A Privacy-Preserving Algorithm for Distributed Constraint Optimization

Tal Grinshpoun*
Dept. of Industrial Engineering and Management Ariel University
Ariel, Israel
talgr@ariel.ac.il

Tamir Tassa
Dept. of Mathematics and Computer Science
The Open University
Ra'anana, Israel
tamirta@openu.ac.il

Abstract

Distributed constraint optimization problems enable the representation of many combinatorial problems that are distributed by nature. An important motivation for such problems is to preserve the privacy of the participating agents during the solving process. The present paper introduces a novel privacy-preserving algorithm for this purpose. The proposed algorithm requires a secure solution of several multiparty computation problems. Consequently, appropriate novel secure protocols are devised and analyzed.

Categories and Subject Descriptors

[Computing Methodologies]: Artificial Intelligence-Distributed Artificial Intelligence

General Terms

Algorithms

Keywords

DCOP, Constraint Privacy, Search

1. INTRODUCTION

Distributed constraint optimization (DCOP) [13, 21] is a general model for representing and solving distributed combinatorial problems, in which the variables of the problem are owned by different agents. The ability of the model to represent real-world problems such as meeting scheduling [20], sensor nets [31], and vehicle routing [15], resulted in the development of various complete DCOP algorithms. Most of those algorithms, such as SyncBB [13], ADOPT [21], NCBB [2], AFB [6], and BnB-ADOPT [29], are based on search. Other paradigms for solving DCOPs include grouping of sub-problems (OptAPO [19]) and dynamic programming (DPOP [23]).
One of the main motivations for solving constraint problems in a distributed manner is that of privacy. The term

[^0][^1]privacy is quite broad, a fact that gave rise to several categorizations of the different types of privacy [5, 8, 10]. Only one privacy type is common to these various categorizations - constraint privacy, meaning that constraint information must be known only to the agents whose variables are involved in the constraints. Indeed, most research on DCOP privacy focused on constraint privacy.
Some work has focused on measuring the extent of constraint privacy loss. Most notably is Maheswaran et al. [17] who proposed the VPS framework that was initially used to measure the constraint privacy loss in SyncBB and OptAPO. Later, VPS was also applied to the DPOP and ADOPT algorithms [9]. Doshi et al. proposed to inject privacy-loss as a criterion to the problem solving process [3]. Some previous work was also directed towards reducing constraint privacy loss. Most effort in the development of privacy-preserving search algorithms focused on DCSP, which is the satisfaction variant of DCOP. Examples include [22, 25, 30]. The work of Silaghi and Mitra [25] addressed both satisfaction and optimization problems. However, the proposed solution is strictly limited to small scale problems since it depends on an exhaustive search over all possible assignments. Several privacy-preserving versions of the dynamic programming algorithm, DPOP, were proposed in the past [8, 24]. Recently, Léauté and Faltings [16] proposed several versions of DPOP that provide strong privacy guarantees. While these versions are aimed for DCSPs, some of them may be also applicable to DCOPs. Considering a different aspect of constraint privacy, researchers have addressed problems in which the nature of a constraint is distributed among the constrained agents. Solutions to such problems include the PEAV formulation [18] and asymmetric DCOPs [11]. Here, we restrict ourselves to the traditional symmetric DCOPs.

In the present paper we devise a novel DCOP algorithm that preserves constraint privacy. The new algorithm is based on SyncBB [13], which is the most basic DCOP search algorithm. We chose that algorithm since the search paradigm is applicable for a large variety of problems. Contrary to that, in DPOP the size of messages grows exponentially in the arity of the constraints [23]; this fact renders DPOP inapplicable for solving dense problems [7]. OptAPO is also inappropriate for this purpose since it inherently involves comprehensive information sharing throughout the problem solving process, a fact that is counterproductive when considering privacy aspects. Moreover, OptAPO was shown to have rather poor runtime performance [12].

In the course of developing the privacy-preserving algorithm we encountered several secure computation problems. In the main problem, a group of agents needs to compare the sum of private inputs held by those agents against an upper bound which is held by another agent, such that none of them learns information on neither the sum nor on the private inputs of his peers. We introduce here a novel protocol for solving that problem. In addition, we devise a novel protocol for solving Yao's Millionaires' Problem [28] that does not depend on costly oblivious transfer [4] sub-protocols.

The plan of the paper is as follows. After some preliminaries (Section 2), the new privacy-preserving search algorithm is presented in Section 3. Several secure protocols are invoked during the run of the algorithm. These protocols are introduced in Section 4, along with analysis of their privacy properties. Section 5 includes communication and computation analysis of the security protocols, as well as experimental evaluation of the overall performance of the search algorithm. Conclusions are drawn in Section 6.

2. PRELIMINARIES

2.1 Distributed constraint optimization

A Distributed Constraint Optimization Problem (DCOP) [13] is a tuple $<\mathcal{A}, \mathcal{X}, \mathcal{D}, \mathcal{R}>$ where \mathcal{A} is a set of agents $A_{1}, A_{2}, \ldots, A_{n}, \mathcal{X}$ is a set of variables $X_{1}, X_{2}, \ldots, X_{m}$, \mathcal{D} is a set of finite domains $D_{1}, D_{2}, \ldots, D_{m}$, and \mathcal{R} is a set of relations (constraints). Each variable X_{i} takes values in the domain D_{i}, and it is held by a single agent. Each constraint $C \in \mathcal{R}$ defines a non-negative cost for every possible value combination of a set of variables, and is of the form $C: D_{i_{1}} \times \cdots \times D_{i_{k}} \rightarrow \mathbb{R}_{+}:=[0, \infty)$, for some $1 \leq i_{1}<\cdots<i_{k} \leq m$.

An assignment is a pair including a variable, and a value from that variable's domain. We denote by a_{i} the value assigned to the variable X_{i}. A partial assignment (PA) is a set of assignments in which each variable appears at most once. A constraint $C \in \mathcal{R}$ is applicable to a PA if all variables that are constrained by C are included in the PA. The cost of a PA is the sum of all applicable constraints to the PA. A full assignment is a partial assignment that includes all of the variables. The objective is to find a full assignment of minimal cost.

For simplicity, and due to page limitation, we assume that each agent holds exactly one variable, i.e., $n=m$. We let n denote hereinafter the number of agents and the number of variables. For the same reasons we also concentrate on binary DCOPs, in which all constraints are binary, i.e., they refer to exactly two variables. Such constraints take the form $C_{i, j}: D_{i} \times D_{j} \rightarrow \mathbb{R}_{+}$. These assumptions are customary in DCOP literature (e.g., [21, 23]).

