
Strategy Games: A Renewed Framework

Fabio Mogavero
Università degli Studi di Napoli

Federico II
fm@fabiomogavero.com

Aniello Murano
Università degli Studi di Napoli

Federico II
murano@na.infn.it

Luigi Sauro
Università degli Studi di Napoli

Federico II
luigi.sauro74@gmail.com

ABSTRACT
Game theory is a useful framework in multi-agent system
verification. In this context, an important contribution is
given by modal logics for strategic ability, such as ATL?, SL,
and the like, which allow to describe the interaction among
players for the achievement of specific goals. However, most
of the attempts carried out so far have focused on specific
forms of games in which strategic-reasoning aspects are glued
with agent temporal goals.

In this paper, we propose a revisit of logics for strategic
reasoning by following the general guidelines of game-theory,
where the definition of solution concepts abstracts away the
underlying cost-benefit analysis. Specifically, we introduce
a game-theoretic framework consisting of three entities: the
arena, shaping the rules of the game, the extension describ-
ing the property of interest of each possible play, and the
schema, representing the agent roles and their interaction.
In particular, to describe the latter, we use a variant of SL,
by casting away its LTL temporal core. The new frame-
work allows to gain in flexibility, modularity, and technical
simplification, as well as, to grasp new features and better
complexity results about logics previously studied. To give
an evidence of this, by rephrasing SL in our framework, we
improve known results about some of its fragments.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods—Modal logic, Temporal logic, Rep-
resentation languages; I.2.11 [Artificial Intelligence]: Dis-
tributed Artificial Intelligence—Multiagent Systems

General Terms
Theory, Verification

Keywords
Game models; Strategic logics; Formal verification.

1. INTRODUCTION
In the multi-agent system design and verification, logics for

the strategic reasoning play a fundamental role [2,3,5,8,13,17].

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Interna-
tional Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

These logics allow to check open system reliability by rephras-
ing the decision question as an interaction among different
players in a game-strategic setting, which may compete or
collaborate for the achievement of specific goals. A pio-
neering logic in this matter is Alternating-Time Temporal
Logic (ATL?, for short) [2]. This logic makes use of strate-
gic modalities of the form “〈〈A〉〉” and “[[A]]”, for a set A of
agents. Their formulas are interpreted over concurrent game
structures (CGS, for short) [2], which are transition systems
modeling the interaction among agents (a.k.a. players) and
whose states are labeled with a set of atomic proposition
true in that state. Given a CGS G and a set A of agents, an
ATL? formula 〈〈A〉〉ψ is satisfied at a state s of G if there is
a set of strategies for agents in A such that, no matter which
strategies are executed by agents not in A, the resulting out-
come of the interaction in G satisfies the temporal goal ψ at s.
In particular, ψ is build upon the syntax rules of the classical
linear-time temporal-logic LTL [15]. Since its introduction,
ATL? has been intensively studied and its model checking
has been proved to be 2ExpTime-complete [2]. Also, several
practical applications of this logic have been investigated
through the implementation of useful verification tools [6].

The benefits of ATL? brought to multi-agent system ver-
ification have opened to a broader modeling scenario and
several variants of this logic have been successively intro-
duced and studied, in order to balance expressiveness with
respect to complexity of the related decision questions [1,3,7,
10,11,13,19]. Among the others, a recent story of success is
Strategy Logic (SL, for short) [13]. This logic has the benefit
to include all main logics for strategic reasoning previously
introduced and to be powerful enough to express funda-
mental concepts of games, such as Nash equilibrium, which
instead cannot be expressed in ATL?, unless one considers
substantial extensions [16].

A key aspect of SL is that, differently from ATL?, strate-
gies are not treated implicitly through its modalities, but
rather used as first-order objects that can be existentially and
universally quantified. Specifically, SL uses the existential
〈〈x〉〉 and the universal [[x]] strategic modalities, which can be
read as “there exists a strategy x” and “for all strategies x”,
respectively. In SL, strategies represent general conditional
plans that at each step prescribe an action on the base of the
previous history. Thus, strategies are not intrinsically glued
to a specific agent. Then, to use a strategy, an explicit bind-
ing operator (a, x) allows to bind an agent a to the strategy
associated with a variable x. On the other hand, SL uses
CGSs as underling structures as well as temporal goals are
given in terms of LTL rules, as it is for ATL?.

869

Although ATL? and SL count several interesting applica-
tions in computer science, they only use a restricted power
offered by game theory. This is mainly due to the rigidity
of the syntax used to define these logics, which overall come
out as an evolution of model checking and temporal logics,
originally conceived for the verification of closed systems.
Indeed, from one side we use CGS as a model, which is
a Kripke structure further equipped with a description of
player moves. Hence, we inherit an intrinsic labeling of the
states with atomic propositions. From the other side, we
extend path modalities with game modalities, but we limit
ourself to use predicates over paths, i.e., game evolutions,
mainly expressed in terms of LTL formulas. Additionally,
this part is glued inside the syntax of the logic itself. In
game theory speaking, player rules, goals, and verification
properties are independent entities, usually given and treated
separately. Conversely, having them all glued in one object
leads to the loss of several important features, as well as, it
limits the applicability of the resulting model. Yet in terms
of game theory, combining these entities is as bizarre as let-
ting a solution concept to depend from the specific form of
agents utility functions. Consider for example Nash equilib-
ria. Using a somewhat standard notation, a strategy profile
ξ is a Nash equilibrium if, for each other strategy profile
ξ′ consisting in a unilateral deviation of an agent i from ξ,
ui(ξ

′) ≤ ui(ξ), where ui is the utility function of the agent i.
Notice that, since the utility functions occur as generic func-
tions, the definition of Nash equilibria does not rely on how
they are determined: different cost-benefit analysis methods
can be used as a black box in the pure strategic reasoning.

In this paper, we propose a revisit of classical logics for
strategic reasoning by following the general guidelines of
the game-theory where the definition of solution concepts
(i.e., the pure strategic reasoning) abstracts away the un-
derlying cost-benefit analysis (together with the temporal
constraints used to determinate it). Specifically, we introduce
a game-theoretic framework consisting of three entities: the
arena, shaping the rules of the game, the extension describ-
ing the property of interest of each possible play, and the
schema, representing properties of agent interactions (e.g.
Nash equilibrium). In particular, to describe the latter, we
use a variant of SL, by casting away its LTL temporal core.

