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ABSTRACT
There has been an increasing recognition that a number
of key computational problems require distributed solution
techniques. To facilitate the creation and advancement of
these techniques, researchers have developed the distributed
constraint satisfaction (DCSP) formalism with the under-
standing that many critical real-world problems can be rep-
resented using it. Consequently, this formalism has led to
the creation of myriad protocols for solving problems in this
class. However, this formalism ignores a critical feature of
many environments: problems change over time.

The dynamic, DCSP (DynDCSP) formalism was invented
to address this deficiency, but this model has received inad-
equate attention from the research community. A key im-
pediment to advancing this research area is the lack of a
compelling theoretical underpinning to the analysis of these
problems and the evaluation of the protocols used to solve
them. This work creates a mapping of the DynDCSP for-
malism onto thermodynamic systems. Under this mapping,
it shows that DynDCSPs obey the three laws of thermody-
namics. Utilizing these laws, this work develops, for the first
time, a method for characterizing the impact that dynamics
has on a distributed problem as well as a technique for pre-
dicting the expected performance of distributed protocols
under various levels of dynamics.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Algorithms, Performance, Experimentation, Theory

Keywords
Dynamics, Constraint Satisfaction, Thermodynamics

1. INTRODUCTION
Our world is in constant flux. Yet despite this universally

accepted truth, most algorithms and protocols are designed
with the assumption that problems do not change during
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the computation of a solution. In many circumstances this
assumption is entirely justifiable because either the problem
never changes or changes at such a slow rate that a solution
can be recomputed each time an alteration occurs without
significant degradation of overall performance. However, as
the size and difficulty of the real-world problems we design
systems to manage has increased, this assumption has be-
come more difficult to justify. Nowhere is this more true
than for rapidly-changing, naturally distributed problems
where protocol speed is frequently outpaced by the rate that
the problem is being altered.

This important class of problems appears in countless
multi-agent and multi-robotics papers, however, approaches
to addressing it have been mostly adhoc. This is partly
caused by the lack of a standardized formulation to de-
velop and evaluate techniques against. Building upon the
readily accepted distributed constraint satisfaction problem
(DCSP) and with the goal of explicitly modeling time in
the formulation, Mailler introduced a model of the dynamic,
distributed constraint satisfaction problem (DynDCSP) [8].
Although this work provided a standard formulation to work
from, it was only just a beginning because it did little to ex-
pand our understanding of protocol construction or even to
explain the underlying causes for the performance of the
protocols that were presented.

This work makes substantial progress toward understand-
ing the properties of dynamic constraint systems and our
ability to analyze and construct protocols that are designed
to maintain solution quality as these systems change over
time. First, we model DynDCSPs as closed thermodynamic
systems where solution quality is equivalent to the energy of
the thermodynamic system. By showing that the environ-
ment is acting in a manner analogous to applying heat to the
system, we then show that the second law of thermodynam-
ics can be used to reliably predict the convergence point and
the rate of convergence for systems operating in the absence
of a problem solver. We then show that DynCSPs obey the
third law of thermodynamics and as a result have solution
sets that rapidly decrease in size as the system moves away
from the convergence point. Then, by modeling the action
of a protocol as work, we present a method for profiling a
protocol in the absence of environmental dynamics to mea-
sure the work per unit time it performs. Using the first law
of thermodynamics, heat and work are then combined to-
gether and used to compute the quality equilibrium point.
Finally, we show that the equilibrium point is statistically
stable.

In the rest of this paper, we will present the formal model
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of the dynamic distributed constraint satisfaction problem
along with some background in the area of DynDCSPs. In
Section 3 we give some background on the connection be-
tween statistical physics and constraint satisfaction and present
a mapping of DynCSPs to thermodynamic systems. Section
4 shows that DynCSPs obey the second law of thermody-
namics, which can be used to predict their most likely state
in the presence of environmental dynamics. Section 5 shows
that the third law of thermodynamics also applies to DynD-
CSPs. This law helps us to the understand how the solution
state changes as we move further from the convergence point.
In Section 6, we show that the first law of thermodynam-
ics can be used to predict the performance of a distributed
protocol operating in a dynamic environment. Finally, in
Section 7 we present our conclusions and future directions.

