameters.

Intuitively, in each moment the service agent A is in some local
state l ∈ D(U) that represents all the information she has about
the system. In this respect we follow the typical approach to MAS
[17, 25], but here we require that this information is structured as a

database. Also, as standard we assume that agents are autonomous
and proactive, and perform the actions in Act according to the pro-
tocol function Pr. As we are interested in the interactions of ser-
vice agents among themselves and with the external environment,
we define their synchronous composition.

DEFINITION 3 (AC-MAS). Given an interpretation domain
U and a setAg = {A0, . . . , An} of service agentsAi = 〈Di, Acti,
P ri〉 defined on U , an artifact-centric multi-agent system is a tuple
P = 〈Ag, s0, τ〉 where

• s0 ∈ D0(U)× . . .×Dn(U) is the initial global state;
• τ : D0(U)× . . .×Dn(U)×Act(U) 7→ 2D0(U)×...×Dn(U) is

the global transition function, where Act(U) = Act0(U)× · · ·
. . .×Actn(U) is the set of global (ground) actions, and
τ(〈l0, . . . , ln〉, 〈α0(~u0), . . . , αn(~un)〉) is defined iff
αi(~ui) ∈ Pri(li) for every i ≤ n.

An AC-MAS evolves from the initial state s0 according to the
global transition function τ , which returns a set of successor states
for each possible joint action of service agents. We express the de-
pendency of transitions on data by instantiating the formal parame-
ters of actions with different ground individuals. Since the domain
of interpretation U is infinite in general, this means that AC-MAS
are infinite-state systems. In this respect, AC-MAS can be seen as
a natural extension of interpreted systems [17] to the first order.

The framework of AC-MAS is rich enough to formalise AC sys-
tems as presented, for instance, in [21, 14]. Indeed, the data model
of AC systems can be translated into the database schema of AC-
MAS, while its lifecycle can be modelled by the transition function
τ . Some of the more complex features of AC systems, such as
tasks and messages, are abstracted in AC-MAS by the use of ser-
vice agents. Nonetheless, in [4, 6] it is shown that AC-MAS are
adequate to represent the Guard-Stage-Milestone (GSM) models
for AC systems, as well as their small-step semantics.

Besides the formalisation of AC systems, we believe that AC-
MAS have a more general, theoretical interest, as these represent
relational models where each state is a finite first-order structure.
In this respect, results available for AC-MAS transfer to first-order
modal logic not dissimilarly from the way theorems on finite model
theory find applications in database theory. Thus, a study of AC-
MAS might benefit the model theory of FOML.

We now introduce some technical notions that will be used in the
rest of the paper. We denote a global ground action as α(~u), where
α = 〈α0(p0), . . . , αn(pn)〉 and ~u = 〈~u0, . . . , ~un〉, and define the
transition relation→ on global states such that s→ s′ if there ex-

ists α(~u) ∈ Act(U) such that s
α(~u)−−−→ s′, i.e., s′ ∈ τ(s, α(~u)). A

run r from a state s is an infinite sequence s0 → s1 → · · · , with
s0 = s. For n ∈ N, we define r(n) = sn. A state s′ is reachable
from s if there exists a run r from r(0) = s such that r(i) = s′

for some i ≥ 0. Hereafter we assume that the relation→ is serial.
This can be ensured by using skip actions. Further, we define S as
the set of states reachable from the initial state s0. As in proposi-
tional interpreted systems [17], two global states s = 〈l0, . . . , ln〉
and s′ = 〈l′0, . . . , l′n〉 are epistemically indistinguishable for ser-
vice agent Ai, written s ∼i s′, if li = l′i. Differently from
propositional interpreted systems, the local equality is evaluated
on database instances. Also, since we allow U to be infinite, the
set S of reachable states is also infinite in principle. Indeed, in
the general case our AC-MAS are infinite-state systems. Finally,
for technical reasons we will refer to the global database schema
D = D0 ∪ · · · ∪ Dn of an AC-MAS. Hence, every global state
s = 〈l0, . . . , ln〉 is associated with the D-instance Ds ∈ D(U)
such that Ds(Pi) =

S
j∈Ag lj(Pi), for Pi ∈ D, that is, we as-

sume that each service agent has a truthful, yet limited, view of the
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global database D. This modelling choice is best suited to repre-
sent AC systems. We omit the subscript s whenever s is clear from
the context and write adom(s) for adom(Ds). Notice that for ev-
ery s ∈ S, there is a unique Ds, while the converse is not true in
general. Moreover, s⊕ s′ is tantamount to 〈l0 ⊕ l′0, . . . , ln ⊕ l′n〉.

We now introduce the specification language for AC-MAS. We
consider a set Var of individual variables, a set Con ⊆ U of individ-
ual constants, and a set F of functions on U . The terms t1, t2, . . .
in our language are inductively defined as either variables in Var, or
constants in Con, or elements fk(t1, . . . , tk), where fk is a k-ary
function in F and t1, . . . , tk are terms.

DEFINITION 4 (FO-CTLK). The FO-CTLK formulas ϕ over
a database schema D are defined as follows:

ϕ ::= Pi(~t) | ¬ϕ | ϕ→ ϕ | ∀xϕ | AXϕ | AϕUϕ | EϕUϕ | Kjϕ | Cϕ

where Pi ∈ D, j ∈ Ag, and ~t is a qi-tuple of terms.

The language FO-CTLK is a first-order extension of the proposi-
tional temporal epistemic logic CTLK including function symbols.
While the use of function symbols is non-standard in database the-
ory, these are crucial to describe the behaviour of AC-MAS, specif-
ically w.r.t. the manipulation of data by service agents.