We show that the introduced framework has several ad-
vantages. First, it allows to reason about the game model
in a modular way. More specifically, we can investigate the
complexity of a decision problem by looking at the exact con-
tribution of each component of the strategic reasoning. As
often it happens in multi-agent system verification, system
and specification parameters may vary significantly one from
another and the best methodology to be used to address
a specific decision problem is a trade-off. Second, one can
embed different formalisms to describe temporal goals. In
particular, we can use very expressive extensions of the LTL
syntax rules by using the linear µCalculus [18], or vice
versa use a very restricted form of LTL such as the common
fragment of LTL and CTL. As another example, one can
inject goals directly represented by means of automata [20].

As a positive side effect, the proposed game framework
let us to re-address the main features of SL and obtain new
and better complexity results regarding the model-checking
problem of some of its fragments, once the related extension
is represented by means of classic LTL formulas. Specifi-
cally, three fragments of SL have been recently introduced

and deeply investigated: SL[1g], SL[cg], and SL[dg] [10–12].
The latter two logics, which include the former, are at the
moment the maximal fragments of SL known to have an ele-
mentary model-checking and precisely 2ExpTime-complete.
Here, we give new game-based decision procedures for the
model-checking problem of all these fragments, which allow
to improve their overall complexities. Notably, we use as
decision tool of the game framework, the framework itself.

Due to space limit, most of the proofs are just sketched
and reported in the full version of the article.

2. STRATEGY GAMES
In this section, we introduce a reformulation of the game-

theoretic framework through which we model strategic rea-
sonings. Differently from other approaches, where a unique
structure is defined, here we separate the basic aspects of
a game in three components: arena, extension, and schema.
Roughly speaking, an arena describes the game board and
its moves, i.e., the physical world where agents act. An ex-
tension specifies object-level conditions over game evolutions,
i.e., how to determine the winner of a play. Finally, a schema
abstractly represents strategic properties of the game, like
determinacy, existence of Nash equilibria, and so on.

2.1 Arenas
We now formally define the concept of arena.

Definition 2.1. Arena. - A multi-agent concurrent arena
is a tuple A,〈Ag,Ac, St, tr〉 ∈Ar(Ag), where Ag is the fi-
nite set of agents, a.k.a. players, Ac is the set of actions,
a.k.a. moves, St is the non-empty sets of states, a.k.a. posi-
tions, and Ar(Ag) is the class of all arenas over Ag. Assume

Dc,Ag⇀Ac to be the set of decisions, i.e., partial functions
describing the choices of an action by some agent. Then,
tr : Dc→(St⇀St) denotes the transition function mapping
every decision δ ∈Dc to a partial function tr(δ) ⊆ St×St
representing a deterministic graph over the states.

Intuitively, an arena can be seen as a labeled transition
graph, where labels are possibly incomplete agent decisions,
which determine the transition to be executed at each step
of a play in dependence of the choices made by the agents in
the relative state. Incomplete decisions allow us to represent
any kind of legal move in a state, where some agents or a
particular combination of actions may not be active. Note
that, since tr(δ) is a partial function, we are implicitly as-
suming that the arena is deterministic, i.e., a decision δ∈Dc
may be not applicable in a state s∈St, but if it is, then it
leads to the unique successor tr(δ)(s).

An arena A naturally induces a graph G(A) ,〈St,Ed 〉,
whose vertexes are represented by the states and the edge
relation Ed ,

⋃
δ∈Dc tr(δ) is obtained by rubbing out all

labels on the transitions. A path π ∈ Pth in A is simply a
path in G(A). Similarly, the order |A| , |G(A)| (resp., size

‖A‖ , ‖G(A)‖) of A is the order (resp., size) of its induced
graph. Note that there could be states where no transitions
are available, i.e., dom(Ed) ⊂ St. If this is the case, the
states in St \ dom(Ed) are called sink-states.

As usual in the study of extensive-form games, finite paths
also describe the possible evolutions of a play up to a certain
point. For this reason, they are called in the game-theoretic
jargon histories and the corresponding set is denoted by
Hst,{ρ∈Pth : |ρ|<ω}.

870

A strategy is a partial function σ∈Str,Hst⇀Ac prescrib-
ing, whenever defined, which action has to be performed for a
certain history of the current outcome. In addition, a profile
is a function ξ∈Prf,Ag→Str assigning to every agent the
adopted strategy. Roughly speaking, a strategy is a generic
conditional plan to achieve one or more goals, which specifies

“what to do” but not “who will do it”, while a profile specifies
a unique behavior for each agent by associating her with a
strategy. Note that a given strategy can be used by more
than one agent at the same time.

For a profile ξ∈Prf, to identify which action an agent a∈
Ag has chosen to perform on a history ρ∈Hst, we first extract
the corresponding strategy ξ(a) and then we determinate the
action ξ(a)(ρ), whenever defined. To identify, instead, the
whole decision on ρ, we apply the flipping operator to ξ. We

get so a function ξ̂ : Hst→Dc such that ξ̂(ρ)(a) = ξ(a)(ρ),
which maps each history to the planned decision.

A path π ∈ Pth is coherent w.r.t. a profile ξ ∈ Prf (ξ-
coherent, for short) iff, for all i ∈ [1, |π|[, it holds that

(π)i = tr(ξ̂((π)<i))((π)i−1), i.e., (π)i is the unique successor

of (π)i−1 identified by the agent decision ξ̂((π)<i) described
in the profile ξ on the history (π)<i. Moreover, π is a ξ-play
iff it is a maximal ξ-coherent path, i.e., it is not a proper
prefix of any another ξ-coherent path. Clearly, an infinite
path is ξ-coherent iff it is a ξ-play. Given a state s ∈ St, the
determinism of the arena ensures that there exists exactly
one ξ-play π starting in s, i.e., fst(π) = s. Such a play is
called (ξ, s)-play. For this reason, we use the play function
play : Prf×St→ Pth to identify, for each profile ξ ∈ Prf and
state s ∈ St, the corresponding (ξ, s)-play play(ξ, s). Observe
that finite ξ-plays do not necessarily end in a sink-state,
since it may be that it cannot be extended in a way that is
coherent w.r.t. the profile ξ (below we return on this point).

Arenas describe generic mathematical structures, where
the basilar game-theoretic notions of history, strategy, pro-
file, and play can be defined. However, in several contexts,
some constraints rule out how the function tr maps partial
decisions to transitions. For example, some definitions of
bounded concurrent arenas require that, in a given state, each
agent is associated with a finite non-empty set of actions,
whose possible combinations are all applicable in that state.
Another case is that of classic turn-based arenas, where there
is at most one active agent for each state. Both these ex-
amples represent particular cases of our general definition
of arena, since they can be embedded in this formalism by
forcing the transition function to satisfy some further condi-
tion. In order to illustrate such embeddings, by means of the
functions dc : St→ 2Dc and ag : St→ 2Ag defined as follows,
we preliminary introduce the set of decisions and agents that
trigger some transition in a given state s ∈ St:

dc(s) , {δ ∈ Dc : s ∈ dom(tr(δ))};

ag(s) , {a ∈ Ag : ∃δ ∈ dc(s) . a ∈ dom(δ)}.
Thanks to this notation, a restriction to bounded concurrent
arenas can be provided by saying that, for each state s ∈ St,
there is a left-total relation R ⊆ Ag ×Ac with |rng(R)| < ω
such that dc(s) = {δ ∈ Dc : δ ⊆ R}. Similarly, a restriction
to turn-based arenas is given by |ag(s)| ≤ 1.