2. BACKGROUND
Formally speaking, a static DCSP, P = 〈V,A,D,C〉, con-

sists of the following [25]:

• a set of n variables: V = {v1, . . . , vn}.

• A set of g agents: A = {a1, . . . , ag}.

• Discrete, finite domains for each variable:
D = {D1, . . . , Dn}.

• A set of constraints C = {c1, . . . , cm} where each
ci(di,1, . . . , di,j) is a function ci : Di,1 × · · · × Di,j →
{true, false}. i.e. the constraints take in values for the
variables and return true if the constraint is satisfied.

The task is to find an assignment S∗ = {d1, . . . , dn|di ∈
Di} that is free of constraint violations or report that no
such solution exists. Each agent in the set A is assigned one
or more variables along with constraints associated with its
variables. The goal of each agent, from a local perspective,
is to ensure that it gets a violation free solution for its vari-
ables.

Based on this definition, we can see that DCSPs are pa-
rameterized based on the values of n, m, g, and j. This
paper frequently assumes that the constraints are all binary
and therefore all have j = 2. However, this restriction does
not limit the usefulness of the results because n-ary con-
straints can be easily converted to binary constraints [1]. In
addition, DCSP instances are frequently classified based on
their density and tightness. The density, p1, of a DCSP is
the ratio of the number of constraints to possible number of
constraints(i.e. p1 = 2∗m

n∗(n−1)
). The tightness, p2, is the ra-

tio of the number of assignments in a constraint that return
false to the total number of assignments.

Since its creation, the DCSP formalisms have been at
the center of research in distributed problem solving. As
such, it has spawned the creation of protocols including the
distributed breakout algorithm (DBA), [24], asynchronous
backtracking (ABT) [23], the distributed stochastic algo-
rithm (DSA) [27], and asynchronous partial overlay (APO)
[10].

This formalism and all of the algorithms that have been
created for solving it share one common property: they de-
scribe and are intended to solve static problems. For some
domains, this limitation does not significantly detract from
the usefulness of the DCSP definition. However many prac-
tical uses for distributed protocols involve environments that

Figure 1: Phase transition results for n = 100 and
p2 = 0.33.

change over time. These include distributed resource alloca-
tion [2], distributed scheduling [20], and distributed planning
[19].

Strangely, research on dynamic DCSPs is fairly sparse.
Formally, a dynamic DCSP (DynDCSP) is a sequence of
DCSPs {P0, P1, . . . , Pn} where each Pi is a static DCSP as
defined above [3]. If we define cai as a set of added constraints
and cri as a set of removed constraints functions, then Pi =
Pi−1 + cai − cri [21].

The centralized techniques that have been developed for
solving these problems fall into two categories: reactive and
proactive [21]. Reactive methods make no assumptions about
how a problem is going to change from one instance to the
next. Instead they use either local modifications or prior
knowledge to repair an existing solution. Proactive meth-
ods, on the other hand, attempt to build robust or flexible
solutions that have a high probability of either remaining
consistent or being easily altered if the problem changes.
An excellent review of this field of research can be found in
the work of Verfaille and Jussien [21].

The protocols that have been designed for DynDCSPs
have all been reactive. For example, in the work of Modi et
al.[25], the authors present a novel algorithm called Locally
Dynamic AWC (LD-AWC) that is both complete and sound
given that only non-shared (unary) constraints change. Fitz-
patrick and Meertens present an incomplete, hill-climbing
method for solving dynamically changing graph coloring prob-
lems [5] that strongly resembles the distributed stochastic
algorithm (DSA) [27]. More recently dynamic versions of
the DBA, AWC, and APO protocols have been created [8,
11].

Although the DynDCSP formalism is one step closer to
describing computational systems that operate ”in the wild”,
they fail to address the relationship between changes to the
problem and real-time. Specifically, these formulations ig-
nore the rate of change (as related to real-time) between
instances, instead assuming that there is sufficient time be-
tween each change to compute a new solution.

