
Laughter Animation Synthesis

Yu Ding
Institut Mines-Télécom

Télécom Paristech
CNRS LTCI

Paris, France

Ken Prepin
Institut Mines-Télécom

Télécom Paristech
CNRS LTCI

Paris, France

Jing Huang
Institut Mines-Télécom

Télécom Paristech
CNRS LTCI

Paris, France

Catherine Pelachaud
Institut Mines-Télécom

Télécom Paristech
CNRS LTCI

Paris, France

Thierry Artières
Université

Pierre et Marie Curie
LIP6

Paris, France

ABSTRACT
Laughter is an important communicative signal in human-
human communication. However, very few attempts have
been made to model laughter animation synthesis for vir-
tual characters. This paper reports our work to model hi-
larious laughter. We have developed a generator for face and
body motions that takes as input the sequence of pseudo-
phonemes of laughter and each pseudo-phoneme’s duration
time. Lip and jaw movements are further driven by laugh-
ter prosodic features. The proposed generator first learns
the relationship between input signals (pseudo-phoneme and
acoustic features) and human motions; then the learnt gen-
erator can be used to produce automatically laughter ani-
mation in real time. Lip and jaw motion synthesis is based
on an extension of Gaussian Models, the contextual Gaus-
sian Model. Head and eyebrow motion synthesis is based on
selecting and concatenating motion segments from motion
capture data of human laughter while torso and shoulder
movements are driven from head motion by a PD controller.
Our multimodal behaviors generator of laughter has been
evaluated through perceptive study involving the interac-
tion of a human and an agent telling jokes to each other.
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1. INTRODUCTION
Laughter is an essential communicative signal in human-

human communication: it is frequently used to convey pos-
itive information about human affects; it can be used as
feedbacks to humorous stimuli or praised statements; it can
be used to mask embarrassment; it can act as social indica-
tor of in-group belonging [1]; it can play the role of speech
regulator during conversation [17]. Laughter may also have
positive effects on health [9]. Laughter is extremely conta-
gious [17] and can be used to elicit interlocutor’s laughter.

Our aim is to develop an embodied conversational agent
able to laugh. Laughter is a multimodal process involving
speech information, facial expression and body gesture (e.g.
shoulders and torso movements), which often occurred with
observable rhythmicity [18]. Niewiadomski and Pelachaud
[12] indicated that the synchronization among all the modal-
ities is crucial for laughter animation synthesis. Humans
are very skilled in reading nonverbal behaviors and in de-
tecting even small incongruences in synthesized multimodal
animations. Embodied conversational agents ECAs are au-
tonomous virtual agents able to converse with human inter-
actants. As such their communicative behaviors are gener-
ated in real-time and cannot be pre-stored. To achieve our
aim to simulate laughing agent, we ought to reproduce the
multimodal signals of laughter and their rhythmicity. We
have developed a multimodal behaviors synthesis for laugh-
ter based on motion capture data and on a statistical model.

At a first stage, we focus on hilarious laughter that is
laughter triggered from amusing and positive stimuli (e.g.,
a joke). We use the AVLaughterCycle database [21] which
contains motion capture data of the head movements and
facial expressions of humans watching funny movies.

Our model takes as input the laughter segmentation in
small sound units, called pseudo-phonemes [22] in reference
to phonemes in speech, and their duration. Using audio-
visual data of laughter, the model learns the correlation
between lip data and these pseudo-phonemes. Due to the
strong correlation between acoustic features (such as energy
and pitch) and lip shape, our model considers also these
features in computing lip shapes and jaw movement.

On the other hand, we do not consider speech features
when computing head movements and facial expressions;
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we keep only the pseudo-phonemes data. Indeed, many of
the pseudo-phonemes in a laughter correspond to unvoiced
speech, also called silent laughter [22]. Laughter intensity
may be very strong even during these unvoiced segments
[13]. Niewiadomski and Pelachaud [12] reported that there is
a strong relationship between laughter behaviors and laugh-
ter intensity. Laughter with high intensity involves not only
movements with larger amplitude but also different types of
movement. For example, frown arises very often when the
laugh is very strong but not when it is of low intensity. So
instead of using speech features that can not capture these
features (linked to silent laughter and laughter intensity),
a cost function has been defined to select and concatenate
head and eyebrows segments motion stored in motion cap-
ture database. Thus, our model accounts only on pseudo-
phonemes for head movements and facial expressions.

