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ABSTRACT 

Social brain theory hypothesizes that the human brain becomes 

larger through evolution mainly because of reading others’ 

intentions in society. Reading opponents’ intentions and 

cooperating with them or outsmarting them results in an 

intelligence arms race. The author discusses the evolution of such 

an arms race, represented as finite state automatons, under three 

distinct payoff schemes and the implications of these results, 

which suggest that agents increase complexity of their strategies. 

Categories and Subject Descriptors 

I.6.0 [Simulation and Modeling]: General 

Keywords: Multi-agent simulation, Genetic programming, 

Intelligence arms race, Social brain theory 

1. INTRODUCTION 
The Theory of Mind (ToM) –  the brain function for understanding 

other's intention from the environment - is one of the most complex 

human skills in cognitive science [1]. The social brain hypothesis in 

biology states that humans must handle communication with each 

other for trading benefits in a society [2]. Like the arms race of 

animal predators and games [3], it is argued that evolutionary 

pressure from reading an opponent's intention results in an 

intelligence arms race [4]. If one agent in a group is more intelligent 

than others, the agent can understand the strategies of others and 

will cooperate with or outsmart them. As a result, the agent gets 

more advantages compared with other agents. The process of 

creating such competitive intelligence is also a challenging theme 

both in artificial intelligence and multi-agent simulation. If we 

understand the process of reading other’s intentions, artificial 

systems will be able to understand more intentions and motivations 

of users. 

What kind of trade emerges in society and especially how 

cooperation is emerging in our society, is discussed in game theory, 

economics, and artificial life. Axelrod's contest of the iterative 

prisoner's dilemma game (IPD) and the strength of tit-for-tat (TFT) 

as a winner is well known [5] and many successor trials have been 

focused on how a group of agents acquires mutual trust after 

evolution [6][7][8]. These studies mainly focused on the behavior of 

society. In other words, they focused on how the entire society 

forms a cooperative state, and these agent strategies are restrained to 

a simple level. On the other hand, how each agent acquires ToM 

during the evolution/simulation process is interesting for artificial 

intelligence and cognitive science. ToM in animal and human are 

simulated and implemented [9][10][11]. However, there have been 

relatively few studies for the intelligence arms race, which is a quick 

improvement in intelligence through evolution suggested by social 

brain theory. A key factor is the relationship between evolutionary 

pressure and our intelligence. 

For this research, the author attempted to determine what kind of 

process will result in an intelligence arms race. The author applied 

the anti-max prisoner's dilemma game (AMPD), which is an IPD 

with modified payoff scheme and proposed by Angeline, as a 

sample task for analyzing above statement [7]. It was conducted to 

see how mutual and non-mutual trust in trading arises by multi-

agent simulation using finite state automatons. However, the 

automatons used by Angeline were fixed and the factor of 

intelligence arms race was not evaluated. Osawa et al. evaluated 

Angeline's AMPD using human-based simulation and found that top 

ranked agents acquire more automatons [12]. However, this 

experiment was based on human participants and an increase in 

intelligence was not automatically derived and not complete for 

accurate discussion. The author evaluated Angeline's three payoff 

schemes (IPD, multi-max prisoner's dilemma (MMPD), and AMPD) 

with artificial evolution in computer simulations of free-scale 

automatons and evaluated how the number of states and edges of the 

automatons increased during the game. 

The paper is organized as follows. Section 2 describes the 

simulation model and our hypotheses on the simulations. Section 3 

describes the results of simulations with IPD, MMPD, and AMPD 

and Section 4 discusses our results both through macro-based and 

micro-based analyses. Section 5 describes the limitations of this 

study and future work. Section 6 concludes the paper with the 

results. 

2. SIMULATION MODEL 
For evaluating the increase in intelligence, the author used 

evolutional simulations of agents with automatons for strategies. 

Section 2.1 describes the background of these games by referring 

to results of game theory, and how our focus differs from them. 

Section 2.2 gives details of the simulation conditions. Section 2.3 

explains how to describe agent strategies by using finite state 

automatons. Section 2.4 gives the details of the genetic 

programming (GP) method applied in these simulations. Section 

2.5 gives the hypotheses of simulations. 
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2.1 Features of IPD, MMPD, and AMPD 
The iterative prisoner's dilemma is a typical game in game theory, 

and it is designed in such a way that the reward is maximized if both 

players cooperate [5]. A cooperative strategy in IPD is achievable 

without players having to estimate each other's strategy. This kind of 

game model is appropriate for simulating ecological behaviors of 

animals [13]. In a game, each agent has two choices to opponent 

called "cooperate" show in C and "defect" shown in D. 