The temporal formulas AXϕ and AϕUϕ′ (resp. EϕUϕ′) are
read as “for all runs, at the next stepϕ” and “for all runs (resp. some
run), ϕ until ϕ′”. The epistemic formulas Kiϕ and Cϕ intuitively
mean that “service agent Ai knows ϕ” and “it is common knowl-
edge that ϕ” respectively. Free and bound variables are defined as
standard, as well as the formulas EXϕ, AFϕ, AGϕ, EFϕ, and
EGϕ. We write φ(~x) (resp. t(~x)) to denote that the free variables
of φ (resp. t) are among x1, . . . , xn. The sublanguage FO-ACTLK,
i.e., the restriction of FO-CTLK to the universal modalitiesAX and
AU , is defined as follows:

ϕ ::= Pi(~t) | ¬Pi(~t) | ϕ ∧ ϕ | ϕ ∨ ϕ | ∀xϕ | ∃xϕ | AXϕ |
AϕUϕ | Kjϕ | Cϕ

In what follows we conside also the non-modal fragment of FO-
CTLK, i.e., the first-order logic FO on D, and its extension FO=

obtained by adding identity between terms.
An assignment is a function σ : Var 7→ U . We denote by σxu the

assignment s.t. (i) σxu(x) = u; and (ii) σxu(x
′) = σ(x′) for x′ 6= x.

Also, we assume a Herbrand interpretation of constants and func-
tions, that is, σ(c) = c for all c ∈ Con, and σ(fk(t1, . . . , tk)) =
fk(σ(t1), . . . , σ(tk)).

DEFINITION 5 (SEMANTICS OF FO-CTLK). We define whether
an AC-MAS P satisfies a formula ϕ in a state s according to as-
signment σ, or (P, s, σ) |= ϕ, as follows (clauses for propositional
connectives are trivial and thus omitted):

(P, s, σ) |= Pi(~t) iff 〈σ(t1), . . . , σ(tqi)〉 ∈ Ds(Pi)
(P, s, σ) |= ∀xϕ iff for all u ∈ adom(s), (P, s, σxu) |= ϕ
(P, s, σ) |= AXϕ iff for all r, if r(0) = s then (P, r(1), σ) |= ϕ
(P, s, σ) |= AϕUϕ′ iff for all r, if r(0) = s then there is k ≥ 0

s.t. (P, r(k), σ) |= ϕ′, and for all j,
0 ≤ j < k implies (P, r(j), σ) |= ϕ

(P, s, σ) |= EϕUϕ′ iff for some r, r(0) = s and there is k ≥ 0
s.t. (P, r(k), σ) |= ϕ′, and for all j,
0 ≤ j < k implies (P, r(j), σ) |= ϕ

(P, s, σ) |= Kiϕ iff for all s′, s ∼i s′ implies (P, s′, σ) |= ϕ
(P, s, σ) |= Cϕ iff for all s′, s ∼ s′ implies (P, s′, σ) |= ϕ

where ∼ is the transitive closure of
S
Ai∈Ag ∼i.

A formula ϕ is true at s, written (P, s) |= ϕ, if (P, s, σ) |= ϕ for
all σ; ϕ is true in P , written P |= ϕ, if (P, s0) |= ϕ.

Notice that we adopt an active domain semantics, where quanti-
fiers range over the active domain adom(s) of s. This is a standard
assumption in database theory.

Finally, we present the model checking problem for AC-MAS
with respect to the specification language FO-CTLK.

DEFINITION 6 (MODEL CHECKING PROBLEM). Given an AC-
MASP and an FO-CTLK formula ϕ, determine whether there is an
assignment σ0 such that (P, s0, σ0) |= ϕ.

Model checking general AC-MAS is known to be undecidable.
In [5] this problem is proved to be decidable for bounded and uni-
form systems. We now introduce both notions in relation to AC-
MAS on a language with only variables and constants as individual
terms, which is the original setting of [5]. We first define a notion
of isomorphism between states: two states s and s′ are isomor-
phic, or s ' s′, iff there exists a bijection ι : adom(s) ∪ Con 7→
adom(s′) ∪ Con s.t. (i) ι is the identity on Con; and (ii) for every
i ∈ Ag, Pj ∈ D, ~u ∈ Uqj , ~u ∈ li(Pj) iff ι(~u) ∈ l′i(Pj).

DEFINITION 7 (BOUNDEDNESS AND UNIFORMITY). An AC-
MAS P is bounded iff there exists b ∈ N such that for all s ∈ S,
|adom(s)| ≤ b.

An AC-MAS P is uniform iff for s, t, s′ ∈ S, t′ ∈ D(U), if

s
α(~u)−−−→ t and s⊕ t ' s′⊕ t′ for some bijection ι, then s′

α(ι′(~u))−−−−−→
t′ for every constant-preserving bijection ι′ extending ι to ~u.

Notice that the boundedness condition restricts the number of
elements appearing in the active domain of each state, not the to-
tal number of states in S, which is infinite in general. In [5] the
combination of both features is proved sufficient to obtain a decid-
able model checking problem. Yet, in [3] boundedness is shown
not strong enough to ensure decidability alone. To conclude, we
illustrate the formal machinery introduced thus far with a running
example.

EXAMPLE 1. While the following example is relatively small
and designed on purpose, it is nonetheless instructive to describe
the relevant features of AC-MAS introduced above. It elaborates
on a similar example appeared in [3]. Assume N as the interpre-
tation domain and consider a set Ag = {A0, A1, A2} of service
agents Ai = 〈Di, Acti, P ri〉 defined as follows: for i ≤ 2, (i)
Di = {P/1}; (ii) Acti = {αi(n)}; and (iii) for every li ∈ Di(N),
Pri(li) = {αi(n)}. Now let P1 = 〈Ag, s0, τ〉 be the AC-MAS
depicted in Fig. 1(a), where

• the initial state s0 is equal to 〈〈P (0)〉, ∅, ∅〉;
• s′ ∈ τ(s, α(n)) whenever exactly one of the li contains P (n),

while l′(i+1)%3 contains exactly P (n+ 1). Any other local state
is empty.

