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ABSTRACT
A fundamental problem in game theory is the possibility of reach-
ing equilibrium outcomes with undesirable properties, e.g., ineffi-
ciency. The economics literature abounds with models that attempt
to modify games in order to eliminate such undesirable equilibria,
for example through the use of subsidies and taxation, or by allow-
ing players to undergo a preplay negotiation phase. In this paper,
we consider the effect of such transformations in Boolean games
with costs, where players are primarily motivated to seek the satis-
faction of some goal, and are secondarily motivated to minimise the
costs of their actions. The preference structure of these games al-
lows us to distinguish between hard and soft equilibria, where hard
equilibria arise from goal-seeking behaviour, and cannot be elimi-
nated from games by, e.g., taxes or subsidies, while soft equilibria
are those that arise from the desire of agents to minimise costs. We
investigate several mechanisms which allow groups of players to
form coalitions and eliminate undesirable equilibria from the game,
even when taxes or subsidies are not a possibility.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
J.4 [Computer Applications]: Social and Behavioral Sciences -
Economics

General Terms
Economics, Theory

Keywords
Game theory (cooperative and non-cooperative), Boolean games,
Nash equilibria, Externalities

1. INTRODUCTION
A fundamental problem in the theory of games is that a game

may contain Nash equilibria with undesirable properties. To take a
famous example, in the Prisoner’s Dilemma the unique pure strat-
egy Nash equilibrium, i.e., mutual defection, is the only outcome of
the game that is not Pareto optimal, and it is besides strictly worse
for both players than the alternative solution of mutual cooperation.
From an outside perspective, mechanisms can be devised to incen-
tivise the players to play certain actions, e.g., by means of subsi-
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dies, or to disincentivise them to do so, e.g., by imposing taxes, de
facto modifying the game. Likewise, the situation may allow for
various ways in which the players themselves can modify the game
they are playing, e.g., by making agreements, transferring money
to one other, or joining forces in coalitions to their mutual benefit.
Both these solutions have been studied in the economic literature
since its early stages [4, 3, 9, 13].

Boolean games (of the form studied in [15, 12]) represent an im-
portant domain for investigating these issues, because preferences
in such games have a particular structure: players are primarily mo-
tivated to achieve a goal and they are only secondarily motivated to
minimise the cost of actions required to achieve that goal. In par-
ticular, it is assumed that a player will always prefer to achieve
her goal than otherwise. Such so-called quasi-dichotomous prefer-
ences, besides inducing nonstandard properties in game play [12],
are quite natural in many application domains for multi-agent sys-
tems. For example, consider a robot programmed to perform a par-
ticular task in an automated warehouse. Operating the robot in-
volves energy consumption, which we might want to minimise, but
at the same time we do not want to compromise the successful ex-
ecution of the task. In other words, we primarily want the robot to
successfully carry out the task, and only secondarily to minimise its
energy consumption. Given such preference structures, it turns out
there are limits on way such a game can be manipulated. A player
cannot be incentivised to choose a course of action that would not
lead to his goal to be satisfied over a course of action that would.

Following an introduction to the formal framework of Boolean
games with costs, we distinguish between hard and soft equilib-
ria in our games. A hard equilibrium is one that will remain an
equilibrium no matter what costs are being imposed. In contrast,
a soft equilibrium is one that can be eliminated from or introduced
to a game by the introduction of some cost incentive. Clearly, the
presence of hard equilibria with undesirable properties would be
bad news, as it would be impossible to incentivise players not to
choose this outcome if they want to. However, we show that hard
equilibria are in fact rather rare in the sense that the conditions re-
quired for their presence are rather strong. In addition, we show
that hard equilibria, when present, do in fact have desirable social
properties.

We give logical classifications of both hard and soft equilibria
and discuss their properties. We then turn to the issue of managing
equilibria, using well-known ideas from the economics literature
[13, 4, 3, 9, 8]. We first consider the possibility of groups of play-
ers to engineer side-payments so as to motivate another player to
act in a way that is beneficial to the group. This is the idea of (a
group of) players encouraging another player to increase the posi-
tive externalities or reduce the negative externalities it induces [4,
9, 8]. Second, we study the possibility of a player taking into ac-

845



count the undesirable consequences his choices have for others by
merging that player with some of the other players. This is one way
of what is known in the economics literature as internalising exter-
nalities [13, 3]. We investigate how such a mechanism can affect
the equilibria of a game. In particular, we show that by allowing
players to merge in coalitions hard equilibria can be eliminated.

2. BOOLEAN GAMES WITH COSTS
Boolean games are based on propositional logic, and have a nat-

ural computational interpretation, which is highly relevant to the
multi-agent systems domain (see, e.g., [6, 2, 5, 15, 12]). In this pa-
per, we use the Boolean games model with cost functions, in which
the players have quasi-dichotomous preferences, as in [15]. Thus,
each player is primarily interested in satisfying a goal, which is
expressed by a Boolean formula, classifying each outcome as de-
sirable or undesirable. A player’s secondary concern is with costs:
if two outcomes both satisfy or both do not satisfy a player’s goal,
the one is preferred that has the lower cost. This quasi-dichotomous
character of the preferences allows us to accentuate certain aspects
of the effects of side-payments and coalition merging in the context
of externalities.

Let B = {>,⊥} be the set of Boolean truth values, with “>”
being truth and “⊥” being falsity. Let, furthermore, Φ = {p, q, . . .}
be a fixed, finite, and non-empty vocabulary of Boolean variables
andL the set of well-formed formulae of propositional logic over Φ
with the conventional Boolean operators (“∧”, “∨”, “→”, “↔”,
“¬”) as well as the truth constants “>” and “⊥”. A valuation is
a function v : Φ → B, assigning truth or falsity to every Boolean
variable. We write v |= ϕ to mean that ϕ is true under, or satisfied
by, valuation v, where the satisfaction relation “|=” is defined in the
standard way. Let V denote the set of all valuations over Φ.