The AVLaughterCycle database contains only data on
head movements and facial expressions. Torso and shoul-
ders movement has not been recorded using motion capture
data. To overcome such missing data, we have built a con-
troller linking torso movement and head one. We rely on
observational study of the videos of the AVLaughterCycle
database.

In the remaining of this paper we first describe related
works in section 2. Then we describe the dataset used in
our experiments in section 3 and we detail our multimodal
motion synthesis in section 4. Finally we describe in details
our experiments and we comment the results in section 5.

2. RELATED WORKS
In this section, we present related works on laughter mo-

tion synthesis.
DiLorenzo et al. [5] proposed a physics-based model of

human chest deformation during laughter. This model is
anatomically inspired and synthesizes torso muscle move-
ments activated by the air flow within the body. Yet, the
animation cannot be synthesized in real-time and the model
can not be easily extended to facial motion (e.g. eyebrow)
synthesis.

Cosker and Edge [4] used HMM to synthesize facial mo-
tion from audio features (MFCC). The authors built several
HMMs to model laughter motion, one HMM per subject.
To compute the laughter animation of new subject, the first
step is to classify the laughter audio into one HMM by com-
paring the mostly likelihood. Then the selected HMM is
used to produce the laughter animation. The authors do
not precise how many HMMs should be built to cover var-
ious audio patterns from different subjects. The use of the
classification operation as well as of the Viterbi algorithm
makes impossible to obtain animation synthesis in real time.
In the states sequence computed by the Viterbi algorithm,
one single state may last very long. It leads to unchanged
motion position during such a state, which produces unnat-
ural animations.

Niewiadomski and Pelachaud [12] consider how laughter
intensity modulates facial motion. A specific threshold is
defined for each key point. Each key point moves linearly
according to the intensity if it is higher than the correspond-
ing threshold. So, if the intensity is high, the facial key
points concerning laughter move more. In this model, fa-
cial motion position depends only on laughter intensity. It
lacks of variability. Moreover, all facial key points move al-
ways synchronously, while human laughter expressions do

not. For example, for the same intensity, one human sub-
ject can move both eyebrows, another one only one eyebrow.
In their perceptive study, each laughter episode is specified
with a single value of intensity. It leads to only one invari-
able facial expression during this laughter episode.

Later on, Niewiadomski et al. [11] propose an extension
of their previous model. Recorded facial motion sequence
is selected by taking into account two factors: laughter in-
tensity and laughter duration. In this model, coarticula-
tion of lip shapes is not considered which may lead to non-
synchronisation between lip shape and audio information
(e.g. closed lip and strong intensity audible laughter infor-
mation). Moreover, the roles of intensity and duration are
not attentively distinguished when selecting recorded mo-
tion sequence. As a side effect, the selected motion may last
differently (e.g. too short) than the desired duration.

Urbain et al. [21] proposed to compare the similarity of
new and recorded laughter audio information and then to
select the corresponding facial expressions sequence. The
computation of the similarity is based on the mean and stan-
dard deviation of each audio feature during the laughter au-
dio sequence. It means that the audio sequence is specified
by only two variables: mean and standard deviation. This
is not enough to characterize long audio sequence.

3. DATABASE
Our work is based on the AVLaughterCycle database [21].

This database contains more than 1000 audiovisual sponta-
neous laughter episodes produced by 24 subjects. 66 facial
landmarks coordinates were detected by an open-source face
tracking tool - FaceTracker [19]. Among these 66 landmarks,
22 landmarks correspond to the Facial Animation Parame-
ters FAPs of MPEG-4 [15] for the lips and 8 landmarks for
the FAPs for the eyebrows.

In this database, subjects are seated in front of a PC and a
set of 6 cameras. They watch funny movies for about 15mn.
Their facial expressions, head movements and laughter are
then analyzed using FaceTracker. However body behaviors
(e.g. torso and shoulders behaviors) are not recorded in this
database. 24 subjects were recorded but only 4 subjects
had their head motion tracked. Therefore, a sub dataset of
4 subjects with head motion data is used in our work.