Notice that for every state s′ and n ∈ N there exists at most one

s′ such that s
α(n)−−−→ s′. Moreover, P1 is non-uniform. Indeed,

s0 ⊕ s1 ' s0 ⊕ s4 with bijection ι(0) = 0 and ι(1) = 4. Also,

s0
α(0)−−−→ s1, but it is not the case that s0

α(0)−−−→ s4.
Furthermore, as an example of an unbounded AC-MAS we con-

sider the following modification ofP1. DefineA′2 = 〈D′2, Act′2, P r′2〉
s.t. (i)D′2 = {P/1, Q/2}; (ii)Act2 = {α′2(n)}; and (iii) for every
l2 ∈ D2(N), Pr′2(l2) = {α′2(n)}. For Ag′ = {A0, A1, A

′
2} let

P2 = 〈Ag′, s′0, τ ′〉 be the AC-MAS depicted in Fig. 1(b), where

• the initial state s′0 is equal to s0 = 〈〈P (0)〉, ∅, ∅〉;
• s′ ∈ τ ′(s, α(n)) whenever exactly one of the li contains P (n),

while l′(i+1)%3 contains exactly P (n+ 1). Also, l′2 contains
Q(k, n+ 1) for all k < n+ 1. Any other local state is empty.
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〈〈P (0)〉, ∅, ∅〉s0

〈∅, 〈P (1)〉, ∅〉s1

〈∅, ∅, 〈P (2)〉〉s2

〈〈P (3)〉, ∅, ∅〉s3

...

α(0)

α(1)

α(2)

α(3)

(a) the AC-
MAS P1

〈〈P (0)〉, ∅, ∅〉s′0

〈∅, 〈P (1)〉, 〈Q(0, 1)〉〉s′1

〈∅, ∅, 〈P (2), Q(0, 2), Q(1, 2)〉〉s′2

〈〈P (3)〉, ∅, 〈Q(0, 3), Q(1, 3), Q(2, 3)〉〉s′3

...

α′(0)

α′(1)

α′(2)

α′(3)

(b) the AC-MAS P2

Figure 1: the AC-MAS P1 and P2 (epistemic components are
omitted)

Clearly,P2 is unbounded. Now consider also the following spec-
ifications in FO-ACTLK:

χ = AG ∀xK1(P (x)→ AX¬P (x))

θ = AG ∀xK2(P (x)→ AXAG¬P (x))

As an example, θ states that service agent 2 always knows that
if something is P , then it will never be P again. Since P1 and
P2 are infinite-state systems, χ and θ cannot be model checked
directly. Moreover, we remarked that P1 is not uniform, while P2

is unbounded. Thus, the techniques developed in [5, 19] cannot be
of help in the present context. �

Hereafter we explore the boundary between decidability and un-
decidability of model checking general non-uniform and unbounded
AC-MAS. These investigations require the counterpart semantics
for first-order modal logic.

3. COUNTERPART SEMANTICS
In this section we introduce a semantics for FO-CTLK based

on counterparts [9]. Then, we recast the notion of simulation for
counterpart models in [3] to a multi-agent system setting. Finally,
we prove that the simulation relation preserves FO-ACTLK, the
universal fragment of FO-CTLK.

DEFINITION 8 (MA C-MODEL). Given a set Ag of service
agents, a multi-agent counterpart model is a tupleM = 〈S, s0, U,
→, Ct, {∼i}i∈Ag, {Ci}i∈Ag, I〉 such that (i) S is a non-empty set
of states; (ii) s0 is the initial state; (iii)→ is a serial binary tran-
sition relation on S; (iv) each ∼i is an equivalence relation on S;
and (iv) for s, s′ ∈ S,

• U(s) is a non-empty set of individuals;
• Cts,s′ ⊆ U(s)× U(s′) is a serial temporal counterpart relation;
• each Cis,s′ is a relation on U(s)× U(s′) s.t. (i) Cis,s ⊆ U(s)2,

(ii) Cis,s′ = C
i
s′,s, and (iii) Cis,s′ · Cis′,s′′ ⊆ Cis,s′′ (where R is

the converse of R and · is relation composition);
• I is a first-order interpretation, i.e., (i) if Pn is an n-ary

predicate symbol and s ∈ S, then I(Pn, s) is an n-ary relation
on U(s); (ii) if c ∈ Con, then I(c, s) ∈ U(s); and (iii) if fk ∈ F ,
then I(fk, s) is a function from U(s)k to U(s).

Counterpart semantics was originally conceived as a semantics
for first-order modal logic in which we do not need to assume that
the same individual appears in more than one system state. In fact,
the task of identifying “related” individuals across states is per-
formed by the counterpart relations.

Similarly to AC-MAS, the active domain adom(s) of a state s
is defined as the set of all individuals occurring in some predicate
interpretation I(Pn, s). We remark without proof that any AC-
MAS can be seen as an MA c-model on a finite language, where
the counterpart relation is the identity, and constants and functions
are interpreted as themselves.

REMARK 1. Let P = 〈Ag, s0, τ〉 be an AC-MAS on the do-
mainU . ConsiderMP = 〈S, s0, U ′,→, Ct, {∼i}i∈Ag, {Ci}i∈Ag,
I〉, where (i) S is the set of reachable states in P , (ii) s0 is the ini-
tial state in P , (iii) → and each ∼i are defined as in Section ??;
and for all s, s′ ∈ S, (iv) U ′(s) = U ; (v) Cts,s′ and each Cis,s′
are the identity relation; (vi) I(c, s) = c, I(fk, s) = fk, and
I(Pn, s) = Ds(P

n). ThenMP is an MA c-model.

The notion of run is defined as for AC-MAS. The relationCt+ is
the transitive closure of Ct, i.e., Ct+s,s′(a, a

′) iff there is a sequence
s0 → . . . → sk s.t. s0 = s, sk = s′, and there are a0, . . . , ak

s.t. a0 = a, ak = a′, and Ctsi,si+1(a
i, ai+1) for i < k.