The games we consider are populated by a set N = {1, . . . , n}
of agents, the players of the game. Each agent i ∈ N is assumed
to have a goal, which is characterised by an L-formula γi. Each
agent i ∈ N controls a (possibly empty) subset Φi of the overall
set of Boolean variables. By “control”, we mean that i has the
unique ability within the game to set the value (either > or ⊥) of
each variable p ∈ Φi. We will require that Φ1, . . . ,Φn forms a
partition of Φ, i.e., Φi ∩ Φj = ∅ for i 6= j and Φ1 ∪ · · · ∪ Φn = Φ.
Every variable is controlled by precisely one agent. A choice for
agent i ∈ N is defined by a function vi : Φi → B, i.e., an allocation
of truth or falsity to all the variables under i’s control. If Φi = ∅,
player i has only one action and is called a dummy player. Let Vi

denote the set of choices for agent i. The intuitive interpretation
we give to Vi is that it defines the actions or strategies available to
agent i, i.e., the choices available to the agent.

An outcome~v = (v1, . . . , vn) in V1 × · · · × Vn is a collection of
choices, one for each agent. Clearly, every outcome uniquely de-
fines a valuation, and we will abuse notation by treating outcomes
as valuations and valuations as outcomes. So, for example, we will
write ~v |= ϕ to mean that the valuation defined by the outcome ~v
satisfies formula ϕ. We let ~V denote the set of outcomes, and we
write (~v−i, v′i ) for the outcome (v1, . . . , vi−1, v′i , vi+1, . . . , v′n).

When playing a Boolean game, the primary aim of an agent i will
be to choose an assignment of values for the variables Φi under her
control so as to satisfy her goal γi. The difficulty is that γi may
contain variables controlled by other agents j 6= i, who will also be
trying to choose values for their variables Φj so as to get their goals
satisfied. As their goals in turn may be dependent on the variables
in Φi, they may have to take into account how player i will act when
making their choice. And so on. In our setting, moreover, outcomes
are associated with costs to the players. Minimising these costs is
another important, but secondary, concern to the players. Thus, if

an agent has multiple ways of getting his goal achieved, then he will
prefer to choose one that minimises his costs, whereas, if an agent
cannot get his goal achieved, then he simply chooses to minimise
his costs.

To capture these preferences, we introduce two types of cost
function: global cost functions and local cost functions. The former
associate with each outcome a cost for each of the players, whereas
the latter associate costs with setting propositional variables to one
of the two truth-values. Formally, we define a global cost function
as a function

c : N × ~V → Q≥,

which associates each player i and each outcome ~v with a non-
negative rational number, intuitively representing the amount by
which player i is taxed when~v is the outcome of the game. We also
write ci(~v) for c(i,~v). Wooldridge et al. [15] assumed a natural
additive (and more concise) model for costs given by local cost
functions of the form

ĉ : Φ× B→ Q≥.

Intuitively, ĉ(p, b) is the marginal cost of assigning the value b ∈ B
to variable p ∈ Φ. Given this definition, we can extend the local
cost function ĉ to outcomes~v = (v1, . . . , vn), as follows:

ĉ(i,~v) =

{∑
p∈Φi

ĉ(p, vi(p)) if Φi 6= ∅,
0 otherwise.

Notice that this model implies that the cost a player incurs only
depends on the choice that this player makes. With a slight abuse
of notation, we therefore also write ĉi(vi) for ĉ(i,~v) where ~v =
(v1, . . . , vn) and ĉ is induced by a local cost function. Observe
that every local cost function defines a global cost function, but not
necessarily the other way round. In particular, the local costs for
a player i will be the same for any two outcomes ~v = (v1, . . . , vn)
and~v′ = (v′1, . . . , v

′
n) whenever vi = v′i . This need not be the case

for global cost functions.
We can now introduce the utility functions that model the play-

ers’ preferences. Let ~v e be an outcome with maximal cost for
player i, and let µi denote the cost to i of this most expensive out-
come, i.e.,

~v e ∈ arg max
~v∈~V

ci(~v) and µi = ci(~v e).

The utility to agent i of an outcome~v = (v1, . . . , vi, . . . , vn) is then
defined as follows:

ui(~v) =

{
1 + µi − ci(~v) if~v |= γi,
−ci(~v) otherwise.

Thus, utility to agent i will range from 1 + µi (for an outcome in
which i gets his goal achieved at the lowest cost) down to −µi (for
outcomes with the highest cost to i in which i’s goal is not satisfied).

Formally, a Boolean game (with costs) is then given by a struc-
ture

G = (N,Φ, c, (γi)i∈N , (Φi)i∈N),

where N = {1, . . . , n} is a set of agents, Φ = {p, q, . . .} is a
finite set of Boolean variables, c is a (global or local) cost function,
γi ∈ L is the goal of agent i ∈ N, and Φ1, . . . ,Φn is a partition
of Φ over N, with the intended interpretation that Φi is the set of
Boolean variables under the unique control of i ∈ N.

Boolean games represent games in strategic form, with choices
of players as their actions and the utility function as defined above
representing their preferences. Accordingly, the standard game-
theoretic solution concepts are available for the analysis of Boolean
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q ∧ r q ∧ ¬r ¬q ∧ r ¬q ∧ ¬r
1,2,3 1,2,3 2

p 1, 11, 0 1, 11, 0 1, 2, 0 1, 2, 0

1,2,3 1,2,3 2

¬p 1, 11, 0 1, 11, 0 1, 2, 0 1, 2, 0

Figure 1: The game of Example 1, in which player 1 chooses
rows and player 2 columns. Player 3 is a dummy player. The
figures in the top right corners of the cells indicate the players
that have their goals satisfied in the respective outcome. The
three figures x, y, z in the centre of each cell denote the costs to
player 1, player 2, and player 3, respectively.

games [11]. We focus on Nash equilibrium. An outcome ~v =
(v1, . . . , vn) is a (pure) Nash equilibrium if for all agents i ∈ N,
there is no v′i ∈ Vi such that

ui(~v−i, v′i ) > ui(~v).