In IPD, each player has a chance to obtain more rewards for 

betraying opponents. However, if both players need maximum 

rewards from the trading, both "cooperate", shown as C-C, is the 

most appropriate strategy. Consequently, studies on IPD in game 

theory mainly discuss how to achieve stability created by continuous 

C-C during the game. Tit-for-tat is one of the simplest and toughest 

strategies in IPD  in which an agent cooperates if the opponent 

cooperated in the previous round, and defect if the opponent 

defected in previous round. Axelrod proposed that TFT's quick 

response and generosity work to maintain cooperation during the 

game. Later studies revealed that TFT is not a stable strategy [14]. 

Another strategy called GRIM plays all defect if the opponent 

defected in the previous rounds. Pavlov is another strategy that 

changes hand according to the result of the previous round [15]. 

Pavlov is stronger than TFT if player's hands are informed each 

other with noise [16].  

These strategies can be described by simple rules and are not 

complex (the author calls them simple based on a previous IPD 

study [5]). The author believes that this is because the reward is 

immediately determined in IPD. However, the reward of a trade is 

sometimes delayed. For example, we can use a credit card for 

payment if we do not have cash. Human society allows this delayed 

reward by credit payment because the trader "credits" the opponent's 

payment in the future. The author estimates that this delayed 

payment will require more complex ability for each agent. Fisher 

and Shapiro used iterative arm wrestling for demonstrating delayed 

trade in a human-based experiment [17]. They demonstrated that if 

two players play an iterative arm wrestling game and the winner 

obtains a reward in each match, it is better for both players to fix the 

game rather than engage in a real fight. They also showed that the 

key factors in agreeing to fix a game is that each player needs to be 

intelligent and trust that after if he or she intentionally loses a match, 

his or her opponent will intentionally lose the next match. 

Angeline proposed MMPD and AMPD and took these delayed 

rewards into account in a game simulation [7]. He modified the IPD 

payoff table so that it could take into account the mutual trading 

behavior of Fisher and Shapiro's iterative arm-wrestling game [17]. 

In MMPD, rewards from cooperative behavior (continuous C-C) are 

the same as those from mutual defect (continuous C-D and D-C 

pairs, like one agent plays C, D, C, D,... and another plays D, C, D, 

C,...). In AMPD, rewards from mutual defect are better than 

cooperative behavior. Being able to estimate the intentions of other 

people is important in trading in the real world and requires 

intelligence. The "intelligence for estimating intention" improves if 

an agent's reward is not immediately given. The anti-max 

prisoner’s dilemma game can model such trades, and the author 

argues that AMPD is a suitable game model for verifying the social 

brain hypothesis [2]. 

Table 1 is a payoff table of a trading game. The IPD payoff 

scheme is shown in Eq. 1, the MMPD payoff scheme is shown in 

Eq. 2, and the AMPD payoff scheme is shown in Eq. 3.   

Table 1. Payoff table of Trading Game used in IPD, MMPD, 

and AMPD. 

 Opponent 

Cooperate Defect 

Player Cooperate ):,:( cOpcPl  ):,:( aOpbPl  

Defect ):,:( bOpaPl  ):,:( dOpdPl  

bdca  ,  cba 2  (1) 

bdca  ,  cba 2  (2) 

bdca  ,  cba 2  (3) 

 

The author selected a payoff table for IPD as a = 7, b = -3, c = 3, d 

= -1, that for MMPD as a = 7, b = -3, c = 2, d = -1, and that for 

AMPD as a = 7, b = -3, c = 1, d = -1 based on previous studies by 

Angeline and Osawa et al. In the IPD game, C-C hand is Pareto 

dominate and the average of both players' rewards is maximized 

as 3 in this case. On the other hand, there is no Pareto dominate 

hand in AMPD. However, mutual defection in repeated games 

maximizes the average of both players' rewards. The average is 2 

in this case and MMPD. 