2.2 Security notions

A secure multiparty protocol is a protocol that enables several parties to jointly compute a function over their inputs, while at the same time keeping these inputs private. Such a protocol is considered perfectly secure if it does not reveal to any of the interacting parties any information on the private inputs of his peers beyond what is implied by his own input and the final output of the protocol. This notion of security coincides with the disclosure of semi-private information, a concept that was suggested in the context of distributed constraint satisfaction [5].

When looking for practical solutions, however, some relaxations of the notion of perfect privacy are usually inevitable, provided that the excess information is deemed benign (see examples of such protocols in [14, 26, 27, 32]). For each of the security protocols that we present in this paper, we bound the excess information that it may leak to the interacting agents and explain why such leakage of information is benign, or how it may be reduced.

3. PRIVACY-PRESERVING DCOP SEARCH

Synchronous Branch-and-Bound (SyncBB) [13] was the first complete algorithm developed for solving DCOPs. SyncBB operates in a completely sequential manner, a fact that inherently renders its synchronous behavior. It is also the most basic search algorithm for solving DCOPs, and many more sophisticated DCOP search algorithms, such as NCBB [2] and AFB [6], are actually enhancements of SyncBB. Taking into account these comprehensions and considering the clear information flow within its search process, SyncBB is an ideal candidate to serve as the basis of a new privacy-preserving DCOP search algorithm.

The objective in this context is to allow the interacting agents to solve a given DCOP while maintaining constraint privacy. Namely, the value of $C_{i, j}\left(a_{i}, a_{j}\right)$, for any two assignments $a_{i} \in D_{i}$ and $a_{j} \in D_{j}$, should not be disclosed to any agent other than A_{i} and A_{j}. We proceed to present the Privacy-preserving Synchronous Branch-and-Bound algorithm (P-SyncBB).

3.1 The P-SyncBB algorithm

When considering a version of SyncBB that preserves constraint privacy, one must pay special attention to the upper bound. In SyncBB, the upper bound is the most fundamental piece of information during the problem solving process, and it is publicly known to all agents. The effectiveness of the algorithm lies in the continuous comparisons of the costs of partial assignments with the current upper bound, in order to prune the search space. Curious agents may collect information on costs of partial assignments in attempt to infer information on private constraints of other agents. This is a major source of trouble from the perspective of constraint privacy. Following that, the most fundamental task in the design of the privacy-preserving version, P-SyncBB, is to separate between the costs of partial assignments and the upper bound, while still enabling pruning of the search space. Such separation is achieved by preventing any agent at any stage from knowing both the upper bound and the current partial assignment (CPA).

We assume that there is a static public ordering of the agents, A_{1}, \ldots, A_{n}. Agent A_{1} is the perfect candidate to hold the upper bound, since according to the original SyncBB algorithm, A_{1} never sees the assignments of the other agents. The other agents receive the CPA from their preceding agents throughout the search process, so at each stage they know the assignments of the agents preceding them in the order. Thus, in order to enable the above desired separation, agents A_{2}, \ldots, A_{n} must not be aware of the upper bound.

In the original SyncBB algorithm, the CPA traverses the search space by each agent assigning a value to its variable and passing the augmented CPA to the next agent in the order along with the current cost of the CPA. After an agent completes assigning all values in the domain to his variable, he backtracks, i.e., he sends the CPA back to the preceding
agent. To prevent exhaustive traversal of the entire search space, the agents maintain an upper bound, which is the cost of the best solution found thus far. Whenever an agent sees that the cost of the CPA combined with the cost added by his variable reaches the upper bound, he prunes this branch of the search space by assigning the next value to his variable without sending the CPA to the succeeding agent.

Contrary to the case of SyncBB, in the P-SyncBB algorithm the cost of the CPA must not be known to any agent, since the cost of a CPA may leak private constraint information. Consequently, at each pruning decision point, the agent holding the CPA must compare between the cost of the CPA (including the cost added by his own assignment) and the upper bound in a secure manner, i.e., without learning neither the cost of the CPA nor the upper bound. Such nontrivial task is achieved by restraining the information flow in the algorithm and by introducing secure protocols for summation and comparison. The pseudo-code of P-SyncBB is given in Algorithm 1 and described in detail next, whereas a full description of the secure protocols is given in Section 4.

The run of P-SyncBB starts by agent A_{1} initially setting the upper bound B to infinity (line 2). Agent A_{1} also sets the flag ComputedCPA to true (line 3). This flag indicates whether an agent has already computed the cost of the CPA that was received from his preceding agent. Since A_{1} is the first in order he never needs to compute this cost, so he initiates the flag accordingly. Next, A_{1} runs the assign_CPA procedure. According to the initial value of ComputedCPA and the fact that at this preliminary stage there is no possibility of backtracking, A_{1} simply chooses a value from his variable's domain (line 21), assigns it to his variable in the CPA (line 35), and sends a CPA_MSG with the updated CPA to agent A_{2} (line 36). In lines 31-34, the current agent checks whether the cost of the CPA which was conveyed to him from his preceding agent is already too large and thus this branch of the search can be pruned. Those lines are irrelevant for A_{1} so he skips them. For privacy reasons it may be decided that also agents A_{2} and A_{3} skip them too (see Section 4.2.2). These special cases were discarded from the pseudo-code for clarity reasons.

When agent $A_{k}, k \geq 2$, receives the CPA_MSG, he first updates his CPA with the received partial assignment (line 5). Next, he performs value ordering according to the added cost to the CPA which is incurred by each value in his domain (lines 6-7). The cost that A_{k} 's assignment adds is

$$
\begin{equation*}
x_{k}=\sum_{i=1}^{k-1} C_{i, k}\left(a_{i}, a_{k}\right) \tag{1}
\end{equation*}
$$

where a_{i}, a_{k} are the assignments of the variables that are governed by agents A_{i} and A_{k}, respectively. Hence, for each $v \in D_{k}$, agent A_{k} computes $x_{k}(v)=\sum_{i=1}^{k-1} C_{i, k}\left(a_{i}, v\right)$ and then he orders those values so that the sequence of added costs $x_{k}(v)$ is non-decreasing. Note that agent A_{1} never receives a CPA_MSG, so he does not perform value ordering. Finally, the ComputedCPA flag is set to false (line 8), before the agent runs the assign_CPA procedure.