This database includes acoustic data of laughter. In par-
ticular it contains the segmentation of laughter into small
sound units. [22] has categorized audible information from
laughter into 14 pseudo-phonemes according to human hear-
ing perception. These 14 pseudo-phonemes correspond to
(number of occurrences of these pseudo-phonemes are speci-
fied in parentheses): silence(729), ne(105), click(27), nasal(126),
plosive(45), fricative(514), ic(162), e(87), o(15), grunt(24),
cackle(10), a(144), glotstop(9) and vowel(0). So laughter
is segmented into sequences of pseudo-phonemes and their
durations. Laughter prosodic features (such as energy and
pitch) have also been extracted using PRAAT [2] and are
provided with the database.

In our model we focus on face and head motion synthesis
from laugher pseudo-phonemes sequence (e.g. [a, silence,
nasal]) and their duration (e.g. [0.2s, 0.5s, 0.32s]). We take
prosodic features as additional inputs for lip and jaw motion
synthesis. Section 4 provides further details on our model.

Since the AVLaughterCycle database does not contain any
annotation about torso movement, neither from sensors nor
from analysis, we base our torso animation model on the
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Figure 1: Overall architecture of multimodal behav-
iors synthesis

observations that head and torso movements are correlated.
As explained in section 4.3, we build a PD controller that
extrapolates torso movement from head one.

4. MOTION SYNTHESIS
Figure 1 illustrates the overall architecture of our multi-

modal behavior synthesis. Our aim is to build a generator of
multiple outputs (lip, jaw, head, eyebrow, torso and shoul-
der motions) from an input sequence of pseudo-phonemes
together with their duration and from speech prosodic fea-
tures (i.e. pitch and energy). Although one could consider
designing a model that jointly synthesizes all the outputs
from the inputs we use three different systems to synthesize
three kinds of outputs. We briefly motivate our choices then
we present in details the three modules.

First to accurately synthesize lip and jaw motions, which
play an important role in articulation, we exploit all our in-
puts, namely the speech features and the pseudo-phoneme
sequence, in a new statistical model that we describe in sec-
tion 4.1. Using speech features as input yields an accurate
synthesized motion that is well synchronized with speech,
which is required for high quality synthesis.

Second, although it has been demonstrated in the past
that speech features allow accurate prediction of head and
eyebrow motion for normal speech [3, 8, 7, 6], the relation-
ship between speech features and a laughter’s head and eye-
brow motion is unknown. Moreover exploring our laughter
dataset we found that some segments have significant head
and eyebrow motion while they are labeled as unvoiced seg-
ments. We then turned to exploit a more standard synthesis
by concatenation method that we simplify to allow real time
animation. Our method is described in section 4.2.

At last, body (torso and shoulder) motion, which are
important components for laughter realism [18], are deter-
mined in a rather simple way from the synthesized head
motion output by the algorithm in section 4.2. The main
reason for doing so is that there is no torso and shoulder
motion information gathered in our dataset so that none of
the two synthesis methods above may be used here. More-
over we noticed in our dataset a strong correlation between
head move on the one hand and torso and shoulders moves
on the other hand. We then decided to hypothesize a simple
relationship between the two motions that we modeled with
a proportional-derivative (PD) controller. We present such
a model in section 4.3.

4.1 Lip and jaw synthesis module
To design the lip and jaw motion synthesis system, we

used what we call a contextual Gaussian model standard
(CGM). A CGM is a Gaussian distribution whose parame-

ters (we considered the mean vector but one could consider
the covariance matrix as well) depend on a set of contextual
variable(s) grouped in a vector θ (it is a vector of dimension
c). Basically the underlying idea of a CGM is to estimate
the distribution of a desired quantity x (the lip and jaw mo-
tion) as a function of an observed quantity θ (the speech
features). In a CGM with a parameterized mean vector, the
mean of the CGM obeys:

µ̂(θ) = Wµθ + µ̄j (1)

p(x|θ) = N(x;µ(θ),Σ) (2)

where Wµ is a d × c matrix, and µ̄ is an offset vector. θ
stands for the value of contextual variable. This modeling
is inspired from ideas in [7] where it has been shown to be
accurate to predict motion from speech in normal speech
situation.