2.2 Simulation conditions 
The author tested 100 IPDs, 100 MMPDs, and 100 AMPDs in the 

simulations. All agents traded in a round robin fashion during 

each game. The round robin was repeated 1500 times in one trial 

and 50 agents battled each other in each round. In each round, one 

agent battled the rest of the 49 agents (total 2450 battles in each 

round). The author selected the maximum number of matches in 

one trade as between 95-104. The maximum number of matches 

changed randomly for each match to prevent overfitting for fixed 

matches. The average score of each agent is calculated by the sum 

of the scores divided by the total number of matches.  

2.3 Strategy by finite state automaton 
Each agent describes a strategy by using a finite state automaton. 

Each state in the automaton has numbers representing cooperate 

and defect of the agent. Even states represent cooperation and odd 

states represent defect. Several well-known samples are shown in 

Fig. 1. Each state, or node in Fig. 1, has two edges. These 

automaton-based notations for strategies are easily applied to the 

GP method described in the next subsection. 

 

Figure 1. Six sample automatons that describe well known 

strategies used in game theory. They are shown by automatons 

with one node and two edges, or two nodes and four edges. 

Upper node means start point of automaton. The number after 

'c' in a circle means state number (cooperative hand is shown 

as even numbers and defect hand is shown as odd numbers). 

Number on side of edge shows type of hand (cooperate/C=0 as 

solid line, defect/D=1 as dashed line). 
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Each participant describes their strategy using the start state 

number and several triplets in a simulation program. The 

transition arrows between nodes are denoted with a set of three 

numbers (triplet). The first number represents the present state, 

the second number represents the opponent's hand (0 means 

cooperate and 1 means defect), and the third state represents the 

next state (even, odd, or 0 state). Believer and attacker is very 

simple strategies that are shown in one node and two edges. For 

example, {{2}, {2,0,2}, {2,1,2}} means a strategy for believer 

that is cooperative anytime. {{1}, {1,0,1}, {1,1,1}} means 

attacker that defects opponent anytime. {{2}, {2,0,2}, {2,1,1}, 

{1,0,2}, {1,1,1}} shows the strategy of TFT, which is common in 

IPD. {{1}, {2,0,2}, {2,1,1}, {1,0,2}, {1,1,1}} shows the strategy 

of aTFT. It is an alternative TFT strategy that is almost the same 

as TFT except it starts from the defect state. {{2}, {2,0,2}, 

{2,1,1}, {1,0,1}, {1,1,2}} means Pavlov that changes its state 

from opponent's defect. {{2}, {2,0,2}, {2,1,1}, {1,0,1}, {1,1,1}} 

means GRIM that plays continuous defects when it is defected. 

2.4 Evolution rules on genetic programming 
For evaluating the increase size in strategy in three payoff 

schemes (IPD, MMPD, AMPD), the author applied the GP 

method to our simulations. In a simulation, 50 agents are living 

during 1500 rounds/generations. The GP process includes several 

selections such as execution and succession, mutation, and 

crossover processes. After the end of each round, the agent with 

lowest rank is killed. Next, three agents in the lowest rank are 

mutated. Finally, one child is generated with the crossover of 

agents with 1st and 2nd ranks and added to the group. 

There are three mutation processes. For the first process (10%), 

one of the nodes on an agent’s strategy tree is selected and its 

state is inverted. For the second process (80%), one of the edges is 

selected and its goal is attached to another node. For the third 

process (10%), a new node is added to the strategy tree. An 

orphan node created by the crossover process may be connected 

according to the mutation process. Figure 2 shows these processes.  

 

 

Figure 2. Mutation process on GP. Top-left automaton 

changed at black stars 

In the crossover process, one of the pair (1st and 2nd ranks) is 

randomly selected as the body of the new agent, and its strategy 

tree is partially replaced with the randomly selected node of the 

other's strategy tree. A replacement tree is selected from the other 

of the pair’s randomly selected nodes. The entire process is shown 

in Fig. 3. A black star on the body of the tree is replaced with a 

white star on the crossover tree. The cell number is replaced with 

a new and unused number when the number is already used on 

original tree. If orphan nodes and edges are generated according 

to the mutation and crossover processes, they are preserved for 

future mutations and crossovers. 

Variation in the initialization phase is important for achieving 

good results from GP. The author used several simple strategies 

noted in previous studies as the seeds of this simulation. In the 

initialization phase, the system creates 50 random agents. Each 

agent has 1 or 2 states and each starting point and four edges are 

randomly assigned. As a result, the game will have 32 possible 

variations of agents. Some of the agents have the well-known 

strategies illustrated in Fig. 1. 