To rectify this deficiency, Mailler modified the basic defini-
tion of a DynDCSP by introducing a function ∆ : Pt 7→ Pt+1

that maps a DCSP at time t to a new DCSP at t + 1 by
adding and removing constraints [8]. With the ∆ function
in place, we can then begin to measure the amount of change
a problem experiences over unit time by counting the num-
ber of constraints that are added and removed. In other
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words, the rate of change of a problem is defined as

rate =
dP

dt
= lim

∆t→0

Pt+∆t − Pt

∆t

=
1

∆t

t+∆t∑
i=t

(|cai |+ |cri |) (1)

By relating the change of a problem to time in this man-
ner, this work recognized that a problem may change before
an algorithm is able to generate a full solution. It also means
that for DynDCSPs, instantaneous quality becomes related
to the number of constraints that are satisfied making them
more akin to a maximum satisfiability problem. Because of
this, one should realize that as dP

dt
increases, more reactive

and potentially less optimal problem solvers may actually
be better.

3. DynDCSPs AS THERMODYNAMIC SYS-
TEMS

There has been an increasing amount of evidence that
supports a strong analogy between NP-complete problems
and disordered systems in physics. The earliest recognition
that this connection may exist can be found in the work of
Kirkpatrick, Gelatt, and Vecchi [7]. By modeling a travel-
ing salesman problem (TSP) as a set of atoms at equilib-
rium, they were able to apply what was then known as the
Metropolis algorithm [12] to modify the temperature to ar-
rive at good solutions. We now refer to this technique as
simulated annealing.

Since then, the connection between computational prob-
lems and statistical physics has only gotten stronger. For
example, Mezard, and Parisi used advances in spin-glass the-
ory to provide analytical results for the weighted matching
problem [13] and later for TSP [14]. They were able to show
that randomly generated problems undergo a phase transi-
tion as the ratio of nodes to edges is varied. Following up
on this work, Monasson and Zecchina were able to apply
the same basic modeling techniques to relate an order pa-
rameter α = m

n
to the number of satisfying solutions for

the well-known NP complete problem, K-satisfiability [15,
16]. Their pioneering work led to the recognition that prob-
lems within the phase transition exhibit backbone variables.
These variables are critically important because they only
have one allowable value in all possible solutions to the prob-
lem. From the computational perspective this means that
the difficulty of computing a solution to an NP-complete
problem is strongly associated with the phase transition [17].

Figure 1 shows the results of a phase transition analysis
conducted on random CSP problems with n = 100 variables,
a domain size of 3, and a tightness of p2 = 0.33. Each data
point represents an average over 10,000 separate graph in-
stances. As can be seen in this graph, the problems rapidly
go from being satisfiable to unsatisfiable over a very small
density range. At the same time, the number of constraint
checks performed by a Forward Checking-Conflict Directing
Backjumping algorithm [18] reaches it peak at the %50 sat-
isfiable/unsatisfiable point. Throughout this work we use
graphs with these settings and have chosen three density
values that create satisfiable (p1 = 0.02), phase-transition
(p1 = 0.035), and unsatisfiable (p1 = 0.055) instances.

With such a strong analogy between static CSPs and sta-
tistical physics, the connection between DynDCSPs and ther-

Figure 2: Energy distribution for n = 100, p1 = 0.035,
and p2 = 0.33

modynamics certainly seems plausible. Following the ap-
proach of Zdeborova and Krzakala [26], we can map a CSP
or DCSP into a spin model where each variable vi maps to
an equivalent spin, si. We can say that, based on the do-
main of vi, that si can only be in one of q = |Di| different
quantum states.

Using this as a basis, if we consider only binary constraints
that have a cost of 1 when unsatisfied then ck(di, dj) 7→
{0(true), 1(false)} then the Hamiltonian becomes

H(S) =
∑
ck∈C

ck(di, dj) = E (2)

In statistical physics, the Hamiltonian is a measure of the
energy of the system and in our mapping measures the num-
ber of constraints that are violated by having the variables
in the state S. Under this definition the energy can become
zero if and only if the DCSP is satisfiable. In many cases,
a large number of states will have a given energy E. We
can define a unit-less value Ω(E), which is often simply de-
noted as Ω, to be the total number of states with a given
energy level and further define S = k ln Ω as the entropy
of the system. The constant k rescales and gives a unit to
entropy. Information theory uses bits as its unit, while in
physics the standard unit is joules/kelvin. The particular
unit of entropy is not important for our purposes.