We use one such CGM for each of the 14 pseudo-phonemes
so that we get a set of 14 CGMs. Somehow, it is a condi-
tional mixture of Gaussian distribution. Each model CGM
is learned to model the dependencies between the lip/jaw
motion and the speech features from a collection of training
pairs of speech features and of lip and jaw motion.

The CGM model of a pseudo-phoneme is learned through
Maximum Likelihood Estimation (MLE). For compact no-
tation, we first define the matrix Zµ = [Wµ µ̄] and the
column vector Ωt = [θt 1]T . Equation 1 can then be rewrit-
ten as µ̂(θt) = Zµ×Ωt. The solution of the MLE estimation
may be easily found to be:

Zµ = [
∑
t

xtΩt][
∑
t

ΩtΩt]
−1 (3)

where we consider a single training sequence case and the
sum ranges over all indices in the sequence.

At synthesis time one has as inputs a series of speech
features and a sequence of pseudo-phonemes together with
their duration. The synthesis of the lip and jaw motion is
performed independently for every segment corresponding
to a pseudo-phoneme of the sequence then the obtained sig-
nal is smoothed at articulation between successive pseudo-
phonemes. One can adopt few techniques to synthesize the
lip and jaw motion segment given a pseudo-phoneme (with
a known duration) and speech features.

A first technique consists in relying on a synthesis method
that has been proposed for Hidden Markov Models by [20]
which yields smooth trajectories. Alternatively, a simpler
approach consists in using the speech features θt at time t to
compute the most likely lip and jaw motion, i.e. µ(θt). This
is the approach we used in our implementation to ensure
real time synthesis. Note that the obtained motion sequence
(µ(θt))t is reasonably realist since speech features most often
evolve smoothly.

4.2 Head and eyebrow synthesis module
Our approach to head and eyebrow synthesis system is

based on selecting and concatenating motions from origi-
nal data corresponding to the input pseudo-phonemes se-
quence. This may be done provided one has a large enough
collection of real motion segments corresponding to every
pseudo-phoneme. Such data are available from from the
AVLaughterCycle database [21] which includes head and
eyebrow motion data and which has been manually labeled
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Figure 2: Head and eyebrow synthesis framework
is performed by the concatenation of motion seg-
ments, gathered from real data, corresponding to a
given pseudo-phoneme sequence and their duration.
Green curve are samples of motion segments while
the red arrow indicates the sequence of selected mo-
tion segments. The chosen motion segment is the
one that minimizes a cost function of fit with the
sequence of pseudo-phonemes.

into pseudo-phoneme segments. Actually for each of the 14
pseudo-phoneme labels, ppi, we have a number Ni of head
and eyebrow real moves that we note Si =

{
mi
j , j = 1..Ni

}
.

For a given pseudo-phoneme sequence of lengthK, (p1, ...pK)
(with ∀k ∈ 1..K, pk ∈ {pp1, ..., pp14}), noting d(pk) the du-
ration of the kth pseudo-phoneme in the sequence, the syn-
thesis by concatenation method aims at finding the best se-
quence of segments (s1, s2, ..., sK) belonging to Sp1 × Sp2 ×
...×SpK (with d(sk) the duration of the segment) such that
a cost function (that represents the quality of fit between
the segment sequence and the pseudo-phonemes sequence)
is minimized. Figure 2 illustrates our head and eyebrow syn-
thesis framework. In our case the cost function is defined
as:

C [(s1, s2, ..., sK), (p1, p2, ..., pK)] (4)

= γ
∑

u=1..K

CDur(d(su), d(pu)) (5)

+ (1− γ)
∑

u=2..K

CCont(su−1, su) (6)

where CDur is a duration cost function that increases with
the difference between the length of a segment and the length
of the corresponding pseudo-phoneme, and where CCont is
a continuity cost function that increases with the distance
between the last position of a segment and the first posi-
tion of the following segment, and where γ is a manually
tuned parameter (between 0 and 1) that allows weighting
the importance of continuity and duration costs.

The two elementary cost functions are defined as follows,
there are illustrated in Figure 3:

CDur(d, d
′) = e|d−d

′| − 1 (7)

and:

CCont(s, s
′) =

∥∥last(s)− first(s′)∥∥2 (8)

where first(s) and last(s) stand for the first and the last
positions in segment s.