 

Figure 3. Crossover process. 

2.5 Hypotheses 
From the prediction discussed in Section 2.1 and setup discussed 

in the above sections, the author forms the following hypotheses. 

1) The size of an agent’s strategy tree increases in AMPD, which 

Byrne describes as an intelligence arms race [2]. Previous IPD 

simulations with GP show that IPD will converge in a mixture of 

several simple strategies. On the other hand, human-based 

simulations suggest that AMPD will increase the amount of 

automaton state [12] (There are no related studies on MMPD 

game, so it is required to find the result on simulation at same 

time).  

2) The complexity of an agent's strategy tree also increases. The 

author calculated the average complexity of each agent in each 

791



round by cyclomatic complexity [18]. In this simulation, 

cyclomatic complexity is simply calculated by subtracting 

connected nodes from unique connecting edges, because these 

automatons do not have an exit node. For example, the cyclomatic 

complexity of the believer and attacker in Fig. 1 is calculated as 0 

because there are a node and one unique edge (c2->c2 or c1->c1). 

The complexity of GRIM is calculated as 1 because there are two 

nodes and three unique edges (c2->c2, c2->c1, and c1->c1). The 

complexities of TFT, aTFT, and Pavlov are calculated as 2 

because there are two nodes and four unique edges (c2->c2, c2-

>c1, c1->c1, and c1->c2). The author wants to emphasize that the 

number of cyclomatic complexity does not directly refer to real 

intelligence. However, intelligent strategy requires several 

branches in it and it increases cyclomatic complexity. The author 

estimates that if an automaton has more cyclomatic complexity, it 

acquires the ability to achieve more complex behavior. 

3. RESULTS 
The maximum average score in IPD is 3 and maximum average 

scores in MMPD and AMPD is 2. In IPD (100 games), no agent 

acquired more than 5 nodes (10 edges) in any game. The final 

agent strategies were a mixture of TFT, believer, and GRIM, 

similar to previous simulations on IPD. Figure 4 shows the 

average amount of edges, average amount of used edges, and 

average score of IPD. The average score quickly increased to 

approximately 3 (achieved by C-C) during the first 50 rounds. In 

MMPD (100 games), agents in 92 games had less than 5 states, 

and agents in 8 games acquired more than 5 nodes and less than 

10 nodes of automatons (10-45 edges). However, the author found 

that these cases were caused by only duplicated automaton states 

which is not used and did not really represent the complexity of 

agent strategies. Figure 5 shows the average amount of edges, 

average amount of used edges, and average score of MMPD. The 

average of all edges slightly increased in the 8 games. However, 

used edges did not increase in any case. The average score quickly 

increased to approximately 2 (achieved by continuous C-Cs or 

continuous C-D and D-C pairs) during the first 50 rounds. 

 

 

Figure 4. Average scores and edges on IPD. Left Y axis shows 

the score of the agents per each match. Right Y axis shows the 

average amount of edges in each automaton. Dark gray shows 

average used edges and light gray shows average all edges. 

 

Figure 5. Average scores and edges on MMPD. Notations are 

same as in Fig. 4. 

In AMPD (100 games), agents in 57 games had less than 5 nodes. 

In 56 cases in these games, almost all agents had the GRIM or a 

similar simple strategy and their final score was almost 1 (between 

0.9 to 1.05) because if the field was occupied and locked by 

GRIM strategies, no agent could acquire more rewards from the 

field. In one of the 57 games, the field was occupied and locked 

by attackers and the final score was -1. On the other hand, agents 

in 43 games finally acquired averagely 378 edges (between 51 to 

1525, standard deviation SD=438). Used edges also increased in 

AMPD. In the final state, averagely 27 edges were still used as a 

working strategy (between 18 to 42, SD=6). Figure 6 shows the 

average amount of edges, average amount of used edges, and 

average score of AMPD in the 43 games.  

The author also evaluated how many nodes and edges were used 

in each match. An edge was counted as used when at least one of 

the 49 opponents forced to use this strategic route during each 

round. The results are also shown in Fig. 4-6 with different colors. 

More than 10 nodes (20 edges) were used in the final round in 

AMPD. 

 

Figure 6. Average scores and edges on AMPD in 43 games. 