As in Section ??, ∼ is the transitive closure of
S
Ai∈Ag ∼i,

while for s, s′ ∈ S s.t. s ∼ s′, Cs,s′(a, a′) iff there is a sequence
s0 ∼i1 . . . ∼ik sk s.t. s0 = s, sk = s′, and there are a0, . . . , ak

s.t. a0 = a, ak = a′, and Cih+1
sh,sh+1(a

h, ah+1) for h < k.
To define the satisfaction of FO-CTLK formulas in MA c-models,

we consider typed languages and finitary assignments. This is stan-
dard when working with counterpart semantics [9, 12]. Specifi-
cally, every variable xj ∈ Var is a term of type n, or n-term, for
n ≥ j; every constant c ∈ Con is an n-term; and if fk is a function
symbol and ~t is a k-tuple of n-terms, then fk(~t) is an n-term.

DEFINITION 9 (FO-CTLKT ). The typed language FO-CTLKT
contains all n-formulas φ : n, for n ∈ N, defined as follows:

• if Pm is an m-ary predicate symbol and ~t is an m-tuple of
n-terms, then Pm(~t) is an (atomic) n-formula;
• if ψ,ψ′ are n-formulas, then ¬ψ, ψ → ψ′, AXψ, AψUψ′,
EψUψ′, Kiψ and Cψ are n-formulas;
• if ψ is an (n+ 1)-formula, then ∀xn+1ψ is an n-formula.

The other logical operators are defined as standard. In what
follows we consider also the sublanguage FO-ACTLKT , which
is standardly obtained by restricting FO-CTLKT to the universal
modalities AX , AU , Ki and C. Also, the typed first-order logic
FOT is the non-modal fragment of FO-CTLKT .

The meaning of a typed formula φ : n at a state s can in-
tuitively be understood as a subset of U(s)n, i.e., the set of n-
tuples satisfying φ : n at s. Therefore, the definition of satis-
faction is given by means of finitary assignments, where an n-
assignment in s is an n-tuple ~a of elements in U(s). Let t be an
n-term, the valuation ~a(t) for the n-assignment ~a is equal to aj if
t = xj . Also, ~a(t) = I(c, s) whenever t = c, and ~a(fk(~t)) =
I(fk, s)(~a(t1), . . . ,~a(tk)).

DEFINITION 10 (SEMANTICS OF FO-CTLKT ). The satisfac-
tion relation |= for a state s ∈ M, a typed formula φ : n and an
n-assignment~a is inductively defined as follows (clauses for propo-
sitional connectives are trivial and thus omitted):

(M, s,~a) |= Pm(~t) iff 〈~a(t1), . . . ,~a(tm)〉 ∈ I(Pm, s)
(M, s,~a) |= AXψ iff for all r,~b ∈ U(r(1)), if r(0) = s and
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Ct
s,r(1)

(~a,~b) then (M, r(1),~b) |= ψ

(M, s,~a) |= AϕUϕ′ iff for all r, if r(0) = s then there are k ≥ 0,
~b ∈ U(r(k)) s.t. C+

s,r(k)
(~a,~b) and

(M~b, r(k)) |= ϕ′, and for all j, ~c ∈ U(r(j)),
if 0 ≤ j < k and C+

s,r(j)
(~a,~c)

then (M, r(j),~b) |= ϕ
(M, s,~a) |= EϕUϕ′ iff there is r s.t. r(0) = s, and k ≥ 0,

~b ∈ U(r(k)) s.t. C+
s,r(k)

(~a,~b) and

(M, r(k),~b) |= ϕ′, and for all j, ~c ∈ U(r(j)),
if 0 ≤ j < k and C+

s,r(j)
(~a,~c)

then (M, r(j), ~c) |= ϕ

(M, s,~a) |= Kiψ iff for all s′,~b ∈ U(s′), if s ∼i s′ and
Ci
s,s′ (~a,

~b) then (M, s′,~b) |= ψ

(M, s,~a) |= Cψ iff for all s′,~b ∈ U(s′), if s ∼ s′ and
Cs,s′ (~a,~b) then (M, s′,~b) |= ψ

(M, s,~a) |= ∀xn+1ψ iff for every a∗ ∈ adom(s), (M, s,~a · a∗) |= ψ

where ~a · a∗ is the (n+ 1)-assignment 〈a1, . . . , an, a
∗〉.

An n-formula φ is true at a state s, or (M, s) |= φ, iff it is
satisfied by every n-assignment; φ is true on an MA c-modelM,
orM |= φ, iff (M, s0) |= φ.

In counterpart semantics the meaning of modal operators is de-
fined by using accessibility relations both on states and individuals.
Notice that by considering MA c-models where the counterpart re-
lation is the identity and constants and functions are interpreted as
themselves, we have that the relation of satisfaction in Def. 10 re-
duces to the notion in Def. 5. Thus, MA c-models can really be seen
as a generalisation of AC-MAS. Hereafter we state this result for-
mally. First, we define a translation πn, for n ∈ N, from FO-CTLK
to FO-CTLKT . Given an FO-CTLK formula φ and n greater than
or equal to the maximum k such that xk occurs in φ, the n-formula
πn(φ) in FO-CTLKT is inductively defined as follows:

πn(Pm(t1, . . . , tk)) := Pm(t1, . . . , tk)
πn([ ψ) := [ πn(ψ)
πn(ψ ] ψ′) := πn(ψ) ] πn(ψ′)
πn(∀xiψ) := ∀xn+1(πn(ψ)[xi/xn+1])

where [ (resp. ]) is any unary (resp. binary) connective. Hence,
πn simply renames bound variables in φ. We can now state the
following result on the relation between an AC-MAS P and the
corresponding MA c-modelsMP as defined in Remark 1.

LEMMA 1. Let P be an AC-MAS, t(~x) a term, φ(~x) an FO-
CTLK formula, and σ(~x) = ~a. We have that

σ(t) = ~a(t)
(P, s, σ) |= φ iff (MP , s,~a) |= πn(φ)

This result, proved by induction on the length of t and φ, allows
us to model check an AC-MAS by verifying the corresponding MA
c-model. We tackle the latter task in the next section.