Let NE(G) denote the set of all Nash equilibria of the game G. Let
us consider an example.

EXAMPLE 1. Suppose we have a game G1 with N = {1, 2, 3},
Φ = {p, q, r}, Φ1 = {p}, Φ2 = {q, r}, Φ3 = ∅, and a local
cost function. The cost for player 2 of setting q = > is 10 and all
other costs in the game are 1. Finally, we have γ1 = γ3 = q, and
γ2 = q∨r. Also see Figure 1. Now, although player 2 could choose
an action that satisfies not only his goal but also those of players 1
and 3—e.g., setting q and r both to true—he will not rationally do
so: by setting q to true and r to false he would achieve his goal at
a lower cost. Then, however, players 1 and 3 are left without their
goals being satisfied. It is easy to see that for all ~v ∈ NE(G1) we
have ~v |= ¬γ1 ∧ γ2 ∧ ¬γ3, i.e., in all Nash equilibria, players 1
and 3 fail to get their goals achieved. This is a simple example
of a Nash equilibrium with undesirable social properties. More-
over, this equilibrium is troubling, because there is an alternative
outcome of the game in which all players’s goals are satisfied.

3. HARD AND SOFT EQUILIBRIA
Recall that an agent’s preferences are driven by two components:

the primary one is her goal γi, the secondary one is cost minimisa-
tion. It is important to emphasise that cost minimisation is strictly
secondary to goal achievement: an agent will always prefer an out-
come that satisfies her goal over one that does not, irrespective of
what the cost implications are.

In this section, we will show that the fact that there are two dis-
tinct drivers behind an agent’s preferences gives a two-tier structure
to the Nash equilibria of Boolean games. Specifically, we distin-
guish between hard and soft equilibria. Informally, a hard equilib-
rium is one that is present in game irrespective of the cost function
of the game. In contrast, a soft equilibrium is one whose pres-
ence in a game is contingent upon the cost function of the game.
As a consequence, if an equilibrium is soft, then it can potentially
be eliminated from the game if it is viewed as undesirable—e.g.,
through taxes [13, p.656]—or introduced to the game by providing
appropriate incentives, if it is seen as desirable. To formalise this
intuition, we need some more notation.

First, given a game G with cost function c, we denote by Gc′ the
game obtained from G by replacing the cost function c with cost
function c′. Thus, in Gc′ , the primary drivers behind each player’s

HARD(G) ⊆ NE(G) ⊆ INIT(G)

⊆ ⊆

PRESENT(G) ⊆ SOFT(G)

⊆

ABSENT(G)

Figure 2: Containment relations between types of equilibria.

preferences (i.e., goal achievement) remain the same as in G, but
the secondary drivers (i.e., cost reduction) may be different.

Important in the discussion that follows is the zero cost func-
tion c0, which assigns cost 0 to all players in all outcomes. Thus,
in a game G with cost function c0, which we will also denote by G0,
players are indifferent between outcomes on the basis of costs: the
only driver for an agent is to achieve his goal.

Let us now define the set INIT(G) of initial equilibria of a game G
to consist of those equilibria that are present in the game G0, i.e.,

INIT(G) = NE(G0).

The reason for singling out this set and giving it its name is illus-
trated by the following observation.

OBSERVATION 2 ([15]). For all games G, NE(G) ⊆ INIT(G).

Thus, the game G0 contains a maximal set of Nash equilibria
with respect to G. In particular, if for some outcome ~v we have
~v 6∈ NE(G0), then there is no possibility of introducing it to G via
the imposition of some cost function. Marginal costs defined within
cost functions c serve to eliminate Nash equilibria from a game G0.

We can now define the hard equilibria of a game G. Formally,
the set of hard equilibria of G are those equilibria that are present
in G no matter what cost function we assign to the game, i.e.,

HARD(G) =
⋂

c:N×~V→Q≥

NE(Gc).

Thus, if ~v ∈ HARD(G), then ~v is “immune” to any cost considera-
tions, because no matter what we do to the cost function of G, the
outcome~v will remain an equilibrium in the game.

In contrast, a soft equilibrium is one that is present in a game for
some assignment of costs in the game, but is absent for some other
assignment of costs. We can thus think of soft equilibria as being
the “malleable” part of a game: it is these equilibria that we can
eliminate from or introduce to games. Formally, SOFT(G) denotes
the set of soft equilibria of G, i.e.,

SOFT(G) = INIT(G) \ HARD(G).

To understand this definition, recall that INIT(G) is the maximal set
of Nash equilibria that could be present in a game. Accordingly, an
outcome can be a soft equilibrium in a game without being a Nash
equilibrium. It will, however, be a Nash equilibrium for the game
with another cost function. For this reason, we will distinguish
between soft equilibria that are present and those that are absent in
a game. Thus, we let PRESENT(G) denote the set of soft equilibria
of G that are present in G, and let ABSENT(G) denote the set of soft
equilibria that are not present in G, i.e.,

PRESENT(G) = NE(G) \ HARD(G),
ABSENT(G) = SOFT(G) \ PRESENT(G).

Figure 2 illustrates the containment relations between these sets;
these all follow directly from the definitions presented above to-
gether with Observation 2. Let us see an example.
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q ¬q
1,3 −

p 2, 3, 3 1, 4, 2

1,2,3 2

¬p 3, 1, 1 3, 2, 3

r

q ¬q
1, 3 1,2,3

p 0, 1, 6 2, 2, 2

2,3 2, 3

¬p 3, 2, 3 1, 4, 1

¬r

Figure 3: A three-player game, in which player 1 controls p,
player 2 controls q, and player 3 controls r. The notational
conventions are as in Figure 1.

EXAMPLE 3. Consider the Boolean game in Figure 3 with N =
{1, 2, 3}, Φ1 = {p}, Φ2 = {q}, and Φ3 = {r}. The goals of the
players are given by γ1 = (r → q) ∧ (¬r → p), γ2 = p →
(¬q ∧ ¬r), and γ3 = r → q. Here, as in the further examples, we
will refer to the outcome satisfying p ∧ ¬q ∧ r as~v p¬qr and for the
other other outcomes similarly.