Notations are same as in Fig. 4. 
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The author also evaluated cyclomatic complexity in these 43 

AMPD games. The complexity on the entire tree was averagely 

172 (between 20 to 720, SD=202). The complexity on the used 

tree was averagely 7.0 (between 4.5 to 9.5, SD=1.2). Figure 7 

shows how the average used edges and the average cyclomatic 

complexities on the used tree increased in each round. The black 

line shows the complexity on the used tree and the gray region 

shows the standard deviations. The increasing complexity of the 

tree suggests that each agent’s strategy became more complex 

during rounds. The increasing speed of complexity on the used 

tree is relatively slow compared to the complexity on the entire 

tree. However, the complexity on the used tree became 4 and over 

in every agents in the final rounds. They became more complex 

than in the IPD and MMPD cases. In IPD and MMPD cases, the 

all cyclomatic complexities of used tree were 2 and fewer. This 

result means that no more complex strategies than simple 

strategies (as shown in Fig 1) were generated in IPD and MMPD 

cases. 

 

Figure 7. Average cyclomatic complexity on used tree. X axis 

shows rounds. Light gray region shows average used edges. 

Black line shows average complexity on used tree and dark 

gray region shows standard deviations. 

We applied regression analysis between rounds and four valuables 

(average nodes of automatons, average used nodes of automatons, 

average cyclomatic complexity on the entire strategy tree, and 

average cyclomatic complexity on used strategy tree) in 43 games. 

All correlation coefficients were over 0.85 and p-value was under 

0.001. These statistical results suggest that increases in the size of 

automatons and cyclomatic complexity are significant. 

4. DISCUSSION 
The author compares the three payoff scheme (IPD, MMPD, and 

AMPD) and give a detailed analysis using a sample of AMPD. 

The detailed analysis was conducted by referring to several 

samples from the game and evaluating the history of each agent. 

This evaluation method is based on biological analysis of the 

artificial life system Tierra [19]. The author selected several 

agents from the digital world as subjects and dissected them. 

4.1 Comparison of IPD, MMPD, and AMPD 
The quick convergence on IPD, lower amount of average edges in 

each agent’s strategy, and the fact that each agent’s strategy 

involves very simple automatons (believer, TFT, GRIM) suggest 

that our simulation results match previous studies on IPD 

[20][21]. The convergence speed and total amount of edges are 

also quick and similar to those in MMPD. In MMPD, continuous 

C-Cs (both players cooperate) and continuous C-D and D-C pairs 

(players cooperate and defect, and play the other hand next time) 

both result in the same reward. The results suggest that there is no 

strong evolutionary pressure to make automatons complex during 

the game. In IPD and MMPD, simpler strategies are more 

appropriate to survive. The results suggested that the intelligence 

arms race suggested in social brain hypothesis is not found in IPD 

and MMPD. 

In half the trials of AMPD, the edges and nodes of the automaton 

gradually increased in each round, which is different from IPD 

and MMPD. Each agent's strategy finally acquired averagely 378 

edges. The result that 27 edges were averagely used shows that 

these strategies are not just an unnecessary byproducts from the 

GP process. It is also important that the other unused edges might 

not be garbage as a result of GP because these surplus nodes may 

show the robustness for possible trials. This robustness is not 

required in IPD and MMPD. An increase in the size of 

automatons was observed only in AMPD. The results also suggest 

that MMPD is categorized the same as IPD for evolving 

intelligence. A gradual increase in the average number edges of 

automatons shown in Fig. 6 supports Hypothesis 1. All agents in 

43 AMPD games quickly reached the CD/DC loop (longer loops 

such as CD/CD/DC/DC or CD/CD/CD/DC/DC/DC are 

theoretically possible as solutions, but not found in these 

simulations. This is because a long loop has more risk of 

exploitation from opponents.) It is important that even though 

they quickly reach an equilibrium in scores, as shown in Fig. 6 

(which suggests that scores are almost 2 points during the first 

300 rounds), the arms race of strategies continues as the game 

proceeds. This may suggest "the red queen effect" in biology in 

which the arms race continues after equilibrium [22], occurred in 

our simulations. Also, gradual increases in the average number of 

cyclomatic complexity on the entire tree and used tree suggest that 

increased nodes contribute to making complex strategies. This 

result supports Hypothesis 2. 