3.1 Simulation
We now introduce a notion of simulation for MA c-models and

show that it preserves the satisfaction of formulas in FO-ACTLKT .
We start with some preliminaries. In the following we consider the
MA c-models M = 〈S, s0, U,→, Ct, {∼i}i∈Ag, {Ci}i∈Ag, I〉
and M′ = 〈S′, s′0, U ′,→′, Ct

′
, {∼′i}i∈Ag, {Ci

′
}i∈Ag, I ′〉, with

s ∈ S and s′ ∈ S′.

DEFINITION 11 (STATE SIMULATION). A state s′ simulates
s, or s � s′, iff there exists a surjective function ι : U(s)→ U ′(s′)
s.t. (i) for every constant c, ι(I(c, s)) = I ′(c, s′); (ii) for every

function fk, ~u ∈ U(s)k, ι(I(fk, s)(~u)) = I ′(fk, s′)(ι(u1), . . . ,
ι(uk)); (iii) and for every Pj ∈ D, and ~u ∈ U(s)qj , ~u ∈ I(Pj , s)
iff ι(~u) ∈ I ′(Pj , s′).

Any function ι as above is a witness for s � s′. We write s
ι

� s′
to state this explicitly. Witnesses preserve the interpretation of
terms and predicates, but not necessarily the multiplicity of individ-
uals. Notice that by definition u ∈ adom(s) iff ι(u) ∈ adom(s′).

DEFINITION 12 (ASSIGNMENT SIMULATION). Let~a ∈ U(s)n

and ~a′ ∈ U ′(s′)n be n-assignments, (s′,~a′) simulates (s,~a), or

(s,~a) � (s′,~a′), iff for some witness ι, s
ι

� s′ and ι(~a) = ~a′.

We overload the symbol� to represent state and assignment sim-
ulations; the difference will be clear from the context. Notice that�
is a transitive relation on S and

S
s∈S U(s) respectively. Also, as-

signment simulation preserves the interpretation of FOT -formulas.

LEMMA 2. If (s,~a) � (s′,~a′), then for every n-term t and n-
formula φ in FOT ,

ι(~a(t)) = ~a′(t)
(M, s,~a) |= φ iff (M′, s′,~a′) |= φ

The proof is by induction on the length of t and the length and
type of φ. We now introduce the notion of simulation on MA c-
models, which will be used to extend Lem. 2 to FO-ACTLKT .

DEFINITION 13 (MODEL SIMULATION). The MA c-modelM′
simulatesM, orM�M′, iff (i) s0 � s′0; (ii) if (s,~a) � (s′,~a′)

then for every t ∈ S, ~b ∈ U(t)n, if s → t and Cts,t(~a,~b), then
there are t′ ∈ S′, ~b′ ∈ U ′(t′)n s.t. s′ →′ t′, Ct

′

s′,t′(~a
′,~b′), and

(t,~b) � (t′,~b′); and (iii) if (s,~a) � (s′,~a′) then for every t ∈ S,
~b ∈ U(t)n, if s ∼i t and Cis,t(~a,~b), then there are t′ ∈ S′,
~b′ ∈ U ′(t′)n s.t. s′ ∼′i t′, Ci

′

s′,t′(~a
′,~b′) and (t,~b) � (t′,~b′).

Again, we use the symbol � to express a simulation between
MA c-models; the difference will be clear from the context. The
simulation relation � extends to MA c-model the commutativity
conditions of standard model simulations [8]. Most importantly,
since by Remark 1 AC-MAS can be seen as a specific class of MA
c-models, Def. 13 applies also to the former. Finally, we can state
the main result of this section, namely, the simulation relation on
MA c-models preserves the satisfaction of FO-ACTLKT formulas.

THEOREM 3. Suppose that M � M′ and (s,~a) � (s′,~a′).
Then for every n-formula φ in FO-ACTLKT ,

(M′, s′,~a′) |= φ ⇒ (M, s,~a) |= φ

From Thm. 3 we immediately obtain the following result.

COROLLARY 4. If M � M′, then for every n-formula φ ∈
FO-ACTLKT , ~a′0 ∈ U ′(s′0)n, there exists ~a0 ∈ U(s0)

n such that

(M′, s′0,~a′0) |= φ ⇒ (M, s0,~a0) |= φ

By Lem. 1 and Cor. 4 we can tackle the model checking prob-
lem for an AC-MAS P and an FO-ACTLK formula φ by consid-
ering an MA c-model M′ that is similar to MP . By Cor. 4, if
(M′, s′0,~a′0) |= πn(φ) for some n-assignment~a′0, then there exists
~a0 ∈ U(s0) s.t. (MP , s0,~a0) |= πn(φ). Moreover, by Lem. 1, if
(MP , s0,~a0) |= πn(φ) then (P, s0, σ) |= φ for some assignment
σ that agrees with ~a0 on the free variables in φ. Thus, a positive so-
lution to the model checking problem for the abstract MA c-model
M′ implies a positive solution also for the concrete AC-MAS P .
In the following sections we analyse the conditions under which the
abstract MA c-modelM′ is finite and can be constructively given.
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4. FINITE ABSTRACTION
In this section we introduce the abstraction of a MA c-modelM

and show that it is similar toM. Further, we identify the conditions
under which such abstraction is finite, thus allowing the verification
of infinite-state AC-MAS by the results in Section 3. Hereafter we
assume that the sets Con of constants and F of functions are finite.
This can be done without loss of generality, as we can take Con and
F as the sets of constants and functions appearing in the formula
to be verified. All the results in previous sections still hold for FO-
ACTLK formulas on this finite language.

First, we define [s] as the equivalence class of s ∈ S according to
the symmetric closure≈ of the state simulation relation�. Further,
for s ∈ [t], [s, a][t] is the equivalence class of (s, a) according
to the symmetric closure ≈ of the assignment simulation relation
�. Notice that we overload the symbol ≈ as we did with �; the
distinction will be clear from the context. Also, ≈ is not to be
confused with the isomorphism relation ' in Section ??.