As a running example, used to illustrate the introduced
definitions, consider the arena AS depicted in Figure 1. It
represents a model of a simple scheduler system in which
two processes, P and P, can require the access to a shared
resource, like a processor, and an arbiter A is used to solve

I

1 2

A

∅

P 7→ r P 7→ r

PP 7→ rr∅

P 7→ f

PP 7→fr

P 7→ r

∅

P 7→ f

PP 7→rf

P 7→ r

A 7→ 1 A 7→ 2

Figure 1: Scheduler Arena AS.

all conflicts that may arise when contending requests are
made. In particular, the arbiter can preempt a process
owning the resource to allow the other one to access to it.
The processes have two actions to interact with the system:
r for request and f for free/release. The former is used to
request the resource from the system, when this is not yet
owned, while the latter releases it, when this is not needed
anymore. In addition, a process can simply avoid to make
any action, in case it wants to remain in the current state.
The arbiter, from its side, has two actions to decide which
process has to receive the resource: 1 for P and 2 for P.
The whole scheduler system can reside in the following four
states: I, 1, 2, and A. The idle state I indicates that both
processes do not own the resource, while i, with i ∈ {1, 2},
that process Pi is using it. Finally, the arbitrage state A

represents the situation in which an action from the arbiter
is required in order to solve a conflict between contending
requests. For readability reasons, a decision is graphically
represented by an arrow 7→ with a sequence of agents on
left hand side and the sequence of corresponding actions
on right hand side. Formally, AS is the arena 〈Ag,Ac,
St, tr〉, where all components but the transition function
are set as follows: Ag = {A, P, P}, Ac = {r, f, 1, 2}, and
St = {I, 1, 2, A}. In addition, we have that ag(s) = {P, P},
for all s ∈ {I, 1, 2}, and ag(A) = {A}. Moreover, dc(I) =
{∅, P 7→ r, P 7→ r, PP 7→ rr}, dc(A) = {A 7→ 1, A 7→ 2}, and
dc(i) = {∅, Pi 7→f, P−i 7→r, PiP−i 7→fr}, for all i ∈ {1, 2}.

2.2 Extensions
Clearly, a game, besides its dynamics, consists also of

private objectives or a global goal, which typically require
to check some properties over paths. For instance, rele-
vant conditions in chess are whether the game ends up in
a checkmate or a stalemate, which determine a winner or
a draw, respectively. More in general, path properties may
represent fairness, reachability, safety, or other conditions,
usually expressed by means of some kind of temporal lan-
guage, like LTL [15] or the linear µCalculus [18], which
combine atomic propositions over states with suitable tem-
poral operators. As game theorists usually do, our aim is
to separate the strategic reasoning from the specification
of such properties and represent them as generic Boolean
conditions over paths.

Definition 2.2. Extension. - An extension is a tuple
E , 〈A,Pr, pr〉 ∈ Ex(Ag,Pr), where A ∈ Ar(Ag) is the
underlying arena, Pr is the finite non-empty set of predi-
cates, pr : Pr→ 2Pth is the predicate function mapping each

871

predicate p ∈ Pr to the set of paths pr(p) satisfying it, and
Ex(Ag,Pr) is the class of all extensions over Ag and Pr.

Intuitively, an extension classifies paths by means of a
set of monadic predicates that describe relevant temporal
properties of plays for the specific domain under analysis.

An extension is Borelian (resp., regular) iff, for all predi-
cates p ∈ Pr, the induced language pr(p) ⊆ St∞ of finite and
infinite words over the states is Borelian (resp., regular) [14].

Continuing with the scheduler example, consider the reg-
ular extension ES consisting of the scheduler arena AS and
two predicates p and p expressing that, whenever a conflict
arises, every process Pk will have at some point in the future
access to the resource. Formally, for each path π ∈ Pth, it
holds that π ∈ pr(pk) iff, for all i ∈ [0, |π|[with (π)i = A,
there exists j ∈]i, |π|[such that (π)j = k.

2.3 Schemas
Coming back to the chess analysis, note that we have

defined the chessboard together with the possible legal moves
(the arena). Also, we have introduced the relevant properties,
such as checkmate or stalemate, which have to be checked
during the game (the extension). However, we have not yet
completely grasped the notion of game. Indeed, an initial
configuration needs to be specified and, more important, it
is necessary to indicate which behavior we expect from the
players. To do this, we introduce the concept of schema.
It abstractly describes the possible roles and the allowed
interactions of agents, by means of a relation between an
extension, with an associated initial state, and some elements
describing which behaviors that extension satisfies.

Definition 2.3. Schema. - A schema over sets of agents
Ag and predicates Pr is a tuple S , 〈Tr, |=〉 ∈ Sc(Ag,Pr),
where Tr is the non-empty set of targets, |= ⊆ Ex(Ag,Pr)×E
StE × Tr is the schema relation describing which targets
t ∈ Tr can be achieved on an extension E ∈ Ex(Ag,Pr)
starting from a given initial state s ∈ StE , in symbols E , s |= t,
and Sc(Ag,Pr) is the class of all schemas over Ag and Pr.

In the scheduler example, an interesting target t is to avoid
starvation for a process, due to the selfish behavior of the
other one. To precisely state t, one can either define an ad-
hoc schema relation or introduce a suitable formal language
that allows to describe an entire class of possible schemas.
Clearly, we follow the second approach from now on.

2.4 Games
By summing up the definitions of arena, extension, and

schema, we now formalize the concept of game.

Definition 2.4. Game. - Let S∈Sc(Ag,Pr) be a schema
over the sets of agents Ag and predicates Pr. Then, a game
w.r.t. S is a tuple a,〈E , s, t〉∈Gm(S), where E ∈Ex(Ag,Pr)
is the underlying extension, s∈StE is the designated initial
state, t∈Tr is the prescribed target, and Gm(S) is the class
of all games over S.

