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ABSTRACT
There is a growing demand for embodied agents capable
of engaging in face-to-face dialog using the same verbal and
nonverbal behavior that people use. The focus of our work is
generating coverbal hand gestures for these agents, gestures
coupled to the content and timing of speech. A common ap-
proach to achieve this is to use motion capture of an actor or
hand-crafted animations for each utterance. An alternative
machine learning approach that saves development effort is
to learn a general gesture controller that can generate behav-
ior for novel utterances. However learning a direct mapping
from speech to gesture movement faces the complexity of
inferring the relation between the two time series of speech
and gesture motion. We present a novel machine learning
approach that decomposes the overall learning problem into
learning two mappings: from speech to a gestural annota-
tion and from gestural annotation to gesture motion. The
combined model learns to synthesize natural gesture anima-
tion from speech audio. We assess the quality of generated
animations by comparing them with the result generated by
a previous approach that learns a direct mapping. Results
from a human subject study show that our framework is
perceived to be significantly better.

Categories and Subject Descriptors
I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Animation

Keywords
Gesture Controller, Gaussian Process Latent Variable Model,
Virtual Agent, Animation, Motion Capture

1. INTRODUCTION
There is a growing demand for embodied agents and an-

imated characters capable of simulating face-to-face dialog
interaction using the same verbal and nonverbal behavior
that people use. The focus of the work presented here is on
providing characters with a capacity to use coverbal hand
gestures, gestures performed in close synchrony with the
content and timing of the speech.

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright c⃝ 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

This capability can be achieved by using motion capture
for each utterance or recording speech audio and manually
crafting gesture motions for each sentence the character ut-
ters. However, those approaches are time-consuming/costly,
do not scale well for projects with large numbers of utter-
ances, lead to results applicable just to a single project, and
cannot even be used in projects that use open-ended dia-
log generation techniques. An alternative, general way is
to build a gesture generator that can compose gestures for
novel utterances.

One way to build such a gesture generator is to learn a
model for composing gestures based on speech from human
conversation data. A learning approach saves effort on man-
ually determining the model. Additionally it also can derive
detailed correlations between speech and motion useful for
capturing personal styles or motion dynamics that are chal-
lenging to specify manually. One approach to this is to learn
a direct mapping between the two time series, speech and
gestures [4]. However, the resulting learning problem is fun-
damentally difficult because of (a) the overall complexity of
learning a mapping from the speech signal to the high di-
mensional gesture motion, (b) the many-to-many nature of
the mapping whereby motions with quite different dynam-
ics can convey similar meaning, while motions with similar
dynamics can have different meanings and (c) the two time
series of speech and gesture do not necessary correlate di-
rectly but rather tend to correlate through their respective
meanings.

To make the task feasible, we develop a novel approach
that decomposes the learning problem into processes of map-
ping from speech to annotations and then synthesizing ges-
ture motion for the given annotations. Specifically, the speech-
annotation mapping is learned using conditional random
fields (CRFs) [12] while the motion synthesis uses Gaussian
process latent variable models (GPLVMs) [13] to learn a low-
dimensional space (manifold) that encodes natural gesture
motion. An example of an annotation is the communicative
role of the gesture (what it serves to convey). The segmenta-
tion and annotation processes represent the original complex
and continuous motion data with a small set of discrete an-
notations thus reducing the complexity of the learning prob-
lem. The structural difference between the direct mapping
approach and our proposed framework is shown in Figure 1.
An additional benefit of this decomposed approach is that
we can use different data sets for the two learning tasks. For
example, we might use an across subject data set to learn a
more universal model of the mapping from speech to annota-
tion while data from a particular individual may be used for
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Figure 1: Decomposing the mapping process. (a) The direct mapping approach learns a complex model to generate gesture
animations directly from speech sequences. (b) Our approach decomposes the task into speech-annotation inference (with
CRFs) and motion synthesis (with GPLVMs). CRFs infer gesture annotations from input speech signals, and GPLVMs
synthesize gesture animations with the inferred gesture annotations.