The game has two Nash equilibria, viz.,~v pqr and~v p¬q¬r. The for-
mer is soft and present, whereas the latter is hard. Outcome ~v¬pqr

is the third initial equilibrium and is achieved by the empty cost
function c0. It is, however, soft and absent.

The concept of a hard equilibrium is defined with respect to all
(global) cost functions. The following lemma, however, shows that
one only need to consider the local cost functions to decide whether
an outcome is a hard equilibrium. As the zero cost function c0 can
obviously be seen as being induced by the local cost function that
assigns cost zero to every variable, this also holds for the initial,
soft, absent, and present equilibria.1

LEMMA 4. Let G be a game and ~v an outcome. Then, ~v ∈
HARD(G) if and only if~v ∈ NE(Gc) for all local cost functions c.

Notice that in the game G1 of Example 1 there are no hard equi-
libria. The following proposition establishes that this is in fact no
coincidence: hard equilibria are rather scarce in Boolean games.
For an outcome to be a hard equilibrium, every player must get
their goal achieved in that outcome, and any deviation from that
outcome by a player must result in that player’s goal being unsatis-
fied. The following proposition states this fact more formally.

PROPOSITION 5. Let ~v = (v1, . . . , vi, . . . , vn) be an outcome
of a game G. Then,~v ∈ HARD(G) if and only if both of the follow-
ing conditions are satisfied:

(i) ~v |= γi for all non-dummy players i in G, and

(ii) for all players i in G and all choices v′i ∈ Vi with v′i 6= vi, we
have (~v−i, v′i ) 6|= γi.

PROOF. For the “only if”-direction, we show that, if either of
the right-hand side conditions is not satisfied, then ~v 6∈ HARD(G).
Suppose condition (i) is not satisfied and let i be a non-dummy
player for which ~v 6|= γi. Let v′i ∈ Vi with v′i 6= vi and fix a local
cost function ĉ such that that v′i is strictly the cheapest choice for i.
Then v′i represents a beneficial deviation for i from ~v in Gĉ, and so
~v 6∈ HARD(G). Now suppose condition (ii) is not satisfied. Then,
some player i has a choice v′i 6= vi, such that (~v−i, v′i ) |= γi. Fix
a (local) cost function ĉ that makes v′i the strictly cheapest choice
for i. Then, v′i is a beneficial deviation for i: if ~v 6|= γi, then the
deviation to v′i benefits i because she gets her goal achieved, while,
1Some of the proofs in this paper we omit due to space restrictions.

if ~v |= γi, then deviating to v′i benefits i because it reduces costs
compared to vi.

For the opposite direction, suppose (i) and (ii) are satisfied but
that~v 6∈ HARD(G). From the latter assumption, there is a cost func-
tion c : Φ × B → R such that ~v 6∈ NE(Gc). Then, some player i
has a beneficial deviation v′i from ~v in Gc. Now, by (i), all non-
dummy players have their goals achieved with ~v, and, by (ii), any
deviation, in particular to v′i , would result in their goals being un-
satisfied. Hence, v′i cannot be a beneficial deviation and we obtain
a contradiction.

The significance of Proposition 5 may not be immediately ap-
parent. We argue, however, that it is a positive result rather than
a negative one. Hard equilibria cannot be eliminated from games
through cost functions, and so the presence of hard equilibria with
undesirable properties would be bad news indeed. But Proposi-
tion 5 establishes that, first, hard equilibria are rare in games, in the
sense that the condition required for their presence is very strong,
and second, where they are present, hard equilibria in fact have
properties that can be viewed as very desirable: all players have
their goals achieved, and hence obtain positive utility. Thus, hard
equilibria can be understood as maximising qualitative social wel-
fare [15]. Also notice that Proposition 5 is purely logical. The
condition on the right-hand side is expressed solely in terms of val-
uations and goal formulae; no reference is made to cost functions.

The following proposition characterises the set of soft equilibria.

PROPOSITION 6. Let ~v = (v1, . . . , vi, . . . , vn) be an outcome
of a game G. Then, ~v ∈ SOFT(G) if and only if both ~v ∈ INIT(G)
and there is a player i and an outcome ~v′ = (v′1, . . . , v

′
n) with

~v′ 6= ~v such that the following conditions are satisfied:

(i) ~v |= γi if and only if ~v′ |= γi, and

(ii) ~v−i = ~v′−i.

PROOF. For the “if”-direction, assume~v′ satisfies the right-hand
side of the condition. Define a local cost function ĉ such that, for
each propositional variable p and boolean b ∈ {⊥,>},

ĉ(p, b) =

{
0 if~v′(p) = b,
1 otherwise.

.

With this cost function, the least-cost choice for an agent i is to
choose his part v′i of ~v′; any other choice will incur higher cost.
In this case, since ~v |= γi if and only if ~v′ |= γi, then i will have
a beneficial deviation from ~v to ~v′, and so ~v 6∈ NE(Gĉ). Since
~v ∈ NE(G0) and~v 6∈ NE(Gĉ), then~v ∈ SOFT(G).

For the opposite direction, assume ~v ∈ SOFT(G). Then, there
is a cost function c : Φ × B → Q≥ such that ~v ∈ INIT(G) but
~v 6∈ NE(Gc). Since~v 6∈ NE(Gc), then some player i has a beneficial
deviation v′i from ~v in Gc. We claim that ~v |= γi if and only if
~v′ |= γi. For suppose not, then either (a)~v |= γi and~v′ 6|= γi, or else
(b) ~v 6|= γi and ~v′ |= γi. In case (a), we would have ui(~v−i, v′i ) <
ui(~v) in Gc, and so v′i cannot be a beneficial deviation. In case (b),
since i would not get her goal achieved in~v but would with (~v−i, v′i ),
choice v′i would be a beneficial deviation from ~v for player i in the
game G0. Hence,~v 6∈ NE(G0), i.e.,~v 6∈ INIT(G). In both cases we
have a contradiction. Hence, ~v |= γi if and only if ~v′ |= γi. Thus,
the conditions of the right-hand side are satisfied.