A game a ,〈E , s, t〉 is fulfilled iff E , s |= t. Intuitively, this
means that all agents can achieve the target t on the predicate
arena E starting from s. The fulfillment problem is to decide
whether a game is fulfilled. Observe that this problem is
an abstract generalization of the model-checking problem
of a language against a model, which we here respectively
represent via a schema and an extension.

3. STRATEGY LOGICS
By analogies with object-oriented languages, a schema can

be seen as an interface which allows to describe the notion
of fulfillment of a game in a very general way. Following
the same analogy, a schema has to be implemented in order
to make the game concrete. It is for this reason that we
have introduced schemas in our framework. Indeed one can
change an arena or an extension without changing the schema.
Clearly, the more powerful the language used to formalize
the schema is the wider the class of strategic notions we can
grasp is as well. Hence, we borrow the strategic modalities
from SL, instead of the less powerful coalition modalities of
ATL?, as a language for the targets, and its semantics as the
corresponding schema relation.

3.1 Syntax
Strategic reasoning primary concerns to analyze different

counterfactual hypothesis such as “what if two agents coop-
erate...”, “what if another agent tries to obstruct them...”, or

“what if an agent deviates from a given behavior...”. From a
logical point of view, this means to consider different pat-
terns of quantification over strategies, as well as, to bind such
strategies to the agents. For this reason, we introduce two
strategy quantifiers, the existential 〈〈x〉〉 and the universal
[[x]], and an agent binding (a, x), where a is an agent and x
belongs to a countable set Vr of variables. Intuitively, these
operators can be respectively read as “there exists a strategy
x”, “for all strategies x”, and “bind agent a to the strategy
associated with x”. Clearly, such a bag of logical quantifiers
would be completely pointless without the possibility to ex-
press properties over paths. Hence, the set Pr of predicates is
part of our syntax together with standard Boolean operators.

It remains to discuss an important issue regarding which
strategies can be assigned to the agents. As mentioned in
the previous section, given a profile ξ and an initial state s,
the play π = play(ξ, s) can be a finite path even if its last
state lst(π) is not a sink-state. Formally, this happens when

the decision ξ̂(π) is not in dc(lst(π)) even if dc(lst(π)) 6= ∅.
To give an intuitive example, a chess match could be trivially
blocked in its initial configuration just because the white
player decides not to perform any move. Clearly, it is a
matter of the specific application domain whether the agents
are free to adopt any strategy, even the blocking ones, or
they are forced to trigger a transition whenever it is possible.
To be as general as possible, we do not implicitly restrict
the strategies that can be assigned to the agents, but we
introduce a further constant � to express the fact that we
are restricting to no blocking assignments.

Definition 3.1. Syntax. - SL formulas are defined by
means of the following context-free grammar, where a ∈ Ag,
p ∈ Pr, and x ∈ Vr:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈〈x〉〉ϕ | [[x]]ϕ | (a, x)ϕ | �.

Usually, to provide the semantics of a predicative logic,
it is necessary to define the concepts of free and bound
placeholders. For example, first order logic has the variables
as unique type of placeholder. In SL, instead, since strategies
can be associated to both agents and variables, we use the
set of free agents/variables free(ϕ) as the subset of Ag ∪Vr
containing (i) all agents a for which there is no binding (a, x)
before the occurrence of a predicate p and (ii) all variables x
for which there is a binding (a, x) but no quantification 〈〈x〉〉

872

or [[x]]. In case free(ϕ) ∩ Ag = ∅ (resp., free(ϕ) ∩ Vr = ∅)),
the formula ϕ is named agent-closed (resp., variable-closed).
A sentence is a both agent- and variable-closed formula.

3.2 Semantics
Similarly as in first order logic, the interpretation of a

formula makes use of an assignment function which associates
placeholders to some elements of the domain. In particular,
an assignment is a (possibly partial) function χ ∈ Asg ,
(Vr ∪Ag) ⇀ Str mapping variables and agents to strategies.
An assignment χ is complete iff it is defined on all agents,
i.e., Ag ⊆ dom(χ). In this case, it directly identifies the
profile χ�Ag given by the restriction of χ to Ag. In addition,
χ[e 7→ σ], with e ∈ Vr ∪ Ag and σ ∈ Str, is the assignment

defined on dom(χ[e 7→ σ]) , dom(χ)∪{e} which differs from
χ only in the fact that e is associated with σ. Formally, χ[e 7→
σ](e) = σ and χ[e 7→ σ](e′) = χ(e′), for all e′ ∈ dom(χ) \ {e}.
A path π ∈ Pth is coherent w.r.t. an assignment χ ∈ Asg (χ-
coherent, for short) in case the restriction of χ on agents can
be extended into a profile in respect of which π is a coherent
path. Formally, π is χ-coherent iff there exists a profile
ξ ∈ Prf with ξ�(dom(χ)∩Ag) = χ�Ag such that π is ξ-coherent.
Finally, an assignment χ is non-blocking in a state s ∈ St in
case that for each χ-coherent history ρ starting from s and not
ending in a sink-state, χ in ρ agrees with one of the triggering
decisions of lst(ρ). Formally, an assignment χ is non-blocking
in s iff for all χ-coherent histories ρ ∈ Hst such that fst(ρ) = s
and dc(lst(ρ)) 6= ∅, there exists a decision δ ∈ dc(lst(ρ)) such
that δ(a) = χ(a)(ρ), for all agents a ∈ dom(χ) ∩Ag. We are
ready to define the semantics of our logics.

Definition 3.2. Semantics. - Let E be an extension.
Then, for all SL formulas ϕ, assignments χ ∈ Asg with
free(ϕ) ⊆ dom(χ), and states s ∈ St, the modeling relation
E , χ, s |= ϕ is inductively defined as follows.

1) E , χ, s |= p iff play(χ�Ag, s) ∈ pr(p).

2) Boolean operators are interpreted as usual.

3) E , χ, s |= 〈〈x〉〉ϕ iff there exists a strategy σ ∈ Str such
that E , χ[x 7→ σ], s |= ϕ.

4) E , χ, s |= [[x]]ϕ iff for all strategies σ ∈ Str, E , χ[x 7→
σ], s |= ϕ.

5) E , χ, s |= (a, x)ϕ iff E , χ[a 7→ χ(x)], s |= ϕ.

6) E , χ, s |= � iff χ is non-blocking from s.

Note that the satisfaction of a sentence ϕ does not depend
on assignments, hence we omit them and write E , s |= ϕ.