Figure 3: Shape of the duration cost function CDur =
f(v) = e v − 1 and of the continuity cost function
CCont = g(v) = v2 as a function of their argument
v.

Once a sequence of segments (s1, s2, ..., sK) has been de-
termined the synthesis of head and eyebrow motion corre-
sponding to the pseudo-phonemes sequence requires some
processing. Indeed the selected segments’ duration may not
be exactly the same as the pseudo-phonemes’ duration. Se-
lected segments are then linearly stretched or shrank to ob-
tain the required duration. Note that it is assumed that
stretching and shrinking of segment motion have no effect
on human perception as long as segment duration has mini-
mal variation. Also it may happen that there is a significant
distance between the last frame of a segment and the first
frame of the next segment which would yield discontinuous
moves. To avoid this we perform a local smoothing by lin-
ear interpolation at the articulation between two successive
segments.

Note that to allow real-time animation, we use a simpli-
fied version of the synthesis by concatenation method by
selecting iteratively the first segment, then the second, then
the third according to a local cost function focused on the
current segment s, γCDur(d(s), d(p)) + (1 − γ)CCont(s

′, s)
where p stands for the current pseudo-phoneme, whose du-
ration is d(p), and s′ stands for the previous segment. The
obtained sequence of segments may then not be the one that
minimizes the cost in Eq. (4), it is an approximation of it.

Note finally that the duration cost increases much quicker
than the continuity cost (see Figure 3), which is wanted since
as we said previously stretching and shrinking are tolerable
only for small factors, while smoothing the end of a segment
and the beginning of the following segment is always pos-
sible to avoid discontinuous animation. Defining the cost
functions as in equations (7) and (8) strongly discourages
high stretching and shrinking factors.

4.3 Torso and shoulder synthesis module
As we explained before torso and shoulder motion is syn-

thesized from the synthesized head motion which is output
by the algorithm described in the previous section. Although
[18] reported torso and shoulders motions are important
components of laughter, there is no such motion data in the
AVlaughtercycle corpus. Thus the synthesis methods used
for lip and jaw or for head and facial expressions cannot
be used. Through careful observation of the AVlaughter-
cycle dataset we notice a strong correlation between torso
and head movements. For instance we did not find any case
where torso and head are going in opposite direction. Thus
we hypothesize that torso and shoulder motion follows head
motion and that a simple prediction module may already
perform well for natural-looking animation.

Based on these observations, torso and shoulder move-
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ments of the virtual agent are synthesized from head move-
ments. In more details, we define a desired intensity (or
amplitude) of each torso and shoulder movement which is
decided by the head movement. This desired intensity is the
desired value in a PD (proportional derivate) controller. We
choose to use a PD controller (illustrated in Fig 4) since it
is widely used in graphics simulation domain [10], which is a
simple version of proportional-integral-derivative controller
(PID) in classical mechanics. The PD controller ensures
smooth transitions between different motion sequences and
removes discontinuity artifacts.

The PD controller is defined as:

τ = kp(αcurrent − α)− kdα

where τ is the torque value, kp is the proportional parameter,
αcurrent is the current value of the head pitch rotation (ie
vertical rotation as in head nod), α is the previous head
pitch rotation, kd is the derivative parameter, α is the joint
angle velocity. At the moment, we defined manually, by trial
and error, the parameters of the PD controller.

P kp

D kd

Torque

+

+

+

Output

Input

Figure 4: PD controller is used to compute torso and
shoulders motion for each frame. Input: current
head pitch rotation; Output: torso and shoulders
joints

We define two controllers, one for torso joints (vt3, vt6,
vt10, vl2) and one for shoulders joints (acromioclavicular,
sternoclavicular) which are defined in MPEG4 H-ANIM skele-
ton [15]. The other torso joints are extrapolated from these
4 torso joints. To avoid any ”freezing” effect we add a Perlin
noise [16] on the 3 dimensions of the predicted torso joints.

Our PD controllers communicate with our laughter real-
izer module to generate laughter upper body motions. The
laughter realizer module is used to synchronize all the laugh-
ter motions.