These results are different from a previous study. Osawa et al. 

suggested that human-based simulation increases intelligence and 

is supported both from AMPD and refusal selection on trade by 

each agent. Different from their study, this computational 

simulation suggests that refusal selection is not mandatory for 

evolving intelligence. The author still agrees with their results that 

the AMPD payoff table is mandatory for achieving the evolution 

of automatons. Each strategy should be unique in AMPD for 

avoiding collision of the same strategies. The situation is close to 

Takano et al.'s "walking a road with avoiding collision" problem 

[23]. 

4.2 Analysis of AMPD in detail: Imitations 

and complexity in strategies  
For conducting a micro-based analysis, the author focused on an 

example trial. We chose the 3rd trial as a well-rounded example, 

because the number of its final states is the median of that of the 

43 cases. Figures 8, 9, and 10 show unique automatons that were 

top-ranked during the first 150 rounds. This transitional history of 

top-ranked automatons helps to reveal what kind of increase in 

strategies occurred. 

Each number on the top of each figure shows the first round 

number when each automaton appeared. The author named these 
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top-rank automatons according to their behavior as shown on the 

right position of each round number. The numbers on the edge 

sides show the kind of hand (C=0, D=1) and how many agents (up 

to 49 opponents) selected this edge as a route. The edge becomes 

thicker if the opponent selected this route. Gray edges mean that 

they were not used in its round. Although gray lines are not used, 

they would suggest the ability of an agent to handle possible 

opponents. 

 

Figure 8. Top-ranked automatons from 3rd trial (1 to 38). 

Each number on the top of each figure shows round number. 

Numbers on side of edge denote type of hand (C=0 as solid 

lines, D=1 as dashed lines) and how many agents (up to 49 

opponents, higher numbers expressed as thicker arrow) select 

this edge as a route. Gray edges mean that they are not used in 

each round. 

 

 

Figure 9. Top-ranked automatons from 3rd trial (49 to 79). 

Each number on the top of each figure shows round number 

and other notations are same as in Fig. 7. 

 

Figure 10. Top-ranked automatons from 3rd trial (92 to 148). 

Each number on the top of each figure shows round number 

and other notations are same as in Fig. 7. 

 

With Figs. 8 to 10, we can confirm a general trend in which the 

edges and nodes of top-ranked automatons increase. Each agent 

acquired branches during generations and this increased the 

complexity of their strategies. For example, strategies before 

number 97 is described as a tree with no separated strategies 

(shown in Figs. 8, 9, and 10). These automatons are described as 

straight program and the program counter proceeds and backs on 

the line according to the opponent's reactions. On the other hand, 

strategies after 99 (shown in Fig. 10) include separated stages. 

The separated stages become more complex in later automatons. 

These automatons also reveal that all strategies in Figs. 8 and 9, 

except numbers 92 and 97, have a routine for guarding against 

attackers (whose hands are all D) in every branch of their 

strategies. This suggests these automatons acquire basic ability for 

avoiding exploiters. 

Several automatons include basic strategies inside itself. Although 

the results were obtained from the crossover process in the 

simulations, the author can also interpret that these agents learned 

"opponent's model" inside their automatons for mimicking 

workable logic from other agents to improve their strategies. For 

example, offensiveTFT+attacker (number 37 in Fig. 8) mimics 

offensiveTFT (number 21 in Fig.8) inside itself (between c2 to c5). 

The "2ways" strategy (number 148) is impressive because the 

right tree (between c4 to c6) is the same as 

"believer+offensiveTFT" (number 49). This agent first attacks an 

opponent and selects the behavior according to the reactions. If 
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the opponent reacts as a defect, this agent selects the conventional 

“believer+offensiveTFT” method. If the opponent cooperates, the 

agent steps into a more offensive routine, as shown in Fig. 10 

number 148’s left branch. This branch is similar to the right 

branch. However, this branch can produce a continuous DCD for 

believers, yet it is not used in this round. This circular routine is 

also able to exploit more generous strategies than TFT such as 

TFFT, which endures one defect and defects the opponent if it 

accepts two defects. It is also curious that a circular routine – loop 

with multiple nodes – is generated after 148 generations. These 

circular routines are suitable for producing three or more states 

periodical "signals." It should be noted that the evolution process 

forces agents to acquire this ability.  

Figure 11 includes the ratio between when the strategy started 

from cooperate (which is categorized as "good" by Axelrod [5]) 

and from defect. The ratio becomes stable between 0.4 to 0.6 in 

the final rounds. This result suggests that variations in automatons 

become half-and-half. During the rounds, each agent created a 

more appropriate environment for making continuous C-D and D-

C pairs or continuous D-C and C-D pairs. 