the motion synthesis process to learned the specific motion
style of that person’s gestures.
The decomposition reduces the complexity of the learning

problem, but there is still an issue of smoothly transitioning
between gestures, namely, gesture co-articulations. One ap-
proach to gesture co-articulations restricts it to only combine
pre-existing motion segments that can transition smoothly
[11]. This greatly reduces the quality of the gesture anima-
tion, as generating animations for novel utterances in general
requires novel sequential compositions of gestures, and this
often involves connecting two motion segments with very
distinct motion dynamics. Not supporting such novel com-
binations restricts the expressivity of the character, while
supporting it requires some means to realize smooth transi-
tions between various motion segments.
We address the co-articulation issue by applying GPLVMs

to learn a low-dimensional space which captures human mo-
tion dynamics, thereby providing a means to generate natu-
ral, novel transitions between gesture motions. Specifically,
we apply GPLVMs with an additional dynamic term in the
objective function (which is also known as GPDMs, Gaus-
sian process dynamic models [25]) to derive the dynamic
constrain of human motion and the respective manifold. The
process of gesture generation embeds gesture motions into
the learned manifold and determines the trajectory for the
transition between the gestures, and the trajectory is then
mapped back to the original high dimensional motion space
to generate the composed gesture animations. Details are
discussed in subsequent sections.
Although our framework is designed to learn to gener-

ate gesture animations from general speech features such as
linguistic and acoustic features, in current work we assess
our framework by using only acoustic features. Using only
acoustic features allows our framework to run in real-time
and also helps focus the assessment on the co-articulation
capability. Acoustic features are known to be coupled with

the dynamics of the arm movement and to correlate with a
subset of gestures called beat gestures [24], which are the
majority gestures in our conversation data. Thus, we assess
our framework by focusing on realizing the relation between
acoustic features and beat gestures.

We compared the result of our framework with another
learning approach [4] which frames the learning problem as
a direct mapping from speech to gesture motion. The eval-
uation asked participants, using Mechanical Turk, to vote
which animation matched the speech best. Our framework
was judged overwhelmingly to be superior to the direct map-
ping approach.

2. RELATED WORK
There have been a range of work work focusing on analyz-

ing the relation between prosodic features of the speech and
motion movement [16, 15, 4]. Inspired by speech synthesis
work, [16] applied Hidden Markov models (HMMs) to realize
the relation. The same idea has also been exploited in terms
of modeling head movement [2, 19]. However, [15] pointed
out that applying HMMs to directly associate arm move-
ment with prosodic features tends to overfit and therefore
they proposed to combine conditional random fields (CRFs)
with HMMs. Both works [16, 15] synthesize gestures by
only considering gesture motions that can smoothly connect
with prior motion, and therefore can run the risk of failing to
choose gesture motion that match the speech better. [4] pro-
posed a model which is extended from deep belief nets [9, 22]
to learn the mapping from prosody features to motion frames
explicitly, and [5] suggested a way to optimize that model
with human subjective opinion. The approach resolves the
smoothness constraint, but learning a direct mapping from
prosodic features to frame-by-frame motion is challenging.
In addition to focusing on the relation between prosodic fea-
tures of the speech and motion movement, there are also
data-driven approaches [21, 10] that take an approach in
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Figure 2: The flow of the gesture generation framework. The CRF determines a sequence of gesture annotations from
audio features, and the synthesis process selects corresponding gesture motion from the low-dimensional space. The resulting
sequences are in general discontinuous, and the interpolation algorithm infers a trajectory to integrate these sequences. The
resulting trajectory is then mapped to gesture animations. The low-dimensional space is derived by embedding motion
samples.

which speech and gestures are co-generated.
The other approach to gesture generation is to adopt rule-

based systems which exploit the domain knowledge about
gestures and meanings. For example, [3] selects gestures
based on the linguistic features of the surface text. The
Nonverbal Behavior Generator (NVBG) [14] takes a similar
approach and extends the framework by addressing more of
the communicative functions of the dialog. [18] takes a fur-
ther step by profiling the gesture style of individual speakers,
using the result to determine gestures from speech. This ap-
proach allows the system to generate gestures highly corre-
lated with the content of the dialogue. Instead of regarding
it as an alternative approach, there is a potential to inte-
grate these text-gesture mapping processes into our frame-
work to enrich the speech-gesture mapping process. Since
our synthesis process is designed to be compatible with gen-
eral gesture annotations, the same synthesis algorithm will
be applicable for the new integrated system.
GPLVMs have shown success in modeling various human

motion such as walking, golf swings, punching, and kicking
[7, 13, 25, 17]. Our work is the first to realizing human
gestures and co-articulations.