The assign_CPA procedure begins with the agent choosing the next value from the pre-ordered domain (line 21). In case no values remain, the agent backtracks (lines 22-23). Any agent which is not the last one A_{n} skips to line 28. We will relate to agent A_{n} (lines 24-26) later. In case the ComputedCPA flag is false, the agent invokes a secure computation of the CPA's cost, i.e., $\sum_{i=2}^{k-1} x_{i}$ (where x_{i} are as in Eq. (1)), and sets the flag to true (lines 28-30). The secure

```
Algorithm 1 - P-SyncBB (executed by agent \(A_{k}\) )
    procedure init
    if \(A_{k}=A_{1}\) do
        \(B \leftarrow \infty\)
        Computed \(C P A \leftarrow\) true
        assign_CPA()
when received (CPA_MSG,\(P A\) ) do
    \(C P A \leftarrow P A\)
    for each \(v \in D_{k}\) do compute \(x_{k}\)
    order values of \(D_{k}\) according to the computed \(x_{k}\) 's
    Computed \(C P A \leftarrow\) false
    assign_CPA()
when received (BACKTRACK_MSG) do
10: remove \(X_{k}\) from \(C P A\)
11: assign_CPA()
when received (CHECK_SOLUTION_MSG) do
12: Cost \(\leftarrow\) invoke Protocol 2 to securely compute the solution's cost
    (i.e., \(\sum_{i=2}^{n} x_{i}\) )
3: if Cost \(<B\) do
4: \(\quad B \leftarrow\) Cost
15: send(SOLUTION_ANS_MSG,true) to \(A_{n}\)
16: else
17: send(SOLUTION_ANS_MSG,false) to \(A_{n}\)
when received (SOLUTION_ANS_MSG,Answer) do
18: if Answer \(=\) true do
19: BestSolution \(\leftarrow C P A\)
20: backtrack()
procedure assign_CPA
21: choose next value \(v\) in order from \(D_{k}\)
    : if no value exists do
        backtrack()
        else if \(A_{k}=A_{n}\) do
            \(X_{k} \leftarrow v\)
            send(CHECK_SOLUTION_MSG) to \(A_{1}\)
        else
            if ComputedCPA= false do
                invoke Protocol 3 to securely compute CPA.cost (i.e.,
                \(\sum_{i=2}^{k-1} x_{i}\) )
                Computed \(C P A \leftarrow\) true
            ShouldBacktrack \(\leftarrow\) invoke Protocol 4 to securely check
            whether CPA.cost \(+x_{k} \geq B\)
            if ShouldBacktrack \(=\) true do
                    backtrack()
            else
                    \(X_{k} \leftarrow v\)
                    \(\operatorname{send}(\) CPA_MSG,\(C P A)\) to \(A_{k+1}\)
procedure backtrack
37: if \(A_{k}=A_{1}\) do
            broadcast(TERMINATE)
        else
            remove \(X_{k}\) from \(C P A\)
            send(BACKTRACK_MSG) to \(A_{k-1}\)
```

computation in line 29 is performed by invoking Protocol 3 (Section 4.1). The outcome of this computation is that A_{k} holds one additive share of the CPA's cost, while A_{1} holds another share. Hence, the actual cost is never disclosed to any single agent.

At this stage, the agent reaches a pruning decision point. In the original SyncBB, this means checking whether the cost of the CPA combined with A_{k} 's added cost x_{k} reaches the upper bound. If so, then the pruning of this branch of the search space is achieved by backtracking. In P-SyncBB, this check is performed without A_{k} knowing neither the cost of the CPA nor the upper bound. This is achieved by invoking Protocol 4 (Section 4.2) in line 31. In case the output of Protocol 4 is true, the agent backtracks (lines $32-33$). Otherwise, he assigns his variable in the CPA and sends a CPA_MSG to the subsequent agent (lines 35-36).

Note that the usage of the ComputedCPA flag ensures that the cost of any given CPA (i.e., the sum of constraints incurred by assignments to X_{1}, \ldots, X_{k-1}) is computed only once (Protocol 3). Whenever A_{k} changes his assignment to X_{k}, only Protocol 4 is invoked, in order to compare the cost of the augmented $C P A$ (involving $X_{1}, \ldots, X_{k-1}, X_{k}$) to the current upper bound.

Now we return to the case of the last agent A_{n} (lines 2426). In this case, the CPA is actually a full assignment, so a CHECK_SOLUTION_MSG is sent to agent A_{1} who can verify whether the CPA's cost is better than the cost of the best solution that was found thus far.

When agent A_{1} receives the CHECK_SOLUTION_ MSG, he invokes Protocol 2 (Section 4.1) with $k=n$ in order to compute the cost of the candidate solution (line 12). Due to the sequential operation of $\mathrm{P}-\mathrm{SyncBB}$, as each agent $A_{k}, k \geq 2$, has a local version of the CPA, he knows the current assignments a_{1}, \ldots, a_{k} of X_{1}, \ldots, X_{k}. Hence, the cost of the CPA equals the sum of the private values $x_{k}, k \geq 2$, as defined in Eq. (1). (Note that the fact that A_{1} computes the sum of private inputs which are held by other agents demonstrates the information separation in the protocol.) In case the cost of the new solution is lower than the existing upper bound, the new upper bound is updated (line 14). Finally, A_{1} notifies A_{n} whether this is a new best solution or not by sending an appropriate SOLUTION_ANS_MSG.

When agent A_{n}, who knows the full assignment $\left(a_{1}, \ldots\right.$, $\left.a_{n}\right)$, receives the SOLUTION_ANS_MSG, he checks the input Answer from A_{1} and updates the best solution in case it is true (lines 18-19). Regardless of the value of Answer, A_{n} then backtracks (line 20), since he does not need to check any of the subsequent values in his domain as they will issue worse solutions (due to the value pre-ordering).

Next, we discuss the backtrack procedure. In the case of A_{1}, a backtrack means that the entire search space was traversed, and so the algorithm terminates (lines 37-38). Any other agent just removes his variable from the CPA (line 40) and sends a BACKTRACK_MSG to the preceding agent (line 41). An agent that receives a BACKTRACK_MSG removes his value from the CPA (line 10) and continues the search by assigning the next value in order (line 11).

At the end, the full assignment of the best solution is known only to A_{n} and its cost only to A_{1}. According to the application and its privacy requirements, agents A_{1} and A_{n} can decide what to share with their peers. In any case, A_{n} must at least inform each of the other agents of their own value assignments in the best solution.

TheOrem 1. P-SyncBB is sound and complete.
Proof. The soundness and completeness of P-SyncBB follow from those of SyncBB. The details of the standard proof are omitted due to page limitations.