To extend this mapping to show that DynDCSPs can
be modeled as thermodynamic systems, one must recognize
that environmental dynamics, by adding and removing con-
straints, is equivalent to adding and removing heat from the
problem. These changes may subsequently result in a shift
to the energy (solution quality) and entropy (number of so-
lutions with a given energy) of the system. In the limited
case where the heat being added and removed are equal, the
entropy of the system remains stationary although the en-
ergy level may still change. In fact, as long as a DynDCSP
is only being modified by altering the constraints we can
show that the energy of a DynDCSP always converges to a
predictable value.

4. SECOND LAW OF THERMODYNAMICS
The proof of the convergence is based on Boltzmann’s

famous H-theorem [4]. Let us say that at any given time
that a DynDCSP can be in one of many states. We can
label one of these states as r and say the prior probability
of finding the system in state r at any given time is Pr. The
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Figure 3: Change rate of energy relative to current
energy

value of Pr is affected by two things: either a system in state
r can transition to state s or a system in state s, with prior
probability Ps can transition to state r. The H-theorem
shows that as long as the probability of transitioning from
state r to state s is equal to the probability of transitioning
from state s to state r then the system will statistically
converge onto the state with the highest prior probability.
In other words, as long as the probabilities of adding and
removing an individual constraint are the same, then the
system will converge onto its most likely state.

Boltzmann did this proof by introducing a quantity H ≡
lnPr =

∑
r Pr lnPr and showed that dH

dt
≤ 0. Later, Gibbs

defined S = −KB

∑
r Pr lnPr where KB is a constant. This

means that S ≈ −H and, therefore if the H-theorem holds
for a system, which it does in our case, then dS

dt
≥ 0 is

also true. This is the second law of thermodynamics which
states:

Definition 1. Second Law of Thermodynamics - The
entropy of an isolated system can never spontaneously de-
crease [4].

For binary DynDCSPs, the expectation of the energy E,
which represents the most likely state of the system, can be
calculated using the linearity of expectation and the defini-
tion of tightness:

〈E〉 =

〈∑
ck∈C

ck(di, dj)

〉
=

∑
ck∈C

〈ck(di, dj)〉

=
∑
ck∈C

p2 = mp2 (3)

Intuitively, this result makes sense because the energy of
the system is strictly associated with the number of con-
straints and the prior probability that an individual con-
straint is violated, which is the definition of p2. To demon-
strate that the H-theorem empirically holds and that the
calculation for the expectation of energy is correct, we con-
ducted 10,000 experiments each of 5,000 steps where we gen-
erated a random DCSP with n = 100 variables, p1 = 0.035,
and p2 = 0.33. After generating the problem, we computed
two assignments for the variables used a simple hill-climbing

Figure 4: Converge profile of DBA for n = 100, p1 =
0.035, and p2 = 0.33

algorithm. The first assignment attempted to put the prob-
lem in a ground state, i.e. solve the problem. The other
assignment attempted to generate an anti-solution by maxi-
mizing the energy level. With these assignments in hand, at
each time step of the simulation, we perturbed the problem
by removing an existing constraint and replacing it with a
new one. We then calculated the new energy of both as-
signments. We recorded the number of occurrences at each
energy level as the simulation progressed.

Figure 2 shows the results of this experiment. For a
problem with 100 variable and density of 0.035, there will
be 173 constraints. With a p2 = 0.33 we would expect
the system to statistically converge to a mean energy of
mp2 = 173 ∗ 0.33 = 57. These results clearly show that
the distribution has a most likely value of 57 as the theory
predicts.

Knowing the system convergence point is important, but
it is probably more important to be able to calculate the
rate of convergence. In thermodynamics, this is measured

as the expected change in energy per unit time or 〈∆E〉
∆t

. To
simplify the analysis, let ∆t = 1, so that during a single
time step one constraint is selected and replaced with a new
constraint. This implies that the energy can change by at
most 1 during each time step. Let’s also define P+ to be
the probability that the energy level increases, P− to be the
probability that it decreases, and P 0 to be the probability
that it remains unchanged. This gives us

〈∆E〉
∆t

= 〈∆E〉 = 1 ∗ P+ + 0 ∗ P 0 + (−1) ∗ P− (4)