3. GESTURE GENERATION
A gesture is composed of a sequence of continuous move-

ment, and its correlation with speech is hard to realize when
looking at individual frames. A plausible perspective is to
analyze motion sequences to determine the correlation. Our
proposed framework adopts this perspective in which it first
infers gestures from speech signals, and then synthesizes mo-
tion with the specified gesture annotations. The framework
decomposes the original task into two processes which allows
better inference quality from speech to gestures but also in-
troduce a new task: the capability of gesture co-articulation.
The framework addresses this problem by including an

interpolation process that allows transitions between dis-
contiguous motion segments. The approach interprets the
problem of gesture transition as an interpolation task, and
improves the effectiveness of the interpolation by projecting
the original data space onto a low-dimensional space which

better represents the gesture motion. A detailed flow for the
generation process is shown in Figure 2. Specifically, the
framework applies Gaussian process latent variable models
(GPLVMs) to learn the low-dimensional space (manifold).
We give more detailed explanation about this design in the
following sections.

3.1 Interpolation as motion transition
One of the central challenges in transitions between ges-

tures is that gestures are in a high dimensional space which
can impede conventional motion transition approaches. Al-
gorithms used by conventional motion transition approaches
commonly blend using weighted average of motion frames
drawn from the two motion segments. Viewing each mo-
tion frame as a data point and a motion segment is a se-
quence of data points, the motion transitioning between the
two motion segments can then be understood as interpo-
lating a trajectory that connects the two sequences. There
are two issues in this approach that can lead the interpola-
tion algorithm to generate animations that are not natural
human motion. First, different pairs of gesture sequences
require different lengths of transition motions to retain nat-
ural movement, and it is crucial for an interpolation algo-
rithm to be able to infer the appropriate length from the
spatial distance. In other words, the space in which an in-
terpolation algorithm infers transition trajectory needs to
reflect the transition distance in terms of the spatial dis-
tance for any pairs of gesture sequences. Closeness in the
original data space, however, does not necessary guarantee
a smooth transition. Second, the interpolation algorithm
generates the trajectory without considering the constraint
of human motion dynamics so the resulting trajectories can
lead the animation to have unnatural movement.

The two issues can be resolved by learning a manifold
which better represents the similarity of postures and motion
dynamics with the spatial distance. An interpolation algo-
rithm finds a smooth trajectory connecting the two specified
sequences, and as the manifold realizes the relation among
gestures and motion dynamics in terms of the spatial rela-
tion, a smooth trajectory in the manifold can correspond
to a natural gesture motion. Thus, instead of performing
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Figure 3: The manifold derived by GPLVMs projected onto an example 3-dimensional space. Each point represents a motion
frame and lines indicate their sequential relation. Most of the data points within the dense area correspond to motions
with arms resting, while trajectories far away from the dense area correspond to long sequences of gesture motion. Motion
dynamics derived by GPLVMs is illustrated with white arrows in which the length of each arrow indicates the transition
velocity around that region of the manifold. Our interpolation algorithm utilizes this transition velocity to help determine
the transition trajectory. GPLVMs derive the dynamics for the entire space, and here we only show a fraction of it to make
the figure clearer.

the interpolation in the original motion space, our frame-
work derives a manifold with respect to gesture and motion
dynamic to facilitate the interpolation.

3.2 Learning the manifold with GPLVMs
Among existing algorithms on projecting data into lower-

dimension, GPLVMs exhibit the best capability on modeling
human motion and respective dynamics. We explain this
capability by first giving a brief description about GPLVMs.

3.2.1 Gaussian Process Latent Variable Models
The GPLVM is a dimension reduction approach which

determines a low-dimensional space that better represents
the given data, and the core idea is based on the Gaussian
process. To help explain the idea, we first briefly describe the
Gaussian process. A Gaussian process is a stochastic process
which models the distribution of the predicting variable y as
Gaussian in which the mean is set to 0 in general and the
covariance is a function of the input variable x. Specifically,
the covariance function is represented as a kernel function
K where Ki,j = k(xi, xj). Its log likelihood function is:

ln p(t) = −1

2
ln |K| − 1

2
yTK−1y − N

2
ln(2π)

where N is the number of data points. Here we omitted
some parameters of the Gaussian process to make the equa-
tion uncluttered. The GPLVM is an unsupervised learning
algorithm in which the original predicting variable y in the
Gaussian process is now given while x becomes the parame-
ter to be determined, and the goal of the learning algorithm
is to infer x with respect to y and a corresponding Gaus-
sian process that jointly maximize the likelihood of p(y|x, θ),
where θ denotes the parameters of the Gaussian process.
GPLVMs find a low-dimensional projection x for y while
preserving the similarity relation among the original data
y. The data points that are far away from each other in

the original space will also be apart from each other in the
low-dimensional manifold.