In what follows, (〈a, x〉)ϕ and ([a, x])ϕ are abbreviations
for (a, x)(� ∧ ϕ) and (a, x)(� → ϕ), respectively. The
formula (〈a, x〉)ϕ is used to ensure non-blocking assignments
when the variable x is under the scope of an existential
quantification (intuitively, “a adopts x, which needs to be
non-blocking and to satisfy ϕ”). Similarly, ([a, x])ϕ forces
non-blocking assignments in case x is under the scope of a
universal quantification (intuitively, “a adopts x, which needs
to satisfy ϕ in case it is non-blocking).

In the scheduler example, the ability to avoid starvations
can be represented by the formula ϕ = 〈〈x〉〉〈〈y〉〉〈〈y〉〉[[z]]φ,
where φ = (〈A, x〉)(〈P, y〉)([P, z])p ∧ (〈A, x〉)(〈P, y〉)([P, z])p
with p and p being the same predicates as before. It is
easy to see that for all s ∈ {I, 1, 2, A}, it holds that ES , s |= ϕ.

In particular, the arbiter strategy consists in alternating the
access to the resource between the two processes, while the
processes have to request the resource at least twice. Note
that ϕ requires a unique strategy for the arbiter in order to
coordinate with both the processes independently. There-
fore, in terms of ATL coalition modalities, ϕ is weaker than
〈〈{A}〉〉(p ∧p), but stronger than 〈〈{A, P}〉〉p ∧〈〈{A, P}〉〉p.
Actually, ϕ cannot be expressed in ATL?.

Once the sets of agents and predicates are fixed, SL induces
a schema SSL, where the set of targets is SL itself, i.e., its
sentences, and the schema relation is given by the definition
of the semantics. A strategy game is a game w.r.t. SSL.
The set of all strategy games is denoted for short by SG ,
Gm(SSL). We now introduce some restrictions of SG. First,
we consider the case in which the numbers |Ag| of agents
and |Vr| of variables that are used to write a formula are
fixed to the a priori values n,m ∈ [1, ω[. We name these
two fragments SG[nag] and SG[mvar], respectively. Also, by
SG[tb] we refer to games whose arena is turn-based. Finally,
SG[Σk] (resp., SG[Πk]) denotes those games where the target
has a quantification prefix of k alternation starting with an
existential (resp., universal) quantifier.

3.3 Binding Fragments
We now consider three fragments of SL that allow to for-

malize interesting game properties not expressible in ATL?.
For example, they can express that an agent can join two or
more different coalitions without producing mutual conflicts
or that a winning condition is weaker than another one.

In what follows a quantification prefix over a set V⊆Vr of
variables is a finite word ℘∈{〈〈x〉〉, [[x]] : x ∈ V}|V| of length
|V| such that each variable x ∈ V occurs just once in ℘. By
Qn(V) we indicate the set of quantification prefixes over V,
whereas 〈〈℘〉〉 (resp. [[℘]]) denote the set of variables occurring
existentially (resp. universally) quantified in ℘. A binding
prefix over V is a word [∈{(a, x), (〈a, x〉), ([a, x]) : a ∈ Ag∧x ∈
V}|Ag| such that each agent in Ag occurs exactly once in [.
By Bn we indicate the set of all binding prefixes.

Definition 3.3. Binding Fragments. - SL[bg] formulas
are defined by the following context-free grammar:

ϕ := ℘φ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ,
φ := [ψ | ¬φ | φ ∧ φ | φ ∨ φ,
ψ := p | ¬ψ | ψ ∧ ψ | ψ ∨ ψ.

where ℘ ∈ Qn(free(ψ)), [∈ Bn, and p ∈ Pr. Moreover, the
fragments obtained by replacing the second row with φ := [ψ,
φ := [ψ | φ ∧ φ, or φ := [ψ | φ ∨ φ, are called SL[1g], SL[cg],
SL[dg], respectively.

In what follows, we also consider some constraints on
the number of agents/variables or the type of arenas and
predicates. More specifically, tb indicates that we restrict
to turn-based arenas, and kvar (resp. kag) bounds the
maximal number of variables (resp. agents) in a formula to
k. Complexity classes restrict the satisfaction problem of
the predicates occurring in a formula. Finally, a slash / is
used to consider the union of two fragments. For example,
SG[2cg, 3ag, Σ] is the fragment of SL[cg] with two goals,
at most 3 agents, and NPTime-hard predicates, whereas
SG[1g, tb, 2ag/var] is the fragment of SG[1g] restricted to
turn-based arenas and with at most two agents or variables.

Two fragments of sentences L1 and L2 can be compared
in terms of their expressiveness. Formally, two sentences ϕ1

873

and ϕ2 are equivalent just in the case that, for all extensions
E and s ∈ St, it holds that E , s |= ϕ1 iff E , s |= ϕ2. Then,
we say that L2 is at least as expressive as L1, in symbols
L1 � L2, if every sentence ϕ1 ∈ L1 is equivalent to some
sentence ϕ2 ∈ L2. If L1 � L2, but L2 6� L1, then L2 is more
expressive than L1, in symbols L1 ≺ L2.

Clearly, we have that SL[bg] is at least as expressive as both
SL[cg] and SL[dg], which in turn are at least as expressive
as SL[1g]. However, since SL[cg] and SL[dg] are not closed
under negation, while this is the case for SL[bg] and SL[1g],
we have that the two inclusions are necessarily strict.

Theorem 3.1. Expressiveness Hierarchy. - The follow-
ing expressiveness relations hold: SL[1g] ≺SL[cg], SL[1g]

≺SL[dg], SL[cg]≺SL[bg] and SL[dg]≺SL[bg].

Since our framework trivially subsumes classic reachability
games [4], we immediately obtain an hardness result w.r.t.
the size of the arena.

Theorem 3.2. Arena Lower Bound. - The fulfilling prob-
lem for SG[1g, tb, 2ag, 2var] is PTime-hard in the size of
the arena.

We can also obtain hardness results w.r.t. the size of
schemas. In particular, due to the first-order power of SL,
we can reduce the truth problem of a QBF sentence to the
fulfilling of a game on a fixed arena. Notably, the predicates
used in the reduction can be evaluated in constant-time.

Theorem 3.3. Target Lower Bound. - The fulfilling prob-
lems for SG[cg, 3ag, Σk] and SG[dg, 3ag, Πk] are ΣP

k+-hard

and ΠP
k+-hard, respectively.

Proof (Sketch). We only sketch the proof for SG[cg],
since SG[dg] is just the dual case.

Let α = ℘
∧n
i=1(li ∨ li ∨ li) be a Σk QBF sentence, where,

w.l.o.g., the matrix is in 3CNF. Consider an arena having
as agents Ag = {1, 2, 3}, actions Ac = {0, 1}, and states
St = {I} ∪D, where D = {δ ∈ Dc : dom(δ) = Ag} contains
the possible eight total decisions, which are seen as sink-states.
In addition, if δ ∈ D then tr(δ)(I) = {δ} else tr(δ)(I) = ∅.