 

Figure 11. The ratio of cooperate and defect of start point. X 

axis shows rounds. Light gray region shows the ratio of agent 

who started from cooperate. Dark region shows the ratio of 

agent who started from defect. 

 

Figure 12. Average scores for simple strategies shown in Fig. 1. 

X axis shows rounds. Y axis shows the average score per each 

match. 

The author evaluated how each selected agent behaved with the 

simple strategies (believer, attacker, TFT, aTFT, Pavlov, and 

GRIM) shown in Fig. 1. The results are shown in Fig. 12. Each 

agent acquired the appropriate behavior (CD/DC loop) for TFT 

and aTFT. They also acquired the ability to exploit believer and to 

suppress loss from the battle with an opponent and GRIM. 

Average achieved score from Pavlov was stable between 100 and 

200. This is because Pavlov wants to sustain D if the player is C, 

(continuous C-Ds) and the player needs to play D and to make D-

D pair in the game for breaking continuous C-Ds. Thus, maximum 

score is lower than the cases of TFT and aTFT. The battles for 

simple strategies suggests that the evolution process improves an 

agent's ability to handle the basic strategies of their opponents. 

5. LIMITATIONS AND FUTURE WORKS 
The author hypothesized that the intelligence of an agent and the 

amount of nodes and edges are proportional. From the simulation 

analysis, the author formed the three hypotheses given in Section 2.5. 

Although these hypotheses reasonably explain what occurred in the 

early rounds in our simulation, the increase in the size of automatons 

in the later rounds and increase in complexity does not directly 

mean increase in intelligence. Also, the author does not know how 

these simulations will continue for further rounds. For investigating 

intelligence and toughness of strategies in the simulations, further 

research is required to evaluate the complexity of an agent with 

more sophisticated methods (for example, evaluating evolved 

strategies using more complex strategies). Our GP does not have any 

limitation for length of automatons. The author wants to evaluate 

how the limitation of resource influences the evolution of 

intelligence in future. 

The simulation and analysis results shown in Figs. 7 and 12, 

respectively, implicitly suggests the relationship between 

cyclomatic complexity and the ability for handling simple 

strategies. However, cyclomatic complexity does not 

approximately show this ability. Several different methods for 

evaluating the complexity of agent strategies are necessary. The 

author also would like to use qualitative analyses for imitating 

strategies and correlation between the similarity of agents and their 

scores.  

The author wants to emphasize that there have been many studies 

for IPD regarding the evaluation of diversity and locality [6][8]. Our 

simulation gave a different viewpoint than previous life simulations, 

i.e., from the role of intelligence. Our simulations included only 

delayed rewards. However, there are several more complex 

dilemmas in actual trading. The author wants to evaluate how other 

factors will affect the intelligence of automatons for future work. 

Our simulations were affected by the AMPD setup from previous 

studies [7][12]. One of the significant differences of our evaluation 

is that our evaluation can not only be applied to an entire analysis, 

but also detail discussion on the selection of each automaton. The 

author founds some intelligent behavior (imitations, branches, 

categorization, and 3-states loops) are acquired during evolution. 

Our findings revealed three important factors related to game 

theory, cognitive science, and artificial intelligence. From the 

game theory viewpoint, the possibility of mutual trading can be 

analyzed in the cheap talk game, which divides a trading game 

into an initialization phase and a main trading phase [24]. Our 

results suggest that identification of others and mutual 

cooperation can be achieved even without “cheap talk" by using 
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the reward itself. This finding may lead to multi-agent simulations 

becoming simpler as far as their requirements go. From the 

cognitive science viewpoint, the author finds that an intelligence 

arms race appears even with simpler rules. From the artificial 

intelligence viewpoint, the author found a general game rule to 

increase the complexity of autonomous agents. The results will 

contribute to creating the social behavior of non-player characters 

in video games [25] and social robots [26]. 

6. CONCLUSION  
The author discussed the evolution of the intelligence arms race, 

represented as finite state automatons, under three distinct payoff 

schemes (IPD, MMPD, and AMPD). The author hypothesized 

that 1) an agent’s strategy gradually increases, which Byrne 

described as an intelligence arms race [2], and 2) agent strategies 

in AMPD become complex. The results suggest that agents 

increase the complexity of their strategies and intelligence arms 

race occurs. 
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