4. SECURE PROTOCOLS

In this section we present the secure protocols that are invoked by P-SyncBB, Algorithm 1. We assume herein that $C_{i, j}\left(a_{i}, a_{j}\right) \leq c$ for some publicly known c, for all $1 \leq i<$ $j \leq n$ and $\bar{a}_{i} \in D_{i}, a_{j} \in D_{j}$. Hence, $C:=\binom{n}{2} c$ is a publicly known upper bound on the cost of any partial or full assignment. In Section 4.1 we discuss the secure summation protocols that are invoked in lines 12 and 29 of $\mathrm{P}-\mathrm{SyncBB}$. Our main cryptographic contribution is given in Section 4.2, which describes the secure comparison protocol that is invoked in line 31.

4.1 Secure summation protocols

The computational problem in line 12 of $\mathrm{P}-\mathrm{SyncBB}$ is the classical problem of secure summation of private integers. It can be solved by a slight modification of Benaloh's protocol [1], which is described in Protocol 2. Here, S denotes an arbitrary integer much larger than C (the upper bound on the inputs and their sum).

```
Protocol 2-Secure summation of private inputs
Input: \(C, S \in \mathbb{Z}^{+}\)such that \(S \gg C\);
Agent \(A_{i}, 2 \leq i \leq k\), has an integer \(x_{i} \in[0, C]\), such that
\(x:=\sum_{i=2}^{k} x_{i} \leq C\).
Output: \(A_{1}\) gets \(x\).
    1: Each \(A_{i}, 2 \leq i \leq k\), selects random values \(x_{i, j} \in \mathbb{Z}_{S}:=[0, S-1]\),
        \(2 \leq j \leq k\), such that \(\sum_{j=2}^{k} x_{i, j}=x_{i} \bmod S\).
    2: \(A_{i}\) sends \(x_{i, j}\) to \(A_{j}\), for all \(2 \leq i \neq j \leq k\).
    3: \(A_{j}\) computes \(s_{j}=\sum_{i=2}^{k} x_{i, j} \bmod S\), for all \(2 \leq j \leq k\).
    4: Agents \(A_{2}, \ldots, A_{k}\) send \(s_{2}, \ldots, s_{k}\) to \(A_{1}\).
    5: \(A_{1}\) computes \(x \leftarrow s_{2}+\cdots+s_{k} \bmod S\).
```

Theorem 2. Protocol 2 is perfectly secure: none of the agents A_{2}, \ldots, A_{k} learns any information about the inputs of his peers, nor about the overall sum x, while A_{1} learns no information on the inputs of the other agents beyond what is implied by the overall sum x.

Proof. The perfect security of the protocol is a direct consequence of the fact that each agent breaks up his input to modular additive shares which are chosen independently and uniformly at random. We omit further details of this standard proof.

Next, we discuss the secure implementation of line 29 in P-SyncBB. Here, it is needed to compute the cost of the CPA that is incurred by the assignments a_{1}, \ldots, a_{k-1} of all preceding agents. That cost equals $x:=\sum_{i=2}^{k-1} x_{i}$, where $x_{i}=\sum_{j=1}^{i-1} C_{j, i}\left(a_{j}, a_{i}\right)$ is a value that is known to A_{i}. While the summation in line 12 computes the cost of a full assignment, and the sum is revealed only to agent A_{1} who does not know the actual assignments, the summation in line 29 , which occurs more frequently than the previous summation, needs to be executed for partial assignments. Revealing the resulting sum to any of the agents, even to agent A_{1} who is not aware of the actual assignments, might be hazardous since it may be used to infer information on the private inputs of other agents. Hence, instead of letting a single agent reveal the sum $x=\sum_{i=2}^{k-1} x_{i}$, Protocol 3 ends with agents A_{1} and A_{k} sharing that sum.

```
Protocol 3-Computing additive shares in the sum of pri-
vate inputs
    1: Agents \(A_{2}, \ldots, A_{k-1}\) perform Steps 1-3 of Protocol 2 for
    \(x_{2}, \ldots, x_{k-1}\).
    2: Agents \(A_{3}, \ldots, A_{k-1}\) send \(s_{3}, \ldots, s_{k-1}\) to \(A_{k}\).
    3: \(A_{k}\) computes \(s_{k} \leftarrow s_{3}+\cdots+s_{k-1} \bmod S\).
    4: \(A_{2}\) sends \(s_{2}\) to \(A_{1}\).
```

Protocol 3 starts by implementing the first three steps of Protocol 2 (Step 1). Then, agents A_{3}, \ldots, A_{k-1} send their shares to A_{k} who adds them up to get s_{k} (Steps 2-3), while agent A_{2} sends his share to A_{1} (Step 4). Consequently, the two agents A_{1} and A_{k} hold two values s_{2} and s_{k} that are random modular shares in the sum x. Namely, each of those values distributes uniformly at random over \mathbb{Z}_{S} (as a result of the uniform selection of shares $x_{i, j}$ in Step 1 of Protocol 2) and $s_{2}+s_{k}=x \bmod S$. Protocol 3 , which is a small
variant of Protocol 2, is also perfectly secure, as it does not reveal to the interacting agents any information about the sum x or about the inputs of the other agents.

4.2 A secure comparison protocol

The main computational problem occurs in line 31 of P-SyncBB. There, agent A_{k} needs to check whether CPA.cost $+x_{k} \geq B$ where: (i) CPA.cost is the cost of the CPA which is incurred by the assignments a_{1}, \ldots, a_{k-1} of all preceding agents, (ii) x_{k} is the cost that agent A_{k} 's assignment adds (see Eq. (1)), and (iii) B is the current upper bound. We recall that as a result of executing Protocol 3 in line 29, CPA.cost is split between A_{1} and A_{k} that hold two modular additive shares in it, denoted s_{2} and s_{k} respectively. The value of x_{k} is known only to A_{k} while B is known only to A_{1}.

4.2.1 The basic protocol

Protocol 4 solves the above described computational problem. In Step $1, A_{k}$ adds x_{k} to his share s_{k} in $C P A$.cost. As a consequence, s_{2} and s_{k} (which are held by A_{1} and A_{k} respectively) are two modular shares in the augmented sum $x:=\sum_{i=2}^{k} x_{i}$ that equals the cost of the CPA due to the assignments a_{1}, \ldots, a_{k} to X_{1}, \ldots, X_{k}. If we view those shares as integers from $[0, S-1]$, then either $s_{2}+s_{k}=x$ (Case 1) or $s_{2}+s_{k}=S+x$ (Case 2). Next, A_{k} sends to A_{1} the value $s_{k}+r$, where r is selected uniformly at random from [0, S-C-1] (Steps 2-3). A_{1} then computes the difference $y=s_{2}+s_{k}+r-B$ (Step 4). (The purpose of adding the random mask r is to prevent A_{1} from inferring the difference $x-B$.)