An extension of GPLVMs called Gaussian process dynam-
ical model (GPDM) [25] has been proposed to include dy-
namics in terms of determining low-dimensional projection.
GPDMs contain the same process as GPLVMs in determin-
ing low-dimensional projection but with an extra autoregres-
sive likelihood function p(xt|xt−1) to maximize. With this
additional function, the optimization process for determin-
ing the low-dimensional projection has an extra objective
for maximizing the likelihood of p(xt|xt−1). In other words,
GPDMs need to allocate x in a way that when two points xt

and xt′ are close to each other, their consecutive points xt+1

and xt′+1 also have to be close to each other. As a result,
the projection x in GPDMs reflect also the dynamics of the
time series data.

Both GPLVMS and GPDMs have shown success in syn-
thesizing human motion with the derived manifold. In our
framework we apply GPDMs to learn the manifold. The dy-
namic term added to the objective function allows the man-
ifold to incorporate motion dynamics. An example of the
modeled dynamic relation along with the manifold is shown
in Figure 3. As the GPDM is a GPLVM with an additional
objective function that maintains the dynamic relation, we
follow the convention and refer it as GPLVMs in the rest of
the article.

After deriving the manifold with GPLVMs, each point in
the manifold corresponds to a gesture frame, and sampling
a trajectory and mapping it back to the original dimension
through GPLVMs results in a gesture animation. On transi-
tioning between two motion segments, the framework finds a
trajectory connecting the two segments in the manifold, and
the resulting trajectory is mapped back to the original space
to generate the animation between gestures. The process is
shown in Figure 4.
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Figure 4: GPLVMs derive a low-dimensional space from the given motion samples. After deriving this space with GPLVMs,
we can sample a trajectory in the space and map the trajectory back to the original data dimension and result a gesture
animation. Colors of the space indicate the density of data points where the warmer correspond to the denser area.

3.3 Interpolation algorithm
The interpolation algorithm uses a forward inference func-

tion to determine a path following the existing motion and a
backward inference function to determine a path connecting
the consecutive motion. The interpolation of the two results
the transition trajectory. Both inference functions generate
paths in the manifold derived by GPLVMs. Since GPLVMs
derive the manifold with an optimization term which maxi-
mizes the likelihood function of p(xt|xt−1) and the likelihood
function is formulated as a Gaussian process, the manifold
preserves the temporal relation of embedded data points
with the criterion of being able to be inferred with a Gaus-
sian process. Our inference algorithm exploits this essential
relation and models both inference functions as Gaussian
processes. Specifically, the forward inference function has
the form of xt = f(xt−2, xt−1) and the backward inference
function has the form of xt = g(xt+2, xt+1). Both inference
functions take two consecutive points as input instead of one
to allow robust predictions. On generating an interpolation
trajectory of length M from point at t to t+M−1, our algo-
rithm first infers a forward trajectory and a backward trajec-
tory and then combines the two trajectories by performing a
linear interpolation:

path[1]← xt

path[2]← xt+1

path[M − 1]← xt+M−2

path[M ]← xt+M−1

for i = 3 to M − 2 do
forward[i] = f(path[i− 2], path[i− 1])

end for
for i = M − 2 to 3 do

backward[i] = g(path[i+ 2], path[i+ 1])
end for
for i = 3 to M − 2 do

path[i] = (forward[i] ∗ (M − 1− i) + backward[i] ∗ (i−
2))/(M − 3)

end for

where xt, xt+1, xt+M−2, xt+M−1 are known data points and
path contains the inferred trajectory of length M .

3.3.1 Generating interpolation trajectories
On transitioning between the two motion segments, the

process needs to decide the length of the interpolation. The
transition process finds a trajectory for connecting two mo-
tion segments, and the length of the interpolation decides
the length of this trajectory. Different pairs of motion seg-
ments require different transition length, and therefore we
apply an adaptive approach to determine the length of the
trajectory for each interpolation. The transition process is
shown in Figure 5.