5. EXPERIMENTS
In this section we describe examples of laughter anima-

tions. We also present an evaluation study where the agent
and human participants exchange riddles. The input to our
motion synthesis model includes laughter pseudo-phonemes
sequence, each phoneme duration and audio features (pitch
and energy) sequence. Our motion synthesis model gener-
ates multimodal motions synchronized with laughter audio

Figure 5: Synthesized lip, front view

Figure 6: Synthesized data, front view

in real time. Figure 5, Figure 6 and Figure 7 present several
frames of the animation synthesized by our approach.

Our next step is to measure the effect of these laughs
on partners of an interaction with a laughing agent. For
this purpose, we have conducted a study to test how users
perceive laughing virtual characters when the virtual char-
acter laughs during its speaking turn and when it listens.
This study has been thought as a step further of Ochs and
Pelachaud’s study on smiling behaviour [14] (see below for
a short description): the smiling behaviours used in [14] are
used as the control condition; that is the virtual character
smiles instead of laughing.

Considering the type of behaviour that we want to test, i.e.
laugh, the experimental design of [14] is particularly appro-
priate. Indeed, in order to explore the effect of amusement
smiling behaviours on users’ perception of virtual agents,
the authors chose positive situations to match the types of
smile: in their experiment, the agent asks a riddle to the
users, make a pause and give the answer. We use the four
jokes and the description of polite and amused smiles of [14]’s
evaluation study.

We have conducted a perceptive study to evaluate how
users perceive how a virtual character laughs or smiles when,
either telling a riddle, or listening to a riddle. We consider
the following conditions: when the virtual character tells
the joke and laughs or smiles, and when the human user
tells the joke and the virtual character laughs or smiles.

Figure 7: Synthesized data, side view
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Thus, we have two ”test conditions” which are the laugh-
ing conditions, when speaking or listening, and two ”control
conditions” which are the smiling conditions, when speaking
or listening.

Hypotheses.
Our hypotheses are: (1) the evaluation of the agent’s at-

titude: we expect that the agent which laughs when the
human user tells a joke will be perceived as warmer, more
amused, more positive than the agent which only smiles; (2)
the evaluation of the joke: we expect that when the agent
laughs to the user’s joke, the user will evaluate “his” joke as
funnier.

5.1 Setup
The main constraint for our evaluation is to have real

time reaction of the agent to the human user’s behaviour.
This constraint is induced by the listening agent condition
in which the user tells the joke and the agent has to re-
act at appropriate time, i.e. at the end of the joke. As
a consequence for the design of our study, we cannot use
pre-recorded videos of the agent’s behaviour and thus, we
cannot perform the evaluation on the web as in [14]. We
performed the evaluation in our lab.

Participants sit on a chair in front of computer screen.
They wear headphones and microphone and have to use the
mouse to start each phase of the test and to fill in the asso-
ciated questionnaires (see Figure 8).

Figure 8: Screenshot of experiment interface.

Each participant saw four jokes in the four conditions,
alternating speaking and listening conditions. Here is an
example of the sequence of conditions that a participant can
have: Agent speaks and smiles, Agent listens and laughs,
Agent speaks and laughs, Agent listens and smiles. These
sequences of condition are counter balanced to avoid any
effect of their order.

Questionnaires.
To evaluate how is the act of telling a riddle perceived

when the agent listens to the user’s riddle and when the
agent tells a riddle to the user, we used a questionnaire sim-
ilar to [14]. After watching each condition, the user had to
rate two sets of factors on five degrees Likert scales:

• 3 questions: Did the participant find the riddle funny.
How well s/he understood the riddle. Did s/he like the
riddle.

• 6 questions related to the stance of the virtual char-
acter. Stance is defined in Scherer [28] as the “af-
fective style that spontaneously develops or is strate-
gically employed in the interaction with a person or

a group of persons, colouring the interpersonal ex-
change in that situation (e.g. being polite, distant,
cold, warm, supportive, contemptuous)”. We used pos-
itive qualifiers for the stance of the virtual agent: (1) Is
the speaker-agent: spontaneous, warm, amusing? (2)
Is the listener-agent: spontaneous, warm, amused? We
used negative qualifiers: (1) Is the speaker-agent: stiff,
boring, cold? (2) Is the listener-agent: stiff, bored,
cold? For the stance, the questions are of the form:
Do you think the agent is stiff/cold...?