Our goal now is to check whether $\delta:=x-B$ is negative or not. In Case $1 y=\delta+r$ while in Case $2 y=\delta+r+S$. Since $x, B \in[0, C]$ then $\delta \in[-C, C]$. Hence, in Case $1 y-r \leq C$ while in Case 2 we have $y-r \geq S-C$ (where $S-C \gg C$). Therefore, in order to check in which of the two cases we are, A_{k} and A_{1} perform a secure protocol to check whether $y \geq S-C+r$ (Step 5). Since y is known only to A_{1} while $S-C+r$ is known only to A_{k}, this is an instance of the millionaires' problem, which can be solved securely by Yao's garbled circuit protocol [28]. If that inequality does not hold then we are in Case 1 and $y=\delta+r$. If, however, it does hold, then we are in Case 2 and $y=\delta+r+S$. In the latter case, A_{k} sets $r \leftarrow r+S$. Hence, at the completion of Step 5 , we have $y=\delta+r$. It is important to note that only A_{k} needs to learn the answer to the inequality verification; A_{1} learns no information about whether $y \geq S-C+r$ or not.

Next, the two agents check whether $y \geq r$ or not. This is again an instance of the millionaires' problem, since y is known only to A_{1} and r is known only to A_{k}. Since $x-B=\delta=y-r$ then $y \geq r$ if and only if $x \geq B$. Hence, A_{k} may learn from the inequality verification whether $x \geq B$ or not (Step 6).

Protocol 4-Comparing a shared sum against an unknown bound

[^2]
4.2.2 Privacy analysis

Protocol 4 is "almost" perfectly secure in the following sense.

Theorem 3. At the end of Protocol 4 agent A_{1} may learn either a lower bound on x, in probability at most $C /(S-C)$, or an upper bound, in probability at most $C /(S-C)$, or nothing at all, in probability at least $(S-3 C) /(S-C)$. As for agent A_{k}, he may learn either a lower bound on x, in probability x / S, or an upper bound, in probability $(C-x) / S$, or nothing at all, in probability $(S-C) / S$.

Proof. A_{1} learns the value $y+B=s_{2}+s_{k}+r$ (Step 4). If $y+B<S$ he infers that it is Case 1 and therefore $y+B=$ $x+r$; otherwise he infers that it is Case 2 , whence $y+B-S=$ $x+r$. In any case, he learns the value $x+r:=z$. As $x=z-r$ and $0 \leq r \leq S-C-1$, it follows that $z-(S-C-1) \leq x \leq z$. Since it is known upfront that $0 \leq x \leq C$, the upper bound z reveals new information on x only when $z<C$. For every $i \in$ $\{0,1, \ldots, C-1\}$, the probability $\operatorname{Pr}(z=i)=\sum_{j=0}^{i} \operatorname{Pr}(x=$ $j) \cdot \operatorname{Pr}(r=i-j)$. Since r distributes uniformly on $[0, S-C-$ 1], it follows that $\operatorname{Pr}(z=i)=\frac{1}{S-C} \sum_{j=0}^{i} \operatorname{Pr}(x=j) \leq \frac{1}{S-C}$. Hence, $\operatorname{Pr}(z<C)=\sum_{i=0}^{C-1} \operatorname{Pr}(z=i) \leq \frac{C}{S-C}$. Therefore, A_{1} may learn a non-trivial upper bound on x in probability no greater than $C /(S-C)$. Similarly, we can show that he may learn a non-trivial lower bound in probability no greater than $C /(S-C)$. The last two probability inequalities imply that in probability at least $(S-3 C) /(S-C)$, the value of z does not allow A_{1} to exclude any possible value of x in the range $[0, C]$. In addition, the value of z does not induce an a-posteriori belief probability distribution on x that differs from the belief probability distribution that A_{1} had prior to seeing z, owing to the uniform random manner in which the masking value r is chosen. Next, we turn to discuss A_{k}.
A_{k} learns in Step 5 of Protocol 4 whether Case 1 holds $\left(s_{2}+s_{k}=x\right)$ or Case 2 does $\left(s_{2}+s_{k}=S+x\right)$. In Case $1,0 \leq s_{2}, s_{k} \leq x$. We note that s_{k} distributes uniformly at random over \mathbb{Z}_{S} : Indeed, that is the case prior to Step 1, since then s_{k} is the sum of random \mathbb{Z}_{S}-shares (see Step 3 in Protocol 3); hence, even after adding to it x_{k} it remains uniformly distributed over \mathbb{Z}_{S}. Consequently, since the case $s_{2}+s_{k}<S$ occurs if and only if $s_{k} \in\{0,1, \ldots, x\}$, its probability is $(x+1) / S$. In that case, A_{k} may infer that $x \geq s_{k}$. That lower bound is non-trivial only when $s_{k}>$ 0 . Hence, A_{k} learns a (non-trivial) lower bound on x in probability x / S. In Case 2, on the other hand, both s_{2} and s_{k} are strictly greater than x (since if, say, $s_{1} \leq x$, then $\left.s_{k}=x-s_{1} \leq x\right)$. Hence, in that case $x \leq s_{k}-1$. Only when $s_{k} \leq C$, that upper bound is non-trivial. Therefore, A_{k} learns a (non-trivial) upper bound on x if and only if $x<s_{k} \leq C$, namely, in probability $(C-x) / S$. However, when $s_{k}>C, A_{k}$ can learn nothing on x. To summarize, A_{k} learns nothing on x when $s_{k}=0$ or when $s_{k}>C$. Since s_{k} distributes uniformly in \mathbb{Z}_{S}, A_{k} learns no information at all in probability $(S-C) / S$.

Theorem 3 implies that the only potential leakages of information are to only two agents. Those potential leakages of information are only with respect to $x=\sum_{i=2}^{k} x_{i}$ (but not with respect to x_{i}), and only in the form of a lower or an upper bound. Moreover, the probability of those potential leakages to occur can be made negligible since C is a given integer and S can be chosen arbitrarily large.
It is worth noting that even though A_{1} plays a pivotal role in this protocol, since he keeps the upper bound B, he
does not know any of the assignments to the variables that are controlled by the other agents. Namely, even though A_{1} may learn (in negligible probability) lower bounds on the CPA's cost x, he does not know what are the assignments to X_{2}, \ldots, X_{k} that determine that x.