DEFINITION 14 (ABSTRACTION). Given an MA c-modelM =
〈S, s0, U,→, Ct, {∼i}i∈Ag, {Ci}i∈Ag, I〉, the abstraction of M
is a tuple M′ = 〈S′, s′0, U ′,→′, Ct

′
, {∼′i}i∈Ag, {Ci

′
}i∈Ag, I ′〉

s.t. (i) S′ = {[s] | s ∈ S}; (ii) s′0 = [s0]; and for all [s], [s′] ∈ S′,

• U ′([s]) = {[s, a][s] | a ∈ U(s)}
• [s]→′ [s′] iff there are u ∈ [s], v ∈ [s′] s.t. u→ v

• Ct
′

[s],[s′] = {([s, a][s], [s′, b][s′]) | there are (u, a′) ∈ [s, a][s],
(v, b′) ∈ [s′, b][s′] and Ctu,v(a

′, b′)}
• ∼′i is the transitive closure of relation {([s], [s′]) | there exist
u ∈ [s], v ∈ [s′] s.t. u ∼i v}
• Ci

′

[s],[s′] is the transitive closure of relation {([s, a][s], [s′, b][s′]) |
there are (u, a′) ∈ [s, a][s], (v, b

′) ∈ [s′, b][s′] and Ciu,v(a
′, b′)}

• the interpretation I ′ is s.t. (i) I ′(c, [s]) = [s, I(c, s)][s];
(ii) I ′(fk, [s])([s, a1][s], . . . , [s, ak][s]) = [s, I(fk, s)(~a)][s];
(iii) 〈[s, a1][s], . . . , [s, ak][s]〉 ∈ I ′(P, [s]) iff ~a ∈ I(P, s).

It can be shown that the abstraction of an MA c-modelM is also
an MA c-model. In particular, the interpretation I ′ is well-defined
as it is independent from the specific representative: if (s′, a′) ∈
[s, a][s], then (s′, a′) ≈ (s, a). Thus, ~a ∈ I(P, s) iff ~a′ ∈ I(P, s′).

Given an MA c-model M and its abstraction M′, we define a
mapping g : M → M′ such that for a ∈ U(s), g(a) = [s, a][s].
We now prove that the mapping g defines simulation relations.

THEOREM 5. LetM be a MA c-model with abstractionM′,

1. for all s ∈ S, g witnesses a state simulation, i.e., s
g

� [s];
2. for all s ∈ S, ~a ∈ U(s)n, g witnesses an assignment simulation,

i.e., (s,~a) � ([s], g(~a));
3.M′ simulatesM.

As a consequence, by Cor. 4 and Thm. 5(3) we obtain the fol-
lowing result.

COROLLARY 6. Let φ be an n-formula in FO-ACTLKT , and
M an MA c-model with abstractionM′. For every ~a0 ∈ U(s0),

(M′, [s0], g( ~a0)) |= φ ⇒ (M, s0,~a0) |= φ

Now we investigate the problem of determining sufficient con-
ditions for the abstraction of an MA c-modelM to be finite. This
will allow the verification of an infinite-state AC-MAS P by model
checking the finite abstraction ofMP . It turns out that, since AC-
MAS are defined on a finite database schema and we consider sim-
ulations on finite sets of constants and functions, abstractions of
AC-MAS are always finite.

THEOREM 7. For every AC-MAS P , the abstractionM′ of the
MA c-modelMP is finite.

As a consequence of Cor. 6 and Thm. 7, to verify an FO-ACTLK
formula φ on an infinite-state AC-MAS P , we can model check
πn(φ) ∈ FO-ACTLKT on the finite abstraction ofMP . We illus-
trate this methodology by elaborating on Example 1.

EXAMPLE 2. We define the abstraction M′2 of the AC-MAS
P2 in Example 1. The abstractionM′1 of P1 can be obtained simi-
larly and it is depicted in Fig. 2(c), a detailed description is omitted
for reasons of space.

We observe that P2 contains a unique run s0 → s1 → . . ., as
depicted in Fig. 1(b). Further, for every i > 0, there is a surjective
function ι : U 7→ U from si+1 to si that satisfies the conditions in
Def. 11. Specifically, the witness ι maps i+ 1 to i, any k < i+ 1
to some k′ < i, and any k > i + 1 to some k′ > i. As a result,
for every i > 0, si+1 � s1. Thus, we define the set of states in the
abstraction M′2 as S′ = {s′0, s′1}, where s′0 = [s0] = {s0} and
s′1 = [s1] = {si | i > 0}, according to the equivalence relation
≈. In particular, s′0 →′ s′1 and s′1 →′ s′1 by definition of →′.
Further, for every n,m > 0, (sm,m) � (sn, n) by the witnesses
ι defined as above. Moreover, if n′ < n,m′ < m (resp. n′ >
n,m′ > m), we have that (sm,m

′) � (sn, n
′). Hence, we ob-

tain two equivalence classes on N for n = 0: a0 = {(s0, 0)},
b0 = {(s0, n′) | n′ 6= 0}; while for n > 0 we obtain three equiv-
alence classes on N: an = {(sn, n)}, bn = {(sn, n′) | n < n′}
and cn = {(sn, n′) | n > n′}. Further, the counterpart relation
is defined asCts′0,s′1 = {(a0, c1), (b0, b1), (b0, a1)}, corresponding
intuitively to the transitions (s0, 0)→ (s1, 0), (s0, n

′)→ (s1, n
′)

for n′ > 1, and (s0, 1) → (s1, 1). Moreover, Cts′1,s′1 is equal
to {(a1, c1), (b1, b1), (b1, a1), (c1, c1)}, which corresponds to the
transitions (sn, n) → (sn+1, n), (sn, n

′) → (sn+1, n
′) for n′ >

n+1, (sn, n+1)→ (sn+1, n+1), and (sn, n
′)→ (sn+1, n

′) for
n′ < n. As regards the epistemic components, by Def. 14 we have
that ∼0 and ∼2 are the identity relation, while ∼1 is equal to S′ ×
S′. Moreover, Cis′j ,s′j is the identity for every Ai ∈ Ag′ and j =

0, 1; whileC1
s′0,s

′
1

= C1
s′1,s

′
0

= {(a0, c1), (c1, a0), (b0, b1), (b1, b0),

(b0, a1), (a1, b0)}. Finally, we remark that the FO-ACTLK formu-
las χ and θ do not contain neither constants nor functions. Hence,
the interpretation I ′ is s.t. I ′(P, s′0) = {a0}, I ′(Q, s′0) = ∅,
I ′(P, s′1) = {a1}, and I ′(Q, s′1) = {(c1, a1)}. The abstract MA
c-modelM′2 is illustrated in Fig.2 (d).