Again, this characterisation is purely logical and makes no refer-
ence to cost functions.
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4. EXTERNALITIES IN BOOLEAN GAMES
In this section, we will see how the concepts we introduced above

can be used to understand and manage externalities in Boolean
games. The term “externality” in economics is used to refer to a
situation where the actions of one agent can affect the well-being of
one or more other agents [13]. An example of (negative) external-
ity is a factory discharging industrial effluent into a river upstream
of a fish farm, thereby reducing the quality and quantity of the fish
that the farm can produce. An example of (positive) externality is a
honey producer keeping bee hives in a field that happens to be close
to an orchard [9, 8]: the orchard owner benefits from the presence
of the bees, who pollinate the apple trees.

There are two standard approaches in economics to deal with ex-
ternalities. The first is to allow players to provide monetary com-
pensation, or side-payments, to encourage or discourage certain ac-
tions to be taken. In the example of the beekeeper and the apple
grower, if side-payments are allowed, the apple grower will com-
pensate the beekeeper for his positive externality, provided the bee-
keeper is effectively able to prevent his bees from pollinating the
apple trees [8]. Economic theorists like Coase, Meade, and Maskin
have studied under what conditions this possibility allows efficient
outcomes to be reached [4, 9, 8, 7]. The second approach to deal-
ing with externalities is to have players internalise externalities,
that is, to somehow incentivise them to take externalities into con-
sideration when they make their choices. In the factory-fish farm
example, above, if we merge the fish farm and factory into a sin-
gle company, then it is in this company’s own interest to take into
account the negative effects of the pollution it causes. As such,
merging players can be seen as one way to internalise externalities.

Neither of these approaches is always realisable in practice, e.g.,
due to the absence of communication channels among the parties
involved or the lack of appropriate legislation. It is, however, inter-
esting to study the many cases in which they are.

In Boolean games, externalities arise from the fact that the sat-
isfaction of one player’s goal can depend on the choices made by
the other players. By choosing a particular valuation, a player can
either help or hinder other players achieving their goals. In the next
section we adapt the two approaches described above to the frame-
work of Boolean games.

4.1 Side-payments
In this section, we investigate what groups of players can achieve

if, before the game starts, they are allowed to make binding offers
to their fellow coalition members to persuade them to play des-
ignated strategies. Turrini [12] studied a preplay phase preceding
a Boolean game as a second game taking place before the actual
game starts. Our approach here is different: given a Boolean game,
we focus on the ability of coalitions to engineer side-payments in
order to escape unsatisfactory outcomes. The question we are espe-
cially interested in is which equilibria—hard or soft—can be elim-
inated from the game in this manner. Consider, for example, the
game in Figure 3. There, player 2 does not have her goal achieved
in the equilibrium satisfying p ∧ q ∧ r, but she could try to incen-
tivise player 1 to set p to ⊥ by offering him compensation for the
additional costs he incurs if he were to do so.

Following [7, 12], we formalise side-payments by means of so-
called transfer functions, i.e., functions of the form

τ : N × N × ~V → Q≥.

Intuitively, τ(i, j,~v) is the compensation player j receives from play-
er i for the costs j incurs at outcome ~v. Thus, after the transfer,
player i’s cost at~v is increased by τ(i, j,~v), whereas player j’s cost
at the same outcome is decreased by the same amount. Importantly,
it may very well be that τ(i, j,~v) 6= τ(j, i,~v).

We say that a transfer function τ only involves coalition C if all
transfers to and from players not in C are zero at all outcomes, i.e.,
if, for all players i ∈ N and j ∈ N \ C and all outcomes~v,

τ(i, j,~v) = τ(j, i,~v) = 0.

Furthermore, we let τi(~v) abbreviate the term∑
j∈N

τ(j, i,~v)−
∑
j∈N

τ(i, j,~v),

i.e., the net transfer received by player i under τ . It is important
to observe that every transfer to a player means an equally large
transfer from the other player. Therefore, each transfer τ(i, j,~v)
occurs once (negatively) in τi(~v) and once (positively) in τj(~v). In
particular, if τ only involves C, we have∑

i∈C

τi(~v) = 0.

We restrict our attention to admissible transfer functions, i.e.,
transfer functions such that, for all players i and all outcomes~v,

τi(~v) ≤ ci(~v).

In words, at no outcome the amount of what a player receives from
others minus what he gives to them can exceed his cost. Thus,
the cost a player incurs at an outcome cannot be overcompensated,
i.e., it cannot end up being negative as result of preplay negotia-
tion. For instance, if player i’s cost ci(~v) = 3 and player j is the
only other player in the game, then it cannot be that τ(j, i,~v) = 5
and τ(i, j,~v) = 1. This restriction is mainly of a technical nature
and preserves the quasi-dichotomous character of the preferences
in games transformed by transfer functions.2

Thus, a transfer function transforms the cost function of a Bool-
ean game. Let τ be a transfer function. For G a Boolean game with
cost function c, we then define cτ as the cost function such that, for
all players i and all outcomes~v,3

cτi (~v) = ci(~v)− τi(~v).

The utility function of player i in game G with cost function cτ we
will henceforth denote by uτi .

We are particularly interested in the equilibria of a game that
can be eliminated by groups of players making side-payments to
one another. Intuitively, an equilibrium ~v can be eliminated if a
coalition can engineer a transfer function that makes it attractive for
one of its members i to deviate from~v to another outcome (~v−i, v′i ).
Moreover, such a side-payment scheme has to benefit all players of
the coalition. That is, all coalition members should prefer (~v−i, v′i )
after the side-payments have been made to ~v before. Formally, we
say that a coalition C blocks outcome ~v if there is some transfer
function τ only involving C, some player i ∈ C, and some v′i ∈ Vi

such that the following two conditions hold:

(i) uτi (~v−i, v′i ) > uτi (~v), and

(ii) uτj (~v−i, v′i ) > uj(~v) for all players j ∈ C.