As for A_{k}, beyond the negligible probability that he learns a lower or an upper bound on x, he also learns whether $x<B$ or $x \geq B$, without actually knowing the value of B. x is the cost of the current CPA and it equals $x=$ $\sum_{1 \leq i<j \leq k-1} C_{i, j}\left(a_{i}, a_{j}\right)+\sum_{i=1}^{k-1} C_{i, k}\left(a_{i}, a_{k}\right):=C_{1}+C_{2}$. Since A_{k} knows a_{1}, \ldots, a_{k} (the current assignments to X_{1}, \ldots, X_{k}), he knows C_{2}. He wishes to extract additional information about C_{1}. If A_{k} learns that $x<B$ he infers that $C_{1}<B-C_{2}$, while if he learns that $x \geq B$ he infers that $C_{1} \geq B-C_{2}$. Since the value of B is not known to A_{k}, the above inferences are meaningless. If at the end of P-SyncBB the final value of B is still not published, then those inferences that were collected by A_{k} throughout the execution of P-SyncBB remain harmless. However, assume that A_{1} shares with his peers the final value of B that was found, say B_{0}. A_{k} knows that all intermediate values of B were greater than or equal to B_{0}. Therefore, while inequalities of type $C_{1}<B-C_{2}$ cannot yield any further information, inequalities of type $C_{1} \geq B-C_{2}$ will imply that $C_{1} \geq B_{0}-C_{2}$.

Due to the above potential leakage of information on costs of CPAs (only in cases where the cost B of the optimal solution has to be published), we may decide that in PSyncBB the agents perform pruning only for $k \geq k_{0}$ for some setting of k_{0}. Namely, agents $A_{1}, \ldots, A_{k_{0}-1}$ skip lines 31-34 and therefore do not invoke Protocol 4. As a consequence, only agents A_{k} with $k \geq k_{0}$ may infer lower bounds on sums of the form $\sum_{1 \leq i<j \leq k-1} C_{i, j}\left(a_{i}, a_{j}\right)$. Higher values of k_{0} increase privacy (since then the above sum involves more constraints) but obviously reduces efficiency.

4.2.3 Solving the millionaires' problem

Let A and B be two agents; A holds a private integer a and B holds a private integer b. They wish to test whether $b \geq a$ without learning any information on the difference $b-a$. Both agents know that a, b can take values in some interval $[L, U]$, and, furthermore, that $b \geq a$ if and only if $b-a \in[0, K]$ for some known and small constant K. This setting is the case in Steps 5 and 6 of Protocol 4, where the two agents are A_{k} and A_{1}, respectively. The reader may verify that in both cases we can take $[L, U]=[-C, 2 S-1]$; moreover, in Step 5 we can take $K=2 C$ while in Step 6 we can take $K=C$.

Agents A and B may resolve this millionaire's problem by applying Yao's garbled circuit protocol [28]. However, as that protocol invokes costly sub-protocols for oblivious transfer [4], we suggest here a simpler solution that relies on a non-trusted third party, T. In Protocol 4 that third party can be A_{2}. (Recall that, as discussed in Section 4.2.2, Protocol 4 is invoked only for $k \geq k_{0}$.) That third party too must not learn the difference $b-a$. Protocol 5 offers a possible solution. In that protocol, p is a random prime that satisfies $p>U-L+1$, and h is a secure hash function.

The idea is to represent the integers a and b by elements in a multiplicative group. To that end, the agents select upfront a multiplicative group \mathbb{Z}_{p}^{*} where p is a prime greater than $U-L+1$. Then, A and B select a random and secret generator g of that group (Step 1). As g is a generator of \mathbb{Z}_{p}^{*}, it is guaranteed that the mapping $i \mapsto g^{i} \bmod p$ is a

Protocol 5 - Secure inequality verification using a nontrusted third party
Input: A has an integer a and B has an integer b so that $a, b \in[L, U]$ and $b \geq a$ if and only if $b-a \leq K$, where L, U, K are known integer bounds.
Output: The third party T learns whether $b \geq a$, but he should not learn the value of $b-a$.
1: A and B select a random generator g of \mathbb{Z}_{p}^{*}.
2: A sends to T the values p and $g^{a} \bmod p$.
3: B selects a random integer $0 \leq s \leq p-1$ and computes the set $W=\left\{g^{s+i}: 0 \leq i \leq K\right\}$.
4: B sends to T the value $g^{s+b} \bmod p$, and the randomly permuted set $h(W):=\{h(w): w \in W\}$.
5: T computes $u:=g^{s+b-a} \bmod p$ and checks if $h(u) \in h(W)$.
6: If $h(u) \in h(W), T$ outputs to A the answer true (i.e., $b \geq a$ holds); else, he outputs to A the answer false.
one-to-one function from the integer interval $[L, U]$ to \mathbb{Z}_{p}^{*}, since any $p-1$ consecutive powers of g must be distinct, and $p-1 \geq U-L+1$. Then, A and B send to T the values which are described in Steps 2-4. By our assumptions on a and b, it follows that $b \geq a$ if and only if $s+b-a \in[s, s+K]$. Hence, $b \geq a$ if and only if u, as computed by T in Step 5 , is in the set W that B computes in Step 3. However, as T receives only $h(W)$ (and not W), the check that he performs in Step 5 is whether $h(u)$ is found in $h(W)$. If it is, then T infers that $b \geq a$; otherwise, the final conclusion is that $b<a$. (Note that T informs only A and not B about his finding, since that is the requirement in Protocol 4.)

Theorem 4. Let ε be a bound on the probability of two randomly selected elements from \mathbb{Z}_{p}^{*} to form a collusion for h. Then Protocol 5 is a false-biased Monte Carlo algorithm with error probability which is no larger than $(K+1) \varepsilon$.

In modern hash functions (e.g., SHA-3 or RIPEMD-320), the collusion probability is negligible. Moreover, it is possible to make sure that those potential errors of negligible probability might result only in performing unnecessary work, as they might lead to a decision not to prune a search path, but not in missing the optimal solution.

Theorem 5. Consider Protocol 4 where: (1) in Step 6 the two agents verify the inequality $r \geq y+1$, which holds if and only if $x<B$; and (2) in both Steps 5 and 6 the inequality verification is carried out by invoking Protocol 5. Then such a protocol is guaranteed to find the optimal solution.