Since it is unimportant to consider the value of P 0 be-
cause it does not impact the expected change in energy, let
us consider P+ and P−. P+ is the probability of selecting a
currently satisfied constraint and replacing it with one that
is not satisfied. Well, the probability of selecting a satisfied
constraint is just the ratio of current satisfied constraints to
total number of constraints. Also, the probability of ran-
domly generating an unsatisfied constraints is given by p2

therefore:

P+ =
m− 〈E〉

m
∗ p2 (5)

Similarly P− is the probability of selecting a currently
violated constraint and replacing it with one that is satisfied:
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Figure 5: Measured and theoretical equilibrium of DynDSA, DynDBA, and DynAPO

P− =
〈E〉
m
∗ (1− p2) (6)

By substituting Equations 5 and 6 into Equation 4 and
converting it to a differential equation we get

dE

dt
=
m− E
m

p2 −
E

m
(1− p2) = p2 −

E

m
(7)

This differential equation has a closed form solution of

E = (E0 −mp2)e−
t
m +mp2 (8)

This formula has an identical structure to Newton’s cool-
ing law and can be used to predict the change in the energy
level of a DynDCSP over time or, in essence, to quantify the
expected impact that the environment has on a problem.

To empirically validate our theoretical results, we con-
ducted the same experiment as described above, but this
time measured the change in energy per unit time in relation
to the energy level. Figure 3 shows the results of this exper-
iment. The grey line shows the measured average change in
energy, while the dotted black line shows dE

dt
as predicted by

the equation above. The match is a perfect fit. Note that
the line crosses the origin at precisely mp2 = 57 and that
for values of energy less than 57, the energy is expected to
increase, while the opposite is true for values greater than
57. From these results it appears that our model perfectly
predicts the expected behavior of the DynDCSP.

5. THIRD LAW OF THERMODYNAMICS
The H-theorem and its relationship to entropy tell us quite

a bit about the solution space for a DynDCSP. When a Dyn-
DCSP is not in its most likely state, with an energy of mp2,
we know from the H-theorem that dH

dt
≤ 0 and given the

relationship between dH
dt

and dS
dt

we can further assume that
dS
dt
≥ 0. This tells us that as we move further from the most

likely state that S is monotonically decreasing and therefore
must reach it lowest value as it approaches an energy of 0
or m. However, it tells us little about how fast the solu-
tion space decreases. This is provided by the Third Law of
Thermodynamics.

Definition 2. Third Law of Thermodynamics - In the
limit as the absolute temperature tends to zero the entropy
also tends to zero [4].

To show the Third Law holds, we must first provide an
estimate for the function Ω. Based on the principle of equal
a priori probabilities, we can say that P (E) = CΩ, where
C is a constant that is not associated with the energy of the
system. For DynDCSPs the probability of exactly E con-
straints being violated is given by the binomial distribution:

P (E) =

(
m

E

)
pE2 (1− p2)C−E ∝ Ω (9)

This function is the number of ways to choose E con-
straints out of m, times the probability of having exactly
E out of m constraints violated. We will use the classical
definition for thermodynamic temperature, which is

1

kT
= β =

∂ ln Ω

∂E
(10)

In this equation, it is important to note that temperature
T is similar to S, as it is unit-less, based on the number of
potential states of the system, and is given units using the
constant k. We introduced the variable β as a convenience
as it should be understood that 1

T
∝ β. Since we know that

the energy level in DynDCSPs take on integer values, we
can estimate the value of β by measuring β(E) ≈ ln Ω(E)−
ln Ω(E − 1). Substitution of our estimate of Ω gives us:

β(E) ≈ ln

((m
E

)
p
E
2 (1 − p2)

C−E
)

− ln

(( m

E − 1

)
p
E−1
2 (1 − p2)

C−E+1
)

= ln

(
m
E

)
pE2 (1 − p2)C−E(

m
E−1

)
p
E−1
2 (1 − p2)C−E+1

= ln

(
m!

E!(m − E)!
·

(E − 1)!(m − E + 1)!

m!
·

p2

1 − p2

)

= ln

(
C + 1

E
− 1

)
+ ln

(
p2

1 − p2

)
(11)

So, as T → 0, we would expect that β(E) → ∞ while
E → 0. We also know from the second law that as E → 0,
which is the furthest value for E less than mp2, that S → 0.
Therefore as T → 0, S → 0. So, the Third Law holds under
our mapping.
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Figure 6: Equilibrium stability for DynDSA with
n = 100, p1 = 0.035, p2 = 0.33, and rate = 10

6. FIRST LAW OF THERMODYNAMICS
Probably the most useful law for characterizing an en-

vironment and being able to predict the performance of a
protocol is the First Law of Thermodynamics which states:

Definition 3. First Law of Thermodynamics - The
change in internal energy of a system is the difference be-
tween the net heat absorbed by the system from its sur-
roundings and the net work done by the system on its sur-
roundings [4].