We construct an SG[cg] game a =〈E , I, ϕ〉 that is fulfilled
iff α is true. The extension is built on the n predicates
p, . . . , pn, whose valuations are set as follows: pr(pi) , {I·δ :
δ |= li ∨li ∨li }. With δ |= li ∨li ∨li we mean that the formula
li ∨ li ∨ li is evaluated to true when assigning the values δ(j)

to the variables xji of the literal lji . It only remains to define
the target1: ϕ = ℘

∧n
i=1 [ipi, where [i = (1, xi)(2, x

i)(3, x

i).

At this point, it is easy to see that E , I |= ϕ iff α is true.
Hence, the thesis is derived from the fact that the truth
problem for Σk QBF sentences is ΣP

k+-hard.

4. GAME-TYPE CONVERSIONS
In this section, we describe two game-type conversions that

can be used to directly solve strategy games, provided that
the predicates of the extensions are decidable. Furthermore,
they substantially improve and simplify the already known
decision procedures for classic SL[1g], SL[cg], and SL[dg].
In particular, w.r.t. [10, 12], we can avoid the computational
overhead resulting from the use of an automata-theoretic ap-
proach. This fact makes even clearer that, in our framework,
the concept of game is considered, at the same time, as the
object of study and the technical tool to analyze it.
1Here we are making an abuse of notation since the quantifi-
cation prefix should be modified to be an SL one.

4.1 From SG[1g] to SG[1g, tb, 2ag/var]

First we recall that an important property used as a foun-
dation aspect of all known elementary decision procedures
for the fragments of SL is the behavioral semantics. Roughly
speaking, a strategy logic has this property whenever the
choices of an existential quantified strategy does not depend
on how the other universal strategies will behave in the fu-
ture or in a counterfactual play [12]. The original proof of
equivalence between the classic and behavioral semantics
of SL[1g] [10] is based on a quite complex reduction from
the verification problem of the behavioral modeling relation
E , s |=B ℘[ψ to the solution of a classic form of two-player
turn-based games. In doing so, the size of the arena is ex-
ponential in the number of actions of the original arena and
doubly exponential in the number of universal variable from
which an existential one depends.

Here, we propose a new reduction from generic SG[1g]

to two-agent turn-based SG[1g]. Differently from previous
reductions, the quantifications over actions are not treated in
a one-shot fashion, but rather are emulated by finite games
between the two players, the first choosing the value of the
existential variables and the second the universal ones. This
results in an arena just polynomial in the number of actions
and exponential in the dependences between the variables.

Theorem 4.1. One-Goal Reduction. - For a SG[1g, kvar]

Borelian a of order n, there is a SG[1g, tb, 2ag/ var] Bore-
lian a? of order n · 2O(k) such that a is fulfilled iff a? is.

Proof (Sketch). Let a =〈E , s, ϕ〉, with target ϕ = ℘[ψ,
extension E = 〈A,Pr, pr〉, and arena A = 〈Ag,Ac, St, tr〉,
we show how to construct a? =〈E?, ϕ?, t?〉, with extension
E? =〈A?,Pr?, pr?〉 and arena A? =〈Ag?,Ac?,St?, tr?〉.

We start with A?. It has two agents, ∃ and ∀, the former
trying to prove that E , s |= ϕ, while the latter the opposite.
To achieve their task, for each state in A, they give an evalu-
ation to the existential and universal variables, respectively,
by choosing an appropriate action. Following this idea, we set
Ag? , {∃, ∀} and Ac? , Ac. The state space has to maintain
an information about the position in A together with the
index of the variable that has still to be evaluated and the val-
ues already associated to the previous variables. To do this,
we set St? , St × [0, |℘|]×i(Vr(℘<i) ⇀ Ac). Observe that,
when the game is in a state (s, |℘|, ζ), all quantifications are
already resolved and it is time to evaluate the corresponding
decision by composing ζ with the binding [.

Before proceeding with the definition of the transition
function, it is helpful to identify which are the active agents
for each possible state (s, i, ζ). When i < |℘| points to an

existential variable in ℘, i.e., type(℘i) , ∃, the unique owner

of the state is ∃. Similarly, if type(℘i) , ∀, the active agent
is ∀. In the case i = |℘|, instead, there are no more choices
to do, so, the related state is deterministic, i.e., it has no
active agents. Formally, for all (s, i, ζ) ∈ St?, we have that if

i < |℘| then ag((s, i, ζ)) , {type(℘i)} else ag((s, i, ζ)) , ∅.
The transition function is defined as follows. For each state

(s, i, ζ) with i < |℘| and decision type(℘i) 7→ c, we simply
need to increase the counter i and associate the variable
vr(℘i) of ℘i with action c. Formally, we set tr?(type(℘i) 7→
c)((s, i, ζ)) , (s, i+ 1, ζ[vr(℘i) 7→ c]). For a state (s, |π|, ζ),
instead, we just define a transition to the state (s′, 0,∅),
where s′ is the successor of s in the arena A following the
decision ζ ◦ [, whenever active. Formally, we have tr?(∅) ,
{(s, |℘|, ζ) 7→ (tr(ζ ◦ [)(s), 0,∅) : ζ ◦ [∈ dc(s)}.

874

Now, we define the extension E?. The predicates and
their path valuations are simply inherited from the original
extension E , i.e., Pr? , Pr and π? ∈ pr?(p) iff π ∈ pr(p),
where π ∈ Pth is the unique path in A such that π?i =
(πi, 0,∅). Intuitively, a path π? satisfies a predicate p? iff its
projection π on the states of A does the same.

Finally, the initial state is s? , (s, 0,∅) and the target is

ϕ? , 〈〈x〉〉[[y]](〈∃, x〉)([∀, y])ψ.
At this point, by means of Martin’s determinacy theorem

for Borelian games [9], it is not hard to show that a is
equivalent to a?, i.e., a is fulfilled iff a? is.

ss s
∅

αβ 7→ 00

α 7→ 0

β 7→ 0

Figure 2: A full arena A.

As an example, consider the SL[1g] game a , 〈E , s, ϕ〉,
whose underlying arena A is the one depicted in Figure 2,
having in s all decisions active and s, s as sink-states. The
extension E contains a unique predicate p having the path
valuation pr(p) = {s · s}. Moreover, the target ϕ is ℘[p,
where ℘=[[x]]〈〈y〉〉 and [=(α, x)(β, y). It is easy to see that
a is fulfilled, by means of the copy-cat strategy for β over α.