Proof. Since $r \geq y+1$ holds if and only if $y \geq r$ does not hold, then $r \geq y+1$ holds if and only if $x<B$. In addition, it is easy to check that the two sides of the inequality, $b:=r$ and $a:=y+1$, are confined to the interval $[L, U]=[-C+$ $1,2 S]$, and if $b \geq a$ then $b-a \in[0, K:=C-1]$.
Assume that Protocol 5 issues a wrong true answer to the inequality verification in Step 5 of Protocol 4. That can occur only in Case $1(y=\delta+r)$ and the result would be that r will be replaced by $r+S$, unnecessarily. But then, in Step $6, r$ would be clearly greater than y. That inequality will be verified and, as a result, the agents will infer that $x<B$. Consequently, the CPA will be considered as one that could be extended to an optimal solution and, therefore, it will not be discarded. The potential damage of such an erroneous answer of Protocol 5 is only excessive work.

Next, if Protocol 5 issues a wrong true answer to the inequality verification in Step 6 of Protocol 4, then the players will wrongly infer that $x<B$. Here too, the potential damage is only that of performing unnecessary work (by not

Table 1: Communication costs of Protocol 2

Rounds	$\#$ messages	$\#$ bits
Step 2	$(n-1)(n-2)$	$(n-1)(n-2) \ell_{S}$
Step 4	$n-1$	$(n-1) \ell_{S}$
2	$(n-1)^{2}$	$(n-1)^{2} \ell_{S}$

Table 2: Communication costs of Protocol 3

Rounds	\# messages	\# bits
Step 1	$(k-2)(k-3)$	$(k-2)(k-3) \ell_{S}$
Step 2	$k-3$	$(k-3) \ell_{S}$
Step 4	1	ℓ_{S}
3	$k^{2}-4 k+4$	$\left(k^{2}-4 k+4\right) \ell_{S}$

discarding a CPA that cannot be extended to an optimal solution). The conclusion is that the combined protocol will never miss the true optimal solution.

Next, we attend to the security of the protocol. First, we note that the protocol would have been secure against a computationally bounded agent T even if no hashing had been used, since T does not know the generator g nor the random mask s. However, in view of Theorem 6, we chose to strengthen the protocol by using a secure hash function.

Theorem 6. If $h=i d$ then a computationally unbounded T will be able to find the value of $b-a$.

As for s, it was introduced in order to prevent T from identifying the case $b-a=0$. Indeed, if we had selected $s=0$, then whenever $b-a=0$ we would have got $u=$ 1 ; such a case could have been identified by T since then $h(u)=h(1)$, regardless of the generator g that was selected.

Theorem 7. Protocol 5 is secure against computationally bounded agents.
The proofs of Theorems 4, 6, and 7 are omitted due to page limitation.

5. EVALUATION

5.1 Communication and computation costs

In this section we describe the communication and computation costs of the secure protocols that we presented in Section 4. Tables 1, 2 and 3 summarize the communication costs of Protocol 2 (when executed with $k=n$), Protocol 3 (as a function of k), and Protocol 4. Each row in those tables corresponds to one round (or batch of rounds) in the related protocol, and the last row shows the total number of communication rounds, messages, and transmitted bits for that protocol. Here, $\ell_{S}:=\lceil\log S\rceil$ is the number of bits for representing integers in $[0, S-1], C$ is the upper bound on the cost of full assignments, and $\ell_{p}:=\lceil\log p\rceil$ is the number of bits to represent numbers modulo p (recall that Protocol 4 executes Protocol 5 in which the arithmetic is over \mathbb{Z}_{p}^{*}). Due to lack of space we omit detailed explanations of these communication costs.

As for runtime, Protocols 2, 3, and 4 perform only random number generation and additions, which are low cost operations. The main computational toll is in Steps 5 and 6 of Protocol 4 in which Protocol 5 is invoked. The latter protocol executes the costly operations of modular exponentiations, multiplications, inversions, and hash evaluations. Denoting the runtimes of executing a single operation of those types by C_{e}, C_{m}, C_{i}, and C_{h} respectively, the runtime of Protocol 4 can be verified to be dominated by $8 C_{e}+(3 C+2) C_{m}+2 C_{i}+(3 C+4) C_{h}$.

Table 3: Communication costs of Protocol 4

Rounds	\# messages	\# bits
Step 3	1	$\ell_{S}+1$
Step 5 (3)	5	$5 \ell_{p}+(2 C+1) \ell_{h}+1$
Step 6 (3)	5	$5 \ell_{p}+(C+1) \ell_{h}+1$
7	11	$10 \ell_{p}+(3 C+2) \ell_{h}+\ell_{S}+3$

Figure 1: Runtime

Figure 2: Network load

5.2 Experiments

We evaluated the performance of P-SyncBB by comparing its runtime and network load to two other algorithms: the regular (non-privacy-preserving) SyncBB, and a naïve privacy-preserving exhaustive-search algorithm that we call P-Ex. P-Ex is similar to P-SyncBB except that it does not do pruning. This is achieved by skipping lines $28-34$; other than that P-Ex coincides with P-SyncBB, including the usage of Protocol 2 for privacy preservation. The algorithms were implemented in the AgentZero ${ }^{1}$ simulator.

In the experiments we used randomly generated DCOPs with $n=8$ agents, $\left|D_{1}\right|=\cdots=\left|D_{n}\right|=8$, maximal constraint cost $c=10$, and varying constraint density $0.1 \leq$ $p_{1} \leq 0.9$. The runtime of DCOP algorithms is commonly measured by logical operations, such as non-concurrent constraint checks [33]. As P-SyncBB includes arithmetic operations that are not constraint checks, we report nonconcurrent runtime. As the algorithms are basically sequential, the non-concurrency of the measure only takes effect during the run of the secure protocols.

Figures 1 and 2 present the mean results (in logarithmic scale) of runtime and network load. While the overhead of the secure protocols is significant, its effect remains almost the same when the problems become denser. The main problem of P-SyncBB is the high computation overhead of Protocol 5 that is invoked for pruning. Nevertheless, the graphs show that even performing highly expensive pruning is still worthwhile, when considering the alternative, P-Ex.

6. CONCLUSION

We presented here P-SyncBB, a privacy-preserving version of the SyncBB algorithm for solving DCOPs while respecting constraint privacy. P-SyncBB preserves the private constraint information by computing the costs of CPAs and comparing them to the current upper bound, using secure multiparty protocols. To this end, we devised Protocol 5, that solves the millionaires' problem securely without resorting to costly oblivious transfer sub-protocols, and then

[^3]used that protocol in Protocol 4, that compares the cost of a CPA, which is shared between two agents, to the upper bound which is held by only one of them.

