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ABSTRACT

We consider an expert-sourcing problem where the owner of
a task benefits from high quality opinions provided by ex-
perts. Execution of the task at an assured quality level in a
cost effective manner becomes a mechanism design problem
when the individual qualities are private information of the
experts. The considered class of task execution problems
falls into the category of interdependent values, where one
cannot simultaneously achieve truthfulness and efficiency
in the unrestricted setting due to an impossibility result.
We propose a novel mechanism QUEST, that exploits the
structure of our special class of problems and guarantees al-
locative efficiency, ex-post incentive compatibility, and strict
budget balance. Our mechanism satisfies ex-post individual
rationality for the experts and we also derive the weakest
sufficient condition under which it is ex-post individual ra-
tionality for the center as well.
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1. INTRODUCTION
For many high-stake decisions, it is interesting for deci-

sion makers to hire experts to provide additional informa-
tion about the problem before a decision is made. For exam-
ple, investors would seek information about a company be-
fore deciding to buy a stake, surgeons would ask for medical
tests to be performed before deciding to operate a patient,
and companies would do market research before deciding to
launch a product.

Since such expert advice, often, is not free, a decision
maker needs to decide whom to hire for advice, as a step be-
fore making the final decision. The optimal choice balances
the cost of hiring experts with the benefit of increased accu-
racy. The balance depends on the expected return and costs
of making a correct or incorrect final decision, the cost of
hiring each expert, and the qualities of the experts’ advice.

When all these crucial parameters are known, both the
expert selection problem, and that of making the final deci-
sion given the advice, are relatively standard decision theory
problems. However these problems become non-trivial if the
qualities of the experts are private information. If the way
experts are selected or paid off is not carefully designed,
there is a risk that the experts will misreport their qualities
thereby jeopardizing the decision maker’s venture.

In this paper, we use the following abstraction of the above
problem. A center (decision maker or task owner) wants an
item (e.g. a document, company, patient, or product) to be
binary labeled. A set of agents (experts) can each provide
an independent noisy assessment of the label. Each agent
has an associated quality (probability of observing the la-
bel without error) and cost of operating. Costs are common
knowledge, but qualities need to be elicited from the agents.
Depending on the quality reports of the agents, the mecha-
nism selects a subset of the experts to label the item. The
center observes their labels and then based on this informa-
tion takes an action with maximal expected return. It then
observes the true label and bases rewards to the allocated
labelers accordingly.

This setting allows us to be concrete and precise. The for-
mal model is presented in Section 2. Its relative simplicity
also makes for an easy exposition. For many real decision
making scenarios, the payment contingent on the realiza-
tion of the true label is often realistic: the health state of
a patient is observed during operation or after a reasonable

917



window of time; similarly, the final performance of an in-
vestment or a new product can be observed. However, in
other scenarios such as using experts to label large corpora
of documents to train classifiers, the true label will not be
observed. In such cases, extensions based on ideas such as
peer prediction [18] can be worthwhile.
The assumptions of binary problems and known costs are

restrictive. Binary (yes-no) decisions are common but ex-
tensions to multiple classes would be useful. Known costs
are de-facto the case in platforms such as Mechanical Turk,
and would be reasonable if the costs of running a partic-
ular tool (medical scanner, search in a financial database,
etc.) can be assessed. An extension where both costs and
qualities are private information is of great interest.
The setting considered here provides a natural starting

point since the type of each agent is one-dimensional. A
multi-dimensional extension (more than one class, both costs
and qualities unknown) is interesting but a fundamentally
harder problem. We will discuss how our basic mechanism
can be extended to such cases in the discussion section.

1.1 Overview and Main Results
In this paper, we formulate crowdsourcing to strategic ex-

perts as a mechanism design problem. The labelers perfectly
know their own qualities for labeling an item. If an expert
is allocated the task of labeling, she incurs a cost (which is
publicly known) to observe a noisy (binary) label of the doc-
ument. The value to the center is the reward (or loss, which
is also observable publicly) it earns after making a decision
based on the reports of the labelers. The goal of the mech-
anism designer in this setting is to design an allocation rule
and a payment rule that elicit the true qualities of the la-
belers, encourage participation of all players, maximize the
social welfare, and ensure budget balance.
The above formulation belongs to an interdependent val-

uation setting, since the reward of the center is dependent
on the qualities of all the labelers. The impossibility re-
sult by Jehiel and Moldovanu [11] poses challenges to the
mechanism design in this setting. Though Mezzetti [17] cir-
cumvents the problem by proposing a two stage mechanism,
that is not enough to guarantee all the desirable properties
mentioned above. Our main contributions are as follows.
• We propose a novel mechanism QUEST (QUality Elicit-

ation from STrategic agents) that is ex-post incentive com-
patible (EPIC) (Theorem 1), ex-post individually rational
(EPIR) for all labelers (Theorem 2), allocatively efficient
(AE), and strictly budget balanced (SBB) (Observation 1).
The novelty and non-triviality of our mechanism lie in
achieving the above properties in an interdependent value
setting, exploiting certain characteristics of this problem.

• Additionally we show that QUEST is also EPIR for the
center under a weak sufficient condition (Theorem 3). We
show that the above four properties cannot be satisfied
simultaneously if the sufficient condition is violated (The-
orem 4). QUEST, therefore, delivers the properties with
the weakest possible sufficient condition.

• We emphasize that QUEST is strictly budget balanced
while the classic mechanism given by Mezzetti [17] for
interdependent values is not (Section 4.1).

To the best of our knowledge, this is the first attempt to
develop a quality assuring expert-sourcing mechanism in an
interdependent value setting with quality levels held private
by the strategic experts. The proposed mechanism over-

comes the limitations of applying the VCGmechanism which
cannot handle the interdependent value setting.

An implicit assumption in our approach is non-
manipulability of agent reports. This arises naturally in the
problem setting we have considered. In a crowdsourced task,
the agents hired, typically, are not aware of the reports of
their colleagues. Thus, the only direction of manipulation of
reports available to them is to work sub-optimally after they
are hired. If everyone else is truthful, then this manipula-
tion is not distinguishable from the case of overbid of quality
followed by truthful report by that agent. The latter is not
IC which will be clear from the proofs given in the paper,
and hence it justifies our assumption.

1.2 Related Work
Quality assurance in crowdsourcing is a widely studied

problem. The non-strategic version of this problem too poses
interesting challenges and is a subject of active research. Lin
et al. [15] propose a graphical model to represent the mul-
tiple workflow scenario and provide algorithms to learn the
parameters of the model. They empirically show the supe-
riority of their approach to existing single workflow mod-
els. Minder et al. [