0,∅1,∅ 1, x 7→0

2, y 7→0

2,∅

2, xy 7→00

2, x 7→0

s s

∅ ∀ 7→0

∅
∃ 7→0

∅
∃ 7→0

∅

∅

∅

∅

Figure 3: SL[1g] reduction of

A.

By applying the above
construction, we ob-
tain the game a?,
whose arena is re-
ported in Figure 3.
The box state belongs
to ∀, while the dia-
mond ones to ∃. Cir-
cle and pentagonal
states do not belong
to any agent and, in
particular, the latter
are sink-state. Note
that, for the sake of
space, we omit the

state component in all but the pentagonal nodes. Similarly,
the two sink-states do not report the 0,∅ part. The path
valuation of the predicate p is pr?(p) = {(s, 0,∅) · (s, 1, ζ1) ·
(s, 2, ζ2) · (s, 0,∅) : ζ1 = ζ2 = ∅ ∨ ζ1 = x 7→ 0 ∧ ζ2 =
xy 7→ 00}. Finally, the initial state is s? = (s, 0,∅) and the

target is ϕ? , 〈〈y〉〉[[x]](〈∃, y〉)([∀, x])p. It can be seen that a?
is fulfilled, as well. Indeed, ∃ can choose ∅ on (s, 1,∅) and
∃ 7→ 0 on (s, 1, x 7→ 0), forcing the play to reach (s, 0,∅).

4.2 From SG[cg/dg, kvar] to SG[1g, (k + 1)ag/var]

Recently, it has been proved that the two SL[1g] extensions
SL[cg] and SL[dg] enjoy the behavioral semantics as well [12].
Actually, in the hierarchy obtained by restricting the combi-
nation of goals, they represent the maximal fragments of SL
satisfying such a property. Indeed, there are SL[bg] satisfi-
able sentences that are not behaviorally satisfiable [10].

As in the case of SL[1g], the proof for these fragments was
a direct reduction to a two-player turn-based game. However,
its structure was much more complex as it further required
to keep memory in the states of the information about the
current position of each binding. This fact results in a state
space whose cardinality was O(|St|h), where h is the number
of bindings used in the related sentence.

Here, we propose a completely different approach. We
reduce the fulfilling of a conjunctive/disjunctive game to the

same problem of a concurrent one-goal game. In particular,
the construction simulates the conjunction (resp., disjunction)
of bindings by means of a dedicated new agent, whose relative
strategy is universally (resp., existentially) quantified. By
doing so, we can avoid to keep memory of all positions at the
same time, obtaining a state space whose size is O(|St| · 2h).

Theorem 4.2. Conjunctive/Disjunctive-Goal Reduction.
- For each SG[hcg/dg, kvar] a of order n, there is an
SG[1g, (k + 1) ag/var] a? of order O(n · 2h) such that a is
fulfilled iff a? is.

Proof (Sketch). Given an SG[cg] (resp., SG[dg]) a =
〈E , s, ϕ〉, with target ϕ = ℘

∧
[∈B [ψ[(resp., ϕ = ℘

∨
[∈B [ψ[),

extension E =〈A,Pr, pr〉, and arena A =〈Ag,Ac, St, tr〉, we
show how to construct a? = 〈E?, ϕ?, t?〉, with extension
E? =〈A?,Pr?, pr?〉 and arena A? =〈Ag?,Ac?,St?, tr?〉.

We start with A?. Its agents are the free variables of
φ = ~[∈B[ψ[, with ~ ∈ {∧,∨}, i.e., those quantified in ℘,
extended with the fresh agent ~, whose role is to simulate the
corresponding Boolean combination of goals: Ag? , free(φ)∪
{~}. The actions are the ones in A augmented with a fresh
one for each binding prefix in B. The latter lets the agent ~
to choose which goal to verify: Ac? , Ac∪B. The state space
is just the Cartesian product of St with the power-set of the
binding prefixes set B, as we have to keep memory on which
goals are still active in a given state: St? , St× (2B \ {∅}).

Before defining the transition function, it is useful to deter-
mine which decisions are active in a given state. To do this,
note that we need agent ~ to be active in every state (s,X) ∈
St? and let him to choose between the binding prefixes in X
that have still to be verified from s onward. Moreover, the
remaining part of an active decision has to ensure that, once
it is composed with the selected binding prefix, it returns
an active decision of A in s. Formally, we set dc((s,X)) ,
{δ? ∈ Dc? : ~ ∈ dom(δ?) ∧ δ?(~) ∈ X ∧ δ? ◦ δ?(~) ∈ dc(s)}.

We now set the transition function tr?. Given an active
decision δ? ∈ dc((s,X)) on a state (s,X) ∈ St?, the successor
state (s′,X′) is set as follows. The component s′ is the succes-
sor of s following the decision δ?◦δ?(~) obtained by assigning
the value of the variables to the agents of A by means of the
binding prefix δ?(~) chosen by ~. The component X′ is the
subset of X containing all binding prefixes that, once selected,
lead from s to s′. Formally, we have that tr?(δ?)((s,X)) ,
(tr(δ? ◦ δ?(~))(s), {b ∈ X : tr(δ? ◦ δ?(~))(s) = tr(δ? ◦ b)(s)}).

Now, we define the extension E?. The paths π? ∈ Pth? in
A? for a goal [ψ[are those having [as element of the second
component of all its states, i.e., [∈ Xi, for all i ∈ [0, |π?|[,
where (π?)i = (si,Xi). We denote the set of all these paths by
P[⊆ Pth?. We consider a unique predicate p? representing
the paths that satisfy the formulas ψ[, for each binding prefix
[of interest. This means that, we first set Pr? , {p?}. Then,
for all π? ∈ Pth?, we define the predicate function pr? as
follows, where π ∈ Pth is obtained from π? by projecting
out the second component of all its states. If ~ = ∧, then
π? ∈ pr?(p?) iff, for each [∈ B with π? ∈ P[, it holds that
π ∈ pr(ψ[). If ~ = ∨, instead, π? ∈ pr?(p?) iff there exists
[∈ B with π? ∈ P[such that π ∈ pr(ψ[).

The initial state s? is set as (s,B). Finally, we define the
target ϕ?. The quantification prefix ℘? is the juxtaposition of
the prefix ℘ with either a universal or an existential quantifier
over the fresh variable ~, depending on whether ~ is a con-
junction or a disjunction. As binding prefix [?, we use the one
that associates with all agents the variables having the same

875

names. In particular, the type of each binding depends on the
type of quantification. Hence, the target is ϕ? = ℘?[?p?.