One research direction that we plan to pursue is improving the computational cost of Protocol 5. Other research directions include the extension of this work to other search-based algorithms for DCOP solving, such as AFB [6] or NCBB [2], and to other privacy types. Finally, we plan to compare our approach to the one that was recently presented in [16].

7. ACKNOWLEDGMENTS

The authors would like to thank Benny Lutati and Vadim Levit for their help with the AgentZero simulator.

8. REFERENCES

[1] J. Benaloh. Secret sharing homomorphisms: Keeping shares of a secret secret. In Crypto, pages 251-260, 1986.
[2] A. Chechetka and K. Sycara. No-commitment branch and bound search for distributed constraint optimization. In $A A M A S$, pages 1427-1429, 2006.
[3] P. Doshi, T. Matsui, M. C. Silaghi, M. Yokoo, and M. Zanker. Distributed private constraint optimization. In WI-IAT, pages 277-281, 2008.
[4] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts. Communications of the ACM, 28:637-647, 1985.
[5] B. Faltings, T. Léauté, and A. Petcu. Privacy guarantees through distributed constraint satisfaction. In WI-IAT, pages 350-358, 2008.
[6] A. Gershman, A. Meisels, and R. Zivan. Asynchronous forward bounding. JAIR, 34:25-46, 2009.
[7] A. Gershman, R. Zivan, T. Grinshpoun, A. Grubshtein, and A. Meisels. Measuring distributed constraint optimization algorithms. In $D C R$ Workshops, pages 17-24, 2008.
[8] R. Greenstadt, B. Grosz, and M. D. Smith. SSDPOP: improving the privacy of DCOP with secret sharing. In $A A M A S$, pages 171:1-171:3, 2007.
[9] R. Greenstadt, J. Pearce, and M. Tambe. Analysis of privacy loss in distributed constraint optimization. In AAAI, pages 647-653, 2006.
[10] T. Grinshpoun. When you say (DCOP) privacy, what do you mean? - categorization of DCOP privacy and insights on internal constraint privacy. In ICAART, pages 380-386, 2012.
[11] T. Grinshpoun, A. Grubshtein, R. Zivan, A. Netzer, and A. Meisels. Asymmetric distributed constraint optimization problems. JAIR, 47:613-647, 2013.
[12] T. Grinshpoun and A. Meisels. Completeness and performance of the APO algorithm. JAIR, 33:223-258, 2008.
[13] K. Hirayama and M. Yokoo. Distributed partial constraint satisfaction problem. In $C P$, pages 222-236, 1997.
[14] M. Kantarcioglu and C. Clifton. Privacy-preserving distributed mining of association rules on horizontally partitioned data. TKDE, 16:1026-1037, 2004.
[15] T. Léauté and B. Faltings. Distributed constraint optimization under stochastic uncertainty. In $A A A I$, pages 68-73, 2011.
[16] T. Léauté and B. Faltings. Protecting privacy through distributed computation in multi-agent decision making. JAIR, 47:649-695, 2013.
[17] R. T. Maheswaran, J. P. Pearce, E. Bowring, P. Varakantham, and M. Tambe. Privacy loss in distributed constraint reasoning: a quantitative framework for analysis and its applications. JAAMAS, 13:27-60, 2006.
[18] R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and P. Varakantham. Taking DCOP to the real world: Efficient complete solutions for distributed multi-event scheduling. In $A A M A S$, pages 310-317, 2004.
[19] R. Mailler and V. R. Lesser. Solving distributed constraint optimization problems using cooperative mediation. In $A A M A S$, pages 438-445, 2004.
[20] J. Modi and M. Veloso. Multiagent meeting scheduling with rescheduling. In DCR Workshops, 2004.
[21] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. ADOPT: asynchronous distributed constraints optimizationwith quality guarantees. Artificial Intelligence, 161:149-180, 2005.
[22] K. Nissim and R. Zivan. Secure DisCSP protocols from centralized towards distributed solutions. In DCR Workshops, 2005.
[23] A. Petcu and B. Faltings. A scalable method for multiagent constraint optimization. In IJCAI, pages 266-271, 2005.
[24] M. C. Silaghi, B. Faltings, and A. Petcu. Secure combinatorial optimization simulating DFS tree-based variable elimination. In ISAIM, 2006.
[25] M. C. Silaghi and D. Mitra. Distributed constraint satisfaction and optimization with privacy enforcement. In WI-IAT, pages 531-535, 2004.
[26] T. Tassa and E. Gudes. Secure distributed computation of anonymized views of shared databases. TODS, 37, Article 11, 2012.
[27] J. Vaidya and C. Clifton. Privacy preserving association rule mining in vertically partitioned data. In $K D D$, pages 639-644, 2002.
[28] A. Yao. Protocols for secure computation. In FOCS, pages 160-164, 1982.
[29] W. Yeoh, A. Felner, and S. Koenig. BnB-ADOPT: An asynchronous branch-and-bound DCOP algorithm. JAIR, 38:85-133, 2010.
[30] M. Yokoo, K.Suzuki, and K. Hirayama. Secure distributed constraints satisfaction: Reaching agreement without revealing private information. Artificial Intelligence, 161:229-246, 2005.
[31] W. Zhang, Z. Xing, G. Wang, and L. Wittenburg. Distributed stochastic search and distributed breakout: properties, comparison and applications to constraints optimization problems in sensor networks. Artificial Intelligence, 161:55-87, 2005.
[32] S. Zhong, Z. Yang, and R. Wright. Privacy-enhancing k-anonymization of customer data. In $P O D S$, pages 139-147, 2005.
[33] R. Zivan and A. Meisels. Message delay and DisCSP search algorithms. AMAI, 46(4):415-439, 2006.

[^0]: *Double affiliation with Dept. of Mathematics and Computer Science, The Open University, Ra'anana, Israel.

[^1]: Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and Michael Huhns (eds.), Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
 Copyright (C) 2014, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

[^2]: 1: A_{k} sets $s_{k} \leftarrow s_{k}+x_{k} \bmod S$.
 2: A_{k} generates uniformly at random an integer $r \in[0, S-C-1]$.
 3: A_{k} sends $s_{k}+r$ to A_{1}.
 4: A_{1} computes $y=s_{2}+s_{k}+r-B$.
 5: A_{k} and A_{1} check securely whether $y \geq S-C+r$. If so, A_{k} updates $r \leftarrow r+S$.
 6: A_{k} and A_{1} check securely whether $y \geq r . A_{k}$ infers that $x \geq B$ if and only if $y \geq r$.

[^3]: ${ }^{1}$ http://code.google.com/p/azapi-test