Condition (i) ensures that player i is incentivised to deviate from~v
to (~v−i, v′i ) after transfers have taken place, whereas condition (ii)
2One could also assume a base level of unavoidable costs and
model rewards (as distinguished from reparations) as compensa-
tion beyond this level.
3It is worth observing that transfer functions τ can be applied to
both local and global cost functions c. However, if c is a local cost
function, it is not necessarily the case that cτ is as well.
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guarantees that all players in C are better of in (~v−i, v′i ) after trans-
fers have taken place than they were in ~v before. Furthermore, we
say an outcome~v is blocked (via side-payments) if there is a coali-
tion blocking ~v. In case a coalition blocks an initial equilibrium~v,
we also say that~v is eliminable via side-payments.

EXAMPLE 7. Consider again the game in Figure 3. At out-
come ~v pqr player 2’s goal is not satisfied, whereas she is at ~v¬pqr.
Let τ be such that

τ(i, j,~v) =

{
x if i = 2, j = 1, and~v = ~v¬pqr,
0 otherwise.

Then, τ would incentivise player 1 to deviate to ~v¬pqr provided
that x > 1. Moreover, player 2 would gladly make any such trans-
fer in order to satisfy her goal. Accordingly, {1, 2} is a coalition
blocking the outcome ~v pqr. In a similar way, player 1 might want
to induce player 3 to deviate to outcome ~v pq¬r. That, however,
would require compensating player 3 for the additional costs of 3
that player 3 incurs at ~v pq¬r. Player 1, having his goals achieved
at both ~v pqr and ~v pq¬r, however, is not prepared to do so, as his
marginal gain in costs (before transfer) would only be 2. Still,
player 2 would also like to see player 3 deviate to ~v pq¬r. More-
over, together players 1 and 2 can compensate player 3 sufficiently
for him to do so. For instance, this could be achieved by the transfer
function τ ′, defined as

τ ′(i, j,~v) =

{
1 3

4
if i ∈ {1, 2}, j = 3, and~v = ~v pq¬r,

0 otherwise.

Accordingly, {1, 2, 3} is also a coalition blocking outcome~v pqr. We
may therefore conclude that~v pqr is eliminable by side-payments.

As transfer functions operate on cost functions only, it is immediate
that hard equilibria cannot be eliminated via side-payments.

OBSERVATION 8. Let~v be a hard equilibrium of a game G, i.e.,
~v ∈ HARD(G). Then,~v cannot be eliminated via side-payments.

Moreover, if an outcome ~v fails to be a Nash equilibrium, there
is some player i and some v′i ∈ Vi with ui(~v−i, v′i ) > ui(~v). Then~v
is eliminable by the singleton coalition {i} via the transfer function
that assigns cost zero to all players at all outcomes.

OBSERVATION 9. Let~v be an outcome of game G such that~v is
not a Nash equilibrium. Then~v is eliminable via side-payments.

The previous two observations show that in every game there is
a class of outcomes that can never be eliminated via side-payments
(the hard equilibria) as well as a class of outcomes that can always
be eliminated via side-payments (the outcomes that are not Nash
equilibria). There may, however, very well be outcomes in a game
that do not belong to either of these classes. Together with Observa-
tions 8 and 9, the following result establishes a full characterisation
of all outcomes that are eliminable via side-payments in a game.

PROPOSITION 10. Let~v be a present equilibrium of a Boolean
game G with a global cost function c. Then,~v is eliminable via side-
payments if and only if there is a coalition C, a player i ∈ C with
ci(~v) > 0, and a v′i ∈ Vi such that ~v |= γj implies (~v−i, v′i ) |= γj

for all j ∈ C, and one of the following conditions holds:

(i) ~v 6|= γj and (~v−i, v′i ) |= γj for some player j ∈ C, or

(ii)
∑
j∈C

cj(~v−i, v′i ) <
∑
j∈C

cj(~v).

PROOF. First assume that ~v is eliminable via side-payments.
Then, there is some coalition C, some i ∈ C, some v′i ∈ Vi, and
some admissible transfer function τ only involving C such that,

uτi (~v−i, v′i ) > uτi (~v), and

uτj (~v−i, v′i ) > uj(~v) for all players j ∈ C.

From the latter follows that ~v |= γj implies (~v−i, v′i ) |= γj for all
j ∈ C. Assume that ~v 6|= γj and (~v−i, v′i ) |= γj for no j ∈ C. It
follows that~v 6|= γj if and only if (~v−i, v′i ) |= γj for all j ∈ C. Since
uτj (~v−i, v′i ) > uj(~v) for all players j ∈ C, we also have that,∑

j∈C

cτj (~v−i, v′i ) <
∑
j∈C

cj(~v).

By admissibility of τ , in particular, cτi (~v−i, v′i ) ≥ 0. Hence, also
ci(~v) > 0. Recall that

∑
j∈C τj(~v−i, v′i ) = 0. Therefore,∑

j∈C

cτj (~v−i, v′i ) =
∑
j∈C

(cj(~v−i, v′i )− τj(~v−i, v′i ))

=
∑
j∈C

cj(~v−i, v′i )−
∑
j∈C

τj(~v−i, v′i )

=
∑
j∈C

cj(~v−i, v′i ).

Thus, finally we obtain that∑
j∈C

cj(~v−i, v′i ) <
∑
j∈C

cj(~v).