This law can be directly translated into the famous equa-
tion ∆E = δQ− δW where δQ is the heat being applied to
the system and δW is the work done by or on the system.
For our purposes, this law is important because it can be
used to predict the energy equilibrium point by determin-
ing the value for E where ∆E = 0 or in other words when
δQ = δW .

We have already shown that using our mapping we can
calculate the value of δQ, which is measured as dE

dt
, and that,

in the absence of a solver, dE
dt

converges to 0 as E → mp2.
Recall from Section 4 that

δQ =
dEQ

dt
= p2 −

E

m
=
mp2 − E

m
(12)

What remains to be shown is that we can calculate δW
and use it to predict the change in energy, show that the sys-
tem converges to an equilibrium, and determine that equi-
librium point. Let us assume that the First Law applies to
DynDCSPs. This means that, if a DynDCSP remains static
with Q = 0, that the energy profile created while solving
this static instance is a direct measure of the work being
done by a solver. So, by running a solver on static DCSP
instances and measuring the rate of change in the energy, we
are in fact measuring W , and can create a function that will
predict the energy of the system at time t. Let’s suppose
that this function looks similar to the cooling function and
takes the form

EW = B +Ne−
t
A , 0 < B < mp2, 0 < N (13)

However, we are interested in the change in energy for the
current energy, which is given by a function with a familiar
form:

dEW

dt
=
B − E
A

(14)

The idea of fitting the convergence profile to an expo-
nential function is certainly reasonable if one considers that
protocols work in parallel. This implies that the number
of corrected constraints per unit time is expected to be di-
rectly proportional to the number of current violations. In
fact, to validate our assumption, we ran a series of tests that
measured the average (sample size of 50 instances) change in
energy over time of three, state-of-the-art, distributed proto-
cols using randomly generated 100 variable, static instances
with p1 = {0.02, 0.035, 0.055} and p2 = 0.33. For the study,
we used adapted versions of DSA [5, 27], DBA [24], and
APO [10, 9]. Again, these density values were chosen be-
cause they are expected to lie within the three regions of
the phase transition for problems of size n = 100.

Figure 4 shows the average energy profile for DBA oper-
ating on problems of p1 = 0.035. Using Mathmatica [22],
we produced an extremely close fit using the function EW =

8.81 + 79.3e−
t

2.49 . In a similar manner, all of the protocols
were fit with high precision using the form of the cooling
rate function.

By combining Equations 12 and 14 into the First Law, we
can calculate the equilibrium point using the equation

mp2 − E
m

+
B − E
A

= 0 (15)

which, when solved for E gives us

E0 =
Amp2 +mB

A+m
(16)

This equation allows us to predict the equilibrium point
under the assumption that only one constraint changes per
unit time. If, as the definition for the DynDCSP allows,
more than one constraint changes at a time or there are sev-
eral time steps between changes, the cooling/heating equa-
tions need to be altered as follows

E = mp2 − be−
rate∗t
m (17)

This then leads to the more general energy equilibrium
equation for DynDCSPs which becomes

E0 =
Amp2 + mM

rate

A+ m
rate

(18)

To show that these findings match empirical results, we
again ran a simulation with n = 100 variables, p2 = 0.33,
and densities={0.02, 0.035, 0.055}. This time we varied the
problems over time by adding and removing an equal num-
ber of constraints during each time step according to a rate.
The problems were run for 1,000 time steps and the av-
erage energy measured. Each data point in the measured
graphs represents the average of 50,000 separate measure-
ments. The graphs in Figure 5 show the results of this ex-
periment along with the theoretically predicted values based
on Equation 18.