We can now model check onM′1 andM′2 the typed versions of
χ and θ, namely

χT = AG ∀x1K0(P (x1)→ AX¬P (x1))

θT = AG ∀x1K1(P (x1)→ AXAG¬P (x1))

It can be checked thatM′2 |= χT ∧ θT , andM′1 |= χT , while
M′1 6|= θT . Hence, by Lem. 1 and Cor. 6 we can derive that
P2 |= χ ∧ θ, and P1 |= χ; while nothing can be said about θ in
P1. As a result, whenever the abstraction satifies the FO-ACTLK
specification, we are able to model check AC-MAS even though
these are neither uniform nor bounded. �

We conclude by remarking that, since we consider surjective
mappings between states, multiple individuals can be “compressed”
into one single abstract individual. Hence, the abstraction of an AC-
MAS as defined in Def. 14 is not an AC-MAS in general, rather
an MA c-model that includes temporal and epistemic counterpart
relations on its elements. This motivates the introduction of MA
c-models in first place.
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s′
0

〈P (a0)〉

a0

b0

(a) the
MA c-
modelM′1

s′
0

〈P (a0)〉

a0

b0

s′
1

〈P (a1), Q(c1, a1)〉

a1

b1

c1

(b) the MA c-modelM′2

Figure 2: the MA c-modelsM′1 andM′2 (epistemic components
are omitted)

4.1 Towards Constructive Abstraction
In the previous section we defined the abstraction of an MA c-

model M and proved that it is similar to M. Also, in Thm. 7
we remarked that this abstraction is finite, thus allowing for model
checking a specification on a concrete, infinite-state AC-MAS P
by verifying the finite abstraction ofMP . However, the definition
of abstraction provided in Section ?? is not constructive in general,
as it relies on the quotient structure S/≈ of the infinite state space
S of M. In this section we explore a mechanism to build finite
abstractions constructively, starting from the way actions and tran-
sitions are specified. The following definition of actions has first
appeared in a different form in [5].

DEFINITION 15 (ACTIONS). For each service agentAi,Acti
is the set of action types α(~x) = 〈π(~y), ψ(~z)〉, where

• α(~x) is the action signature with ~x = ~y ∪ ~z as parameters;
• π(~y) is the action precondition, i.e., an FO=-formula over Di;
• ψ(~z) is the action postcondition, i.e., an FO=-formula over D ∪D′i.

Observe that we admit the use of identities in the action spec-
ifications and, differently from [5], of functions as well. Given
actions as in Def. 15, we can define the transition function as fol-
lows, where Fφ is the finite set of function symbols appearing in
a formula φ, and if k is the maximum nesting of function symbols
in φ, F kφ (~u) is the finite set of elements obtained by applying the
functions f ∈ Fφ to individuals in ~u at most k times.

DEFINITION 16 (PROTOCOL AND TRANSITION FUNCTION).
Let αi(~xi) = 〈πi(~yi), ψi(~zi)〉 be an action for service agent Ai ∈
Ag, and ~ui = ~vi∪ ~wi individuals in the domain U . Then, αi(~ui) ∈
Pri(li) iff (li, σ) |= πi(~yi) for σ(~yi) = ~vi.

Further, for an AC-MAS P on Ag the transition function τ is
defined so that, for s = 〈l0, . . . , ln〉 and s′ = 〈l′0, . . . , l′n〉, s′ ∈
τ(s, 〈α(~u)〉) iff for every Ai ∈ Ag,

1. (Ds ⊕ l′i, σ′) |= ψi(~zi) for σ′(~zi) = ~wi

2. adom(l′i) ⊆ adom(li) ∪ F kψi
(~wi) ∪ con(ψi)

In Def. 16 we consider a satisfaction relation |= between database
instances and FO=-formulas, which can be derived from Def. 5.
Also, ⊕ is the disjoint union of db instances introduced in Sec-
tion ??. Notice that by condition (2) the number of candidates for
each l′i is finite. Also, condition (1) can be effectively computed.

Hence, the transition function is decidable. Notice that in general
we have multiple successors s′ for given s and α(~u), but always in
finite number.

EXAMPLE 3. We show that the agent services in Example 1 and
2 can be described by means of actions as specified in Def. 15. For
each agent Ai, i ≤ 2, we assumed that Acti = {αi(n)}, where
each αi(n) = 〈πi, ψi(n)〉 is specified as

πi = true
ψi = (((n− i)%3 = 2) ∧ P (n) ∧ P ′(n+ 1)∧

∀x((x 6= n+ 1)→ ¬P ′(x)))∨
(((n− i)%3 6= 2) ∧ P (n) ∧ ∀x¬P ′(x))

Further, for A′2 we have that α′2(n) = 〈π′2, ψ′2(n)〉 is specified
as

π′2 = true
ψ′2 = ψ2 ∧Q′(n, n+ 1)∧

∀x, y(Q(x, y)→ Q′(x, n+ 1) ∧Q′(y, n+ 1))∧
(Q′(x, y)→ (y = n+ 1) ∧ ∃z(Q(x, z) ∨Q(z, x)))

It can be checked that the protocols and transition function as
defined in Def. 16 correspond indeed to those for the AC-MAS P1

and P2 in Example 1. Notice the use of function symbols ‘+1’
(successor) and ‘%3’ (remainder of division by 3), which entails
that the AC-MAS thus obtained are not uniform in general. �

Actions specified as in Def. 15 generate AC-MAS that are not
necessarily uniform. This is in contrast with the situation for AC-
MAS described by actions on a language without function symbols.
For that restricted language it was shown that the corresponding
AC-MAS are always uniform [5, 6]. Thus, the increased expres-
siveness of the specification language for actions requires the novel
verification technique put forward in this paper.