For the opposite direction, assume ci(~v) > 0 and let C be a
coalition, i ∈ C, and v′i ∈ Vi. Also assume that ~v |= γj implies
(~v−i, v′i ) |= γj for all j ∈ C. First, let ~v 6|= γj and (~v−i, v′i ) |= γj

for some player j ∈ C. Observe that j 6= i, otherwise ~v would not
be a present equilibrium of G. As ~v |= γi implies (~v−i, v′i ) |= γi,
we may also assume that ci(~v−i, v′i )− ci(~v) ≥ 0. Let ε be such that
0 < ε ≤ ci(~v) and define the transfer function τ such that

τ(j, i, (~v−i, v′i )) = ci(~v−i, v′i )− ci(~v) + ε

and τ(k, k′, ~w) = 0 for all k 6= j, k′ 6= i, and ~w 6= (~v−i, v′i ).
Observe that τ is admissible. Then, coalition {i, j} blocks ~v via τ .
Finally, we may assume that ~v |= γj if and only if (~v−i, v′i ) |= γj

for all j ∈ C and that
∑

j∈C cj(~v−i, v′i ) <
∑

j∈C cj(~v). Without loss
of generality we may assume that cj(~v) − cj(~v−i, v′i ) > 0 for all
j ∈ C \ {i}. As ~v is a present equilibrium, moreover, ci(~v−i, v′i ) −
ci(~v)) > 0. Now, for some positive ε,

ci(~v−i, v′i )− ci(~v) + ε =
∑

j∈C\{i}

cj(~v)− cj(~v−i, v′i ).

Let 0 < δ ≤ min(ci(~v), ε) and define the transfer function τ such
that for every j ∈ C \ {i},

τ(j, i,w) =
(ci(~v−i, v′i )− ci(~v) + δ)(cj(~v)− cj(~v−i, v′i )∑

k∈C\{i}

(ck(v)− ck(~v−i, v′i ))
.

and τ(k, k′, ~w) = 0 for all k 6= j, k′ 6= i, and ~w 6= (~v−i, v′i ).
Observe that τ is admissible. Moreover, it can now easily be estab-
lished that for every j ∈ C, we have that uτj (~v−i, v′i ) > uj(~v). As,
moreover, cτi (~v) = ci(~v), we may conclude that~v can be eliminated
by coalition C via τ .

Notice that this result characterises present equilibria that are elim-
inable via side-payments without making reference to transfer func-
tions. Also, a closer inspection of the proof shows that, if a present
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q ¬q
1, 3 3

p 4, 3, 3 1, 5, 2

− 1, 2, 3

¬p 2, 3, 1 3, 2, 2

r

q ¬q
2 2, 3

p 1, 1, 3 3, 1, 2

1, 2, 3 −

¬p 1, 3, 1 1, 1, 1

¬r

Figure 4: A three-player game illustrating some features of
coalition merging

equilibrium can be eliminated, then a coalition need compensate
only one of its members. This is exactly the player that has to be
incentivised to deviate from the equilibrium in question.

COROLLARY 11. If~v is a present equilibrium of a game G that
can be eliminated via side-payments, then this can be achieved by
means of a transfer function τ for which side-payments are made
to only one player at only one outcome (~v−i, v′i ), where vi ∈ Vi.

The corollary tells us something about the number of coalition
members receiving the transfer, but it says very little about the num-
ber of coalition members making the payments. In fact, the com-
pensation costs required to bring about the intended deviation may
be so high that we need many players to bear them. In some specific
cases, however, also the number of coalition members compensat-
ing the deviating player can be extremely small.

PROPOSITION 12. Let~v be a present equilibrium of a Boolean
game G with a local cost function ĉ. Then,~v is eliminable via side-
payments if and only if there are two distinct players i and j, and
some v′i ∈ Vi such that both

(i) ~v |= γi if and only if (~v−i, v′i ) |= γi, and

(ii) ~v 6|= γj and (~v−i, v′i ) |= γj.

The main idea underlying this proposition is that, if a player i can
be incentivised to deviate from a present equilibrium ~v to (~v−i, v′i )
by some coalition C, then i must receive some compensation to do
so. Some other player j in C must then be willing to carry at least
part of this cost. As the cost function ĉ is local, however, we have
ĉj(~v) = ĉj(~v−i, v′i ). Thus, the costs for j in (~v−i, v′i ) are higher after
the side-payments took place than before. Therefore, for j to be
willing to participate in the coalition C, he should have his goal γj

satisfied at (~v−i, v′i ), but not at ~v. Then, however, player j would
be prepared to pay any price to make i deviate from ~v to (~v−i, v′i ).
It follows that the two-player coalition {i, j} would also block out-
come~v.

It is worth observing that the right-hand side of Proposition 12
only involves conditions relating to the realisation of players’ goals.
In the setting with local cost functions, whether an outcome is elim-
inable via side-payments is quite independent of the actual cost
function.

Summarising, Corollary 11 tells us that blocking coalitions can
be greedy, i.e., they can design such transfers only paying one
player and without transferring money among themselves. Propo-
sition 12 tells us that, when goal realisation is at stake, blocking
coalitions can be small: a player i whose goal is not satisfied is
prepared to compensate any additional costs that another player j
incurs if j (unilaterally) were to deviate to an outcome that does
satisfy i’s goal.

q ∧ r q ∧ ¬r ¬q ∧ r ¬q ∧ ¬r
1 − − d(C)

p 4, 6 1, 4 1, 7 3, 3

− 1, d(C) 1, d(C) −

¬p 2, 4 1, 4 3, 4 1, 2

Figure 5: The reduced game resulting from the game in Fig-
ure 4 by merging players 2 and 3 into one player d(C)

4.2 Coalition merging
In this section, we explore the idea of internalising externalities

by forming large enough coalitions to eliminate the potential inter-
ference among the players in a Boolean game. In particular, we
consider the extent to which we can facilitate positive externalities
and eliminate negative externalities by merging players.

Just as we do when imposing taxation schemes on games or by
allowing coalitions to make side-payments, by merging players we
can transform the structure of the game. In particular, we can mod-
ify its original equilibria. To explore the properties of coalition
merging, we need to establish some notational conventions first.