Density 0.02 0.035 0.055
DynDSA 1.81 2.43 3.15
DynDBA 2.60 1.42 1.57
DynAPO 1.15 1.52 5.92

Table 1: RMS Error for the predictions of the energy
equilibrium
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Figure 7: Standard Deviation of Equilibrium for DynDSA, DynDBA, and DynAPO with n = 100, p2 = 0.33

The theoretical and empirical results are a very close match
as a pairwise comparison of the graphs in Figure 5 reveal.
To show how well the predictions work, we computed the
RMS error for each protocol at the various densities. As can
be seen in Table 1, the error is very low with the highest
value occurring for DynAPO on high density, unsatisfiable
problems. This prediction error occurs because DynAPO
is designed to ”give up” when it encounters an unsatisfiable
subproblem and accept a local variable value that minimizes
the number of constraint violations. Although this strategy
works in practice, it makes it harder to predict the equilib-
rium point of the protocol based on static instances.

6.1 Equilibrium Stability
Although our mapping allows the average energy to be

computed when both the environment is changing and a
protocol is operating to solve a problem, it is also important
to understand if the system operates in a stable manner. To
show that the equilibrium energy is in fact a stable value, we
can use the the contraction mapping theorem [6]. Let the
function G(E) = E+ mp2−E

m
+ B−E

A
. Using Equation 15, we

know that G(E0) = E0. Now assume some small deviation
∆E occurs that moves the system to a new energy level. We
can compute the change in G(E) as ∆G(E), which will be

∆G(E0 + ∆E) = |G(E0 + ∆E)−G(E0)| (19)

By substitution and replacing G(E0) = E0 the equation
becomes

∆G(E0 + ∆E)

=

∣∣∣∣G(E0 + ∆E) +
mp2 − (E0 + ∆E)

m
+
B − (E0 + ∆E)

A

∣∣∣∣
=

∣∣∣∣∆E − E

m
− ∆E

A

∣∣∣∣ (20)

Since ∆G(E0 + ∆E) will always be less than ∆E as long
as m > 0, the system must contract back to the equilibrium
value E0.

To empirically show that the equilibrium is stable, we re-
processed the data from our previous empirical evaluation.
This time, we computed a histogram showing the number of
occurrences of each energy level while DynDSA was running
on problems of size n = 100, p1 = 0.035, and p2 = 0.33 that
were changing at rate = 10. Figure 6 shows the results of
this evaluation. From the graph it appears that, like the
convergence tests from Section 4, the protocol converges on
its most likely state of E0. To show that this also occurs for
the other protocols Figure 7 shows the standard deviations
for all of the test conditions we explored. As can be seen in

this figure, the solution qualities remain quite stable, despite
the fact that problems begin to change quite rapidly and, as
Figure 5 showed, the solution quality degrades. These re-
sults certainly support the theoretical findings quite well.

7. CONCLUSIONS
The dynamic, distributed constraint satisfaction problem

occurs in many real-world settings. However, little work has
been done on this important problem because the proto-
cols are difficult to develop and analyze. In this paper, we
presented a new method for approaching this complex task
by mapping the DynDCSP onto physical system and then
showing that they obey the three laws of thermodynamics.
As a result, we were able to show that you can classify Dyn-
DCSPs based on their expected convergence point and rate
of convergence. You can also measure the performance of
protocols based on the amount of work per unit time they
perform. Combining these two results together yields, for
the first time ever, a way to predict the performance of a pro-
tocol operating in a dynamic environment under previously
untested conditions. Finally, this work shows that dynamic
protocols form stable equilibria with their environment even
as the environment changes very rapidly.

It should be clear that the findings in the work are very
powerful and the impact extends outside of the distributed
problem solving research discipline. However, additional
work must be done to cover other real world situations.
For example, the theory should be expanded to cover the
addition and removal of domain elements, changes to the
density of the problem, or alterations to the tightness of the
constraints. In addition, many real-world problems cannot
be addressed using binary constraints and therefore must be
expanded to deal with cost functions between variables. We
are also planning to expand the scope and depth of our em-
pirical evaluations to include additional algorithms, a larger
range of problems, and a greater number of samples.

Finally, it is our firm belief that this theory along with the
supporting evidence will open the door to discovering new
protocols that are tailored to operate in dynamic environ-
ments. This is particularly important because, we believe,
distributed solutions are likely to produce better overall so-
lution quality than centralized approaches in environments
that change rapidly and have substantial communication de-
lay.
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