Speaking agent condition.
A message pop-up on the screen explaining that the agent

will tell a small joke and that the questionnaire can be filled
just afterwards. When the user clicks on the “ok” button,
the agent tells the joke (and smiles or laughs depending on
the condition). Then the user fills in the questionnaire.

Listening agent condition.
A message pop-up on the screen, with a short riddle (two

lines) and explaining that the user has to tell this story to
the agent and that the questionnaire can be filled just af-
terwards. When the user clicks on the “ok” button, the text
of the joke disappears, the user tells the story to the agent;
the agent either smiles or laughs at the joke, depending on
the condition. In the listening agent condition, the speech
and pauses of the human participants are detected to au-
tomatically trigger the smiles and laughs of the agent at
appropriate time. After having told the riddle, the user fills
in the questionnaire.

5.2 Virtual agent’s behaviour and conditions
To evaluate the impact of agent’s laugh on user’s percep-

tion of the agent and of the riddle, we have considered four
conditions.

• Two “test conditions” which are the laughing condi-
tions: (1) the virtual character asks the riddle and
laughs when it gives the answer; (2) the virtual char-
acter listens to the riddle and laughs when the partic-
ipant gives the answer.

• Two “control conditions” which are the smiling con-
ditions: (1) the virtual character asks the riddle and
smiles when it gives the answer; (2) the virtual charac-
ter listens to the riddle and smiles when the participant
gives the answer.

Riddles.
Both the virtual character and the human user tell their

riddle in French. When translated into English the joke is
something like: “What is the future of I yawn? (speech
pause) I sleep!”. According to [14] the selected four riddles
are rated equivalently.

Smiles.
The smiles synthesised here correspond to the smiles val-

idated in [14]. We used a polite smile for the question part
of the riddle and an amused smile at the end of the answer.

Laughs.
The laughs that are used in the experiment are the two

laughs that were described at the beginning of section 5.
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5.3 Participants
Seventeen individuals participated in this study (10 fe-

male) with a mean age of 29 (SD = 5.9). They were recruited
among the students and professors of our University. The
participants have all spent the majority of the last five years
in France and were mainly native from France (N=15). Each
participant took all the four conditions. In the next section,
we present in details the results of this test.

5.4 Results
To measure the effects of laughs on the user’s perception,

we have performed repeated measures ANOVA (each partic-
ipant saw the four conditions) and the post hoc Tukey’s test
to evaluate the significant differences of rating between the
different conditions (agent Speaks and Smiles (SS), agent
speaks and laughs (SL), agent listens and smiles (LS), agent
listens and laughs (LL)).

No significant differences were found between conditions
for Understanding and Finding funny the riddle. No sig-
nificant differences were found between conditions for the
agent’s Spontaneous and Stiff. Significant differences be-
tween conditions were found for the other variables: How
much the agent finds the riddle funny (F = 1.3,p < .001),
How much the agent is stiff (F = 3.8, p < 0.05), warm (F =
6.58, p < .001), boring/bored (F = 6.23, p < .001), enjoy-
able/amused (F = 6.31, p < .001) and cold (F = 5.46, p <
.001).

The post-hoc analysis on the significant results are pre-
sented in Table 1. For each conditions pair we report results
to items of the questionnaire that were given to the partici-
pants for which significant differences were found. Thus we
do not report results for the various conditions presented just
above (e.g. Understanding, Finding Funny the riddle). We
report only the results for the qualifier Stiff as no significant
difference has been found between Stiff and Spontaneous.
In the Table 1, the first column indicates which conditions
are compared (agent Speaks and Smiles (SS), agent speaks
and laughs (SL), agent listens and smiles (LS), agent listens
and laughs (LL)) and the first line indicates the concerned
variables. The other columns are the positive and negative
qualifiers for speaker-agent and listener-agent (e.g., bored
/boring). The second column indicates results regarding if
the agent liked the riddle (either told by the participant or
by itself, depending on the condition). The inside elements
of the table correspond to the condition in which the vari-
able is significantly higher (n.s. means non significant, *:
p < .05, **: p < .01, ***: p < .001). If in a comparison,
no significant differences are found, we mark n.S.; while if
there are significant differences, we indicate the condition
with a higher result followed by the number of stars that
gives the confidence level of the results. For instance, in
Table 1, the notation LL*** at the intersection of the line
LL-LS and the column Warm means that, the agent when it
Listens and Laughs is perceived significantly warmer (with
p < .001) than when it Listens and Smiles.