Let G = (N,Φ, c, (γi)i∈N , (Φi)i∈N) be a Boolean game and C a
subset of players in G. We denote by GC the game obtained from G
by merging the players in C into a single player. In this context
merging the players in C means that the coalition C operates as
a single player d(C) aiming to satisfy all its members’ goals at the
same time, while controlling all their variables simultaneously. The
costs incurred by C are then the joint costs of C. Formally,

GC = (N′,Φ, c′, (γ′i )i∈N′ , (Φ
′
i )i∈N′),

where N′ = (N \ C) ∪ {d(C)} for some d(C) /∈ N, and

Φ′d(C) =
⋃
j∈C

Φj γ′d(C) =
∧
i∈C

γi.

For all i /∈ C, we have Φ′j = Φj and γ′j = γj. The cost function c′

is such that, for all outcomes~v,

c′i (~v) =

{∑
i∈C ci(~v) if i = d(C),

ci(~v) otherwise.

In words, the cost function of player i in the updated game GC

yields, at each outcome, the sum of costs of all members of coali-
tion C at that outcome, if player i is the player d(C), i.e., if player i
is the result of the merging of coalition C. Otherwise, it leaves the
costs for player i unchanged.

We refer to GC as a reduced game, and the game G from which GC

is derived as the original game. Let us first consider an example to
illustrate the concept.

EXAMPLE 13. Consider the game depicted in Figure 4, where
player 1 chooses values for p, player 2 for q, and player 3 for r.
The original game has three Nash equilibria, viz., the outcomes
~v pqr,~v¬p¬qr, and~v¬pq¬r, the latter two of which are hard. By merg-
ing all players into one, only ~v¬pq¬r remains as an equilibrium. It
satisfies all players’ goals and, hence also d(N)’s. Although out-
come ~v¬p¬qr does this as well, it does so at a considerably higher
cost to d(N), viz., 7 versus 5. This shows that coalition merging
can eliminate hard equilibria as well as the hardness of equilibria:
both~v¬p¬qr and~v pq¬r are soft equilibria in GN .

Now, consider the (soft) equilibrium~v pqr. Observe that this equi-
librium cannot be eliminated via side-payments. Player 1 will have
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part nor parcel in any blocking coalition. Player 3 cannot be incen-
tivised to deviate to ~v pq¬r nor would he be willing to compensate
player 2 sufficiently if she were to deviate to ~v p¬qr. Observe, how-
ever, that, if player 2 and 3 were to merge, as depicted in Figure 5,
they could deviate to~v p¬q¬r, benefitting both players.

Example 13 illustrates several properties of coalition merging.
First and foremost, it shows that it can lead to hard equilibria of the
original game being removed as equilibria from the reduced game.

OBSERVATION 14. Coalition merging does not preserve hard
equilibria, i.e., there are games G, outcomes ~v, and coalitions C
such that~v ∈ HARD(G) and~v /∈ NE(GC).

In the extreme case in which the grand coalition of all players
are merged, we find that the conditions for a hard equilibrium in
game G to be preserved as a hard equilibrium in GN are very re-
strictive indeed. This is shown by the following proposition, which
is an almost immediate consequence of Proposition 5.

PROPOSITION 15. Let G be a game and~v an outcome. Then,~v
is a hard equilibrium in GN if and only if~v is the only outcome in G
such that~v |= γi for all i ∈ N.

The operation GC applied to an original game G is well de-
fined for every coalition C. One might, however, consider only the
classes of games where a certain group of players have compatible
objectives. We will say that a group of players C are compatible
if they have mutually consistent goals, i.e., the formula

∧
i∈C γi is

satisfiable. We believe that focusing on coalitions that have com-
patible goals—and even impose compatibility as a requirement for
coalition merging—is a desirable and intuitive feature. While we
leave a thorough exploration of goal-compatible coalition merging
to future work, we provide a result for the GN case next.

PROPOSITION 16. For every game G in which the set of all
players N is compatible, we have NE(GN) 6= ∅, and for every
~v ∈ NE(GN) we have~v |=

∧
i∈N γi.

Finally, we focus on the relation of equilibrium eliminability via
coalition merging and via side-payments. Observation 14, together
with Observation 8, immediately shows that coalition merging can
eliminate equilibria that cannot be eliminated via side-payments.

OBSERVATION 17. There are games with equilibria that can be
eliminated by merging coalitions but not by side-payments.

Thus, one might suspect that every equilibrium that can be elim-
inated via side-payments can also be eliminated by merging coali-
tions. Example 18 shows that this is not the case.

EXAMPLE 18. Consider again the game in Figure 4, but now
assume that in ~v¬p¬qr only player 1 achieves his goal and in and
in ~v¬pq¬r only players 1 and 3 theirs. Then, outcome ~v¬p¬q¬r is
an equilibrium, be it one in which none of the players’ goals is
satisfied. Clearly, this outcome can eliminated via side-payments.
In fact, every non-singleton coalition is blocking outcome ~v¬p¬q¬r

and contains players who are prepared to compensate fully the
costs incurred by some player deviating from ~v¬p¬q¬r. However,
no matter how you merge coalitions, outcome~v¬p¬q¬r will remain
a Nash equilibrium in the reduced game due to its low costs.

Thus, we can make the following final observation, showing that
side-payments and coalition merging are complementary tools to
eliminate undesirable equilibria.

OBSERVATION 19. There are games with equilibria that can be
eliminated via side-payments but not by merging coalitions.

5. SUMMARY
The problems of eliminating undesirable equilibria and facilitating
desirable equilibria are fundamental in economics and multi-agent
systems. By focussing on Boolean games with costs, in which the
players have quasi-dichotomous preferences, we were able to dis-
tinguish between hard and soft equilibria in games, i.e., equilibria
that are equilibria irrespective of the cost function and those that
may or may not be equilibria, depending on the cost function. We
studied techniques by which undesirable equilibria can be elimi-
nated, i.e., ways in which the game can be modified so that these
outcomes are no longer stable: coalitions making side-payments
and merging coalitions. We found that these two ways behave quite
differently. In particular, even if by coalition merging hard equi-
libria may get eliminated, coalition merging is not stronger than
side-payments: there may be equilibria that can be eliminated via
side-payments but not via coalition merging.
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