Now we explore methods to obtain finite abstractions construc-
tively and consider the following condition on AC-MAS.

DEFINITION 17 (WEAK UNIFORMITY). An AC-MASP is weakly

uniform iff for every s, s′ ∈ S, if s ≈ s′, s α(~u)−−−→ t and s′
α(~u′)−−−→ t′,

then t ≈ t′.

If an AC-MAS is weakly uniform, then its temporal evolution
modulo the relation ≈ is captured by the actions independently
from ground parameters. Weak uniformity still allows for great
expressiveness. In particular, the AC-MAS in Examples 1-3 are
weakly uniform. Notice that weak uniformity is strictly weaker
than fully-fledge uniformity; for instance the AC-MASP1 is weakly
uniform but not uniform. Also, weakly uniformity admits unboud-
edness as it is the case for the AC-MAS P2.

Now we briefly describe the construction of the abstract MA c-
modelM′P for a weakly uniform AC-MAS P . We keep this dis-
cussion informal for reasons of space. Starting from the initial state
s0, for each s ∈ S and each joint action α(~x) we consider all tu-
ples ~u containing elements in adom(s) together with at most |~x|
elements not in adom(s) (notice that the elements in U \ adom(s)
behave in the same way w.r.t. the satisfaction of FO=-formulas).

Obviously the number of such tuples is finite. Further, if s
α(~u)−−−→ t

for some ~u, then we add the representative t to the set of reachable
states in the abstraction, unless t ≈ t′ for some t′ already appear-
ing in the set of reachable states. Since the number of equivalence
classes according to ≈ is finite, this construction terminates after a
finite number of steps, returning the abstractionM′P .

EXAMPLE 4. To give a hint of the methodology proposed, we
build part of the abstract MA c-modelM′2 for the unbounded and
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weakly uniform AC-MAS P2, starting from the initial state s0. We
first observe that, since the active domain of s0 is finite and all non-
active individuals can be mapped to any u ∈ N\adom(s0), we ob-
tain two equivalence classes in s′0 = [s0], that is, a0 = [s0, 0][s0] =
{(s0, 0)} and b0 = [s0, n][s0] = {(s0, n) | n 6= 0}. Then, we con-
sider the only joint action α(n) in P2 with n ∈ adom(s0) = {0}
or n equal to any u ∈ N \ adom(s0). The transition triggers only

in the former case and we have s0
α(0)−−−→ s1. We add s1 to the

set of reachable states inM′2 as s1 6≈ s0. Again, we consider the
joint action α(n) for n ∈ adom(s1) = {0, 1} or n equal to any
u ∈ N \ adom(s1). Now the transition is triggered only for n = 1

with s1
α(1)−−−→ s2. Moreover, by considering the finitely many su-

jective functions from adom(s2) to adom(s1) we can check that
s2 � s1, that is, s2 ∈ [s1]. Therefore, in the abstractM′2 we only
add a reflexive transition on [s1]. This concludes the construction
of the abstractionM′2 for P2, as by weak uniformity we know that

if s2
α(u)−−−→ t for some u ∈ N, then in particular, since s1

α(1)−−−→ s2
and s1 ≈ s2, it is the case that t ≈ s2, i.e., t ∈ [s2] = [s1]. �

As a result, if an AC-MAS is weakly uniform, even though it is
neither uniform nor bounded, we know that a finite similar abstrac-
tion can be constructively obtained.

5. CONCLUSIONS AND FURTHER WORK
In this paper we introduced an abstraction methodology for a

class of artifact-centric systems that was not yet tractable by the
current state-of-the-art, namely non-uniform and unbounded AC-
MAS. We remarked that non-uniform AC-MAS rise naturally when
considering specification languages for agent actions that contain
functions. This feature is often crucial to express functional depen-
dency between data in our underlying databases, as well as their
temporal evolution. Further, we identified the class of weakly uni-
form AC-MAS, which admits a constructive procedure for building
abstractions, while being strictly weaker than fully-fledge unifor-
mity, as it allows for unbounded systems. Finally, we see the simu-
lation and abstraction notions put forward as interesting theoretical
contributions per se to the semantics of first-order modal logic.

Related Work. To the best of our knowledge, [7, 18] are among
the first contributions to consider the verification of artifact-centric
business processes. This line of research was pursued further in
[16, 13], where the decidability of the model checking problem is
obtained by syntactically restricting the system description and the
specification language. Differently from [16, 13], we do not con-
straint the alternation of quantifiers and modal operators. This con-
stitutes a major challenge for the development of abstraction tech-
niques. Closely related to the present contribution is [19], where
conditions for decidable model checking of data-centric dynamic
systems are given. However, also [19] restricts quantification. More-
over, this paper differs from similar results in [4, 5, 6, 15] as we do
not assume uniformity nor boundedness as conditions to obtain fi-
nite abstractions. This approach is in common with [3], but here we
consider a multi-agent system setting and a specification language
including epistemic operators. Most importantly, our language con-
tains function symbols. This features entails that our AC-MAS are
not uniform in general, thus calling for more sophisticated abstrac-
tion techniques. Finally, we also presented some preliminary inves-
tigations into constructive abstraction building.

There is a number of directions to extend the results here pre-
sented. In particular, we aim at developing the methodology for
building abstractions of weakly uniform systems outlined in Sec-
tion ?? into an effective verification technique. In this respect,
results on the complexity of the procedure, that has not been ad-

dressed here, are of utmost importance.
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