The transition process starts with setting a short length
n for the trajectory, and then applies our Gaussian process
interpolation algorithm to infer a trajectory. After a trajec-
tory is generated, the interpolation process checks whether
the mean-square difference along the trajectory is smaller
than a pre-defined threshold. If the value exceeds the thresh-
old, the interpolation process increases the length and re-
peats the process until an admissible trajectory is derived
or the length exceeds certain limit. The starting length and
the length limit are predefined by the users.

In some situations the transition process may not find a
trajectory that satisfies the criterion mentioned above. Of-
ten times this happens when the consecutive segment is very
short, say only one frame. In that case, that short seg-
ment usually will be far away from its previous segment and
its consecutive segment, and interpolating a trajectory that
traverses these segments may result a motion that is not
natural. On the other hand, these short segments can be
considered as noise in the generation process as they in gen-
eral are too short to present meaningful gestures. Thus, the
transition process will ignore the consecutive motion seg-
ment when it fails to determine a feasible trajectory and
infers a trajectory with prediction function f based only on
the previous motion segment.

3.4 Speech-gesture inference
Our framework decomposes the gesture generator into two

processes to make the inference from speech to gestures fea-
sible. The training data is then composed of three cate-
gories: audio features of speech, gesture annotations, and
corresponding motion segments. Gesture annotations can
be defined based on specific project, and in this work we use
a simple automatic gesture/non-gesture annotation scheme
to assess the framework. Gesture motions are classified and
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Figure 5: The transition process adaptively determines a trajectory in the low-dimensional space through interpolation. (a)
The transition process decides an interval to interpolate a trajectory for transiting the two segments. If the interpolation
process fails to find a smooth transition within the interval, the transition process expands the interval and performs interpo-
lation again to find a smooth trajectory. (b) In the case that the process fails to find a smooth trajectory within the length
limits, it will ignore the consecutive segment and infers a trajectory based on only the previous motion segment.

segmented based on the height of the wrist. Specifically, ges-
tures with at least one wrist higher than certain threshold
were classified as the same group. This definition roughly
classifies gesture segments into “gesture” and “non-gesture”
(motions in which both arms are resting at the side while
the torso or the head can still be moving) types. We chose
this simple annotation definition because the audio features
applied in this experiment lack semantic content. Learning
to map audio features to gestures involving semantic content
would at best be difficult. On the other hand, audio features
may more likely reveal information that helps to determine
gesture and non-gesture behaviors.
The process of mapping speech to gesture annotations is

realized by treating it as the problem of learning the map-
ping from one time series to another. Gestures are related
to not only speech but also the previous and consecutive
motions, and as each gesture is a long sequence of motions,
the inference process needs to be capable of modeling long-
term temporal relation to determine matching gestures for
the speech signals. Our framework applies the conditional
random field (CRF) with linear-chain structure to learn the
inference task. CRFs are a type of graphical models which
encapsulate the likelihood between labels conditioned on the
input signals. The likelihood between labels allows CRFs
to infer the label at each time frame with the criterion
that the resulting label sequence as a whole is the most
likely sequence. The capability matches the property of our
task since each gesture is composed of a sequence of mo-
tion frames. In this learning task, the observable data is
the audio features of the speech and the learning target is
the annotations for the respective gestures. The CRF learns
the transition between gestures conditioned on the audio
features.

4. EXPERIMENTS
We evaluated the quality of the generated animations by

comparing them with animations generated by the approach
taken by [4], that uses an approach of direct modeling be-
tween speech and gestures. We used a dataset created for
examining how audio and body motion affect the perception
of virtual conversations [8]. The dataset contains speech au-
dio and motion capture of three people having conversations.
We chose the records where each person gives a long speech
without being interrupted. We chose the data of male num-
ber 1 as training data and the data of male number 3 as
testing data. There are total 193 seconds of training data
and 238 seconds of testing data. The motion capture data

contains the skeleton of subjects and the recorded joints
movement is a vector with 69 degrees of freedom, and we
trained GPLVMs to project the data onto a 9-dimensional
space. The original motion capture data has 120 frame rate,
and we down-sampled it to 15 frame rate.

For speech input, our experiment extracts the following
audio features: normalized amplitude quotient (NAQ), peak
slope, fundamental frequency (f0), energy, energy slope, spec-
tral stationarity. We also apply an automatic approach to
determine the tenseness of the voice at each time frame
which gives the probability of being at low, medium, or
high tenseness [20]. The extraction process also determines
whether the speaker is speaking based on f0, and for the pe-
riods in the speech that identified as not speaking all audio
features are set to zero. The resulting audio features have 9
dimensions.