As an example of the above reduction, consider the SL[cg]

game a=〈E , s, ϕ〉, whose underlying arenaA is again the one
depicted in Figure 2. In the extension E=〈A,Pr, pr〉, there
are two predicates p and p such that pr(pi)={s · si}, for
all i∈{1, 2}. The target ϕ is the sentence [[x]]〈〈y〉〉

∧2
i=1 [ipi,

where [=(α, y)(β, y) and [=(α, x)(β, y). It is easy to see
that a is fulfilled.

s, {[,[} s,{[,[}

s, {[}

s, {[}

~ 7→?

xy~ 7→00?

x~ 7→0[
y~ 7→0[

x~ 7→0[
y~ 7→0[

Figure 4: SL[cg/dg] reduction

ofA.

Now, by applying
the construction de-
scribed above, we ob-
tain an SL[1g] game
a? whose arena, rep-
resented in Figure 4,
has (s, {[, [}) as
the unique state with
active agents. The
unique predicate p?

is associated with the
following path valu-
ation: pr?(p?) =
{(s, {[, [}) ·(s, {[}), (s, {[, [}) ·(s, {[})}. The initial
state of a? is (s, {[, [}) and the target ϕ? is the sentence
℘?[?p?, where ℘?=[[x]]〈〈y〉〉[[~]] and [?=([x, x])(〈y, y〉)([~,~]).
It is not hard to see that also a? is fulfilled, as well.

5. DISCUSSION
Several logics for strategic reasoning such as ATL? and

SL borrows LTL operators to specify temporal properties
over the evolutions of a game. This seemed a natural choice,
since LTL allows to specify a widely range of conditions such
as fairness, reachability, safety and so on. Nevertheless, some
contexts may require more expressive languages than LTL
or, conversely, if someone is interested in a specific game,
say chess, it could be profitable to implement an ad-hoc
procedure to check checkmates or stalemates. Summarily,
LTL is not the all-inclusive solution to the verification of
temporal properties.

For this reason, we revisit the classical logic of strategic
reasonings and propose a new game framework which focuses
on the “pure” strategic components, leaving the problem to
check temporal properties to an external oracle. This, on the
one hand, enables to isolate the contribution of the solely
strategic modalities to the model-checking problem. In par-
ticular, we show new lower bounds which make very minimal
assumptions on the complexity of the temporal part. As a
side effect, the proposed framework has allowed to readdress
and substantially improve previous complexity results for
the SL fragments SL[1g], SL[cg], and SL[dg]. In particular
for SL[1g], the exponential dependence on the number of
actions occurring in formula decreases to a polynomial one
and the double exponential dependence on the number of
dependences between variables to a single exponential. For
SL[cg] and SL[dg], instead, we have a polynomial but signif-
icant improvement in the order of the game we need to solve,
since we pass from a O(|St|h) to O(|St| · 2h), where h is the
number of agent bindings.

Acknowledgments
We thank M. Benerecetti for useful discussions on the reduc-
tion from conjunctive/disjunctive-goal to one-goal games.

This paper is partially supported by the FP7 EU project
600958-SHERPA and the Italian projects IndAM “Logiche
di Gioco Estese”, PON OR.C.HE.S.T.R.A., and POR Em-
bedded System Cup B25B09090100007.

6. REFERENCES
[1] T. Ågotnes, V. Goranko, and W. Jamroga.

Alternating-Time Temporal Logics with Irrevocable
Strategies. In TARK’07, pages 15–24, 2007.

[2] R. Alur, T.A. Henzinger, and O. Kupferman.
Alternating-Time Temporal Logic. JACM,
49(5):672–713, 2002.

[3] K. Chatterjee, T.A. Henzinger, and N. Piterman.
Strategy Logic. IC, 208(6):677–693, 2010.

[4] N. Immerman. Number of Quantifiers is Better Than
Number of Tape Cells. JCSS, 22(3):384–406, 1981.

[5] W. Jamroga and W. van der Hoek. Agents that Know
How to Play. FI, 63(2-3):185–219, 2004.

[6] A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A
Model Checker for the Verification of Multi-Agent
Systems. In CAV’09, LNCS 5643, pages 682–688.
Springer, 2009.

[7] A.D.C. Lopes, F. Laroussinie, and N. Markey. ATL
with Strategy Contexts: Expressiveness and Model
Checking. In FSTTCS’10, LIPIcs 8, pages 120–132.
Leibniz-Zentrum fuer Informatik, 2010.

[8] E. Lorini. A Dynamic Logic of Agency II: Deterministic
DLA, Coalition Logic, and Game Theory. JLLI,
19(3):327–351, 2010.

[9] A.D. Martin. Borel Determinacy. AM, 102(2):363–371,
1975.

[10] F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi.
Reasoning About Strategies: On the Model-Checking
Problem. Technical report, arXiv, 2011.

[11] F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi.
What Makes ATL? Decidable? A Decidable Fragment
of Strategy Logic. In CONCUR’12, LNCS 7454, pages
193–208. Springer, 2012.

[12] F. Mogavero, A. Murano, and L. Sauro. On the
Boundary of Behavioral Strategies. In LICS’13, pages
263–272. IEEE Computer Society, 2013.

[13] F. Mogavero, A. Murano, and M.Y. Vardi. Reasoning
About Strategies. In FSTTCS’10, LIPIcs 8, pages
133–144. Leibniz-Zentrum fuer Informatik, 2010.

[14] D. Perrin and J. Pin. Infinite Words. Pure and Applied
Mathematics. Elsevier, 2004.

[15] A. Pnueli. The Temporal Logic of Programs. In
FOCS’77, pages 46–57. IEEE Computer Society, 1977.

[16] W. van der Hoek, W. Jamroga, and M. Wooldridge. A
Logic for Strategic Reasoning. In AAMAS’05, pages
157–164. Association for Computing Machinery, 2005.

[17] J. van Eijck. PDL as a Multi-Agent Strategy Logic. In
TARK’13, pages 206–215, 2013.

[18] M.Y. Vardi. A Temporal Fixpoint Calculus. In
POPL’88, pages 250–259. Association for Computing
Machinery, 1988.

[19] D. Walther, W. van der Hoek, and M. Wooldridge.
Alternating-Time Temporal Logic with Explicit
Strategies. In TARK’07, pages 269–278, 2007.

[20] P. Wolper. Temporal Logic Can Be More Expressive.
IC, 56(1-2):72–99, 1983.

876

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20140224130308
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Down
 23.8320
 0.0000

 Both
 7
 AllDoc
 36

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 7
 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20140224130308
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Left
 7.2000
 0.0000

 Both
 7
 AllDoc
 36

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 7
 8
 7
 8

 1

 HistoryList_V1
 qi2base