6. DISCUSSION

Listening conditions.
The results of the second line of Table 1 (LL-LS) tend

to show that a listening agent which laughs at the joke of
the user is perceived significantly more positive (warmer,

Condi-
tions

Agent
riddle
liking

Stiff
/Stiff

Warm
/Warm

Boring
/Bored

Enjoya-
ble

/Amused

Cold

SL-SS SL** n.s. n.s. n.s. n.s. n.s.

LL-LS LL*** n.s. LL*** LS*** LL*** LS***

SS-LL LL** n.s. n.s. n.s. LL* n.s.

SS-LS SS** n.s. n.s. LS* n.s. LS*

SL-LS SL*** LS* SL*** LS*** SL** LS**

SL-LL n.s. n.s. n.s. n.s. n.s. n.s.

Table 1: Results of ANOVA tests when comparing
the pairs of conditions described in column 1 (SL vs.
SS, LL vs. LS, etc). Results indicate no significant
difference (n.s.), or significant difference at various
levels (indicated by the number of stars). See Sec-
tion 5.4 for more explanation.

more amused, less bored and less cold) than if it only smiles.
When it listens, smiling agent appears to be negatively per-
ceived (agent is considered as bored and cold).

Consistently with this result, participants expressed dis-
appointment when the agent did not laugh at their joke (i.e.
condition user tells a joke) and satisfaction when the agent
did laugh to their joke.

Speaking conditions.
By contrast, the results of the first line of Table 1 (SL-

SS) tend to show that there is not much effect of smiling
vs laughing when the agent speaks: only the agent’s liking
of its riddle is perceived significantly higher when the agent
laughs.

Smiling condition.
The results of the fourth line of Table 1 (SS-LS) show

that an agent which speaks and smiles is better perceived
than an agent which listens and smiles. Again the negative
perception of listener-agent which “just smiles” to the user’s
jokes seems to explain the result.

Laughing condition.
The laughing conditions (last line of Table 1 (SL-LL)),

when the agent speaks and when the agent listens, show no
significant differences.

These results give a hierarchy of conditions in the context
of telling a riddle:

To listen and “just smile” is the most negatively perceived
attitude: the agent seems to like significantly less the joke
but among others to be significantly more bored and cold
than in any other condition, and to be significantly less warm
and amused than in laughing conditions.

To “just smile” is perceived less negatively when the agent
speaks: compared to the laughing speaking agent, only the
liking of the riddle is lower.

Laughing does not appear to change the perception when
the agent speaks or listens whereas smiling does: “just” smil-
ing when listening is perceived negatively.

The laugh synthesised animation clearly enriched the agent
with fine interaction capacities, and our study points out
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that this laugh contrasts with smiles through two facets:
(1) when laugh is triggered in reaction to the partner’s talk,
it appears as a reward and a very interactive behaviour; (2)
when laugh is triggered by the speaker itself, it appears as
more self-centred behaviour, an epistemic stance.

7. CONCLUDING COMMENTS
We presented a laughter motion synthesis model that takes

as input pseudo-phonemes and their duration as well as
speech features to compute a synchronized multimodal an-
imation. We evaluated our model to check how laughing
agent is perceived when telling / listening to a joke.

Contrasting with one of our expectations, we did not found
any effect of agent’s laugh on human user’s liking of the joke.
This may be explained by the fact that human had to read
the joke before telling it to the agent: thus they had already
evaluated the joke while reading it for themselves before
telling it to the agent and seeing its reaction.

However, our data shows that laugh induces a significant
positive effect in the context of telling a riddle, when the
agent is listening and reacting to the user. The effect is less
clear when the agent is speaking, certainly due to this very
context of telling a riddle: laughing at its own joke is more
an epistemic stance (concerning what the speaker thinks of
what it says) than a social stance (i.e. a social attitude
directed toward the partner).
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