As described in section 3, we applied an automatic ap-
proach to segment and classify gestures into gesture/non-
gesture classes. This automatic classification scheme results
52 non-gesture and 47 gesture motion segments from the
training data, where the length of each segment ranges from
1/15 seconds to 21.8 seconds.

We trained the framework of [4] with the training data
mentioned above and follow the same configuration reported
in that experiment. The test data are 14 speech audio clips
with length ranging from 10 to 21 seconds. We animate
the generated motion on a virtual character with Smart-
Body [23]. Since the motion capture data does not include
finger nor lip information, to make the virtual character
more natural, we applied SmartBody’s mechanism to au-
tomatically generate lip movement synchronized with the
speech audio, and put an idle motion to animate fingers.
For the evaluation, we recruited 48 participants on Mechan-
ical Turk and asked them to make pairwise comparisons to
vote which animation best matches the speech audio. The
evaluation video displays animations generated by both al-
gorithms side-by-side as shown in Figure 6a, and there are
total 14 videos. The evaluation result, illustrated in Figure
6b, shows that our framework is better than the previous
work where 74.1% of evaluations choose the animations gen-
erated by our framework. Pearson’s Chi-square test shows
that the difference is statistically significant.

While animations generated by both frameworks appear
natural and related to the speech, gesture animations gener-
ated by our framework exhibit more active movement. This
is due to that [4] learns a direct mapping from speech to
motion which is a challenging task and as a result the de-
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Figure 6: Comparing animations generated by our method and the previous work. (a) Each video displays a pair of gesture
animations generated for the same speech audio by different approaches. (b) The percentage of animations being voted as
best matching the speech, and the difference is statistically significant.

rived model tends to generate less active movement since
performing dramatic motion can lead to higher error when
mismatching the target gestures than performing smooth
and less active movement.
The evaluation experiments assess the overall performance

of our framework, and to gain further insight about our
model we also evaluated the performance of the inference
process on mapping speech signals to gesture annotations.
The evaluation experiment compares our inference model
(using CRFs) with support vector machines (SVMs) [6] and
random forests [1]. Unlike CRFs, neither SVMs nor random
forests utilize the temporal relation between the data se-
quences to make predictions, and therefore to make a more
concrete comparison our experiment includes the speech sig-
nals at the previous and the next time frame as input signals
for both models. The experiment uses the same training and
testing data mentioned above. SVMs achieve highest accu-
racy with RBF kernels and window width 3 for the input
data (include signals at the previous 1 time step and the
future 1 time step), and their accuracy results are shown
in Figure 7. As both the performance of SVMs and ran-
dom forests are close to random, the results indicate that
the inference problem is extremely difficult and it is crucial
to include temporal information. Although our inference
model is better than other state-of-the-art algorithms, there
is still a room for improvement.
We did not compare our framework with [15] that also

models the generation task with two processes, because their
approach only selects motion segments that can seamlessly
connect to the last frame of current motion. This requires a
much larger dataset that makes building a gesture controller
with our limited training dataset infeasible. On the other
hand, the experiment shows that our approach can learn a
gesture controller from a small set of data that can generate
natural gestures for novel utterances.

5. CONCLUSIONS
We have proposed a framework to map speech features

to gesture annotations and synthesize gesture motion for
the annotations. The model for mapping speech features
to annotations is derived using CRFs. To synthesize ges-
ture motion we apply GPLVMs to learn a low-dimensional

50

54

58

62

SVM Random Forest CRF

Figure 7: Our inference model (CRFs) outperform SVMs
and random forests on predicting gestures from speech sig-
nals. y-axis represent the percentage value of the prediction
accuracy.

representation of gesture motions, select motion segments
in the low-dimensional space based on annotations, and use
an interpolation algorithm based on the Gaussian process to
determine a trajectory that allow transitions between mo-
tion segments. The evaluation result indicates that the gen-
erated gestures match the speech significantly better than
those generated with the direct mapping approach. As the
second study demonstrated, there is still a room to improve
the inference quality of speech signals to gesture annota-
tions.

This work lays a preliminary foundation toward building a
comprehensive gesture controller. The critical next step is to
increase the expressiveness of the gesture controller so that
the mapping learned by the speech-annotation mapping pro-
cess can realize expressive gestures more tightly coupled to
the uttered content. Achieving this goal requires including
linguistic features of speech such as content and syntactic
structure, and as well annotating motion gestures with a
richer set of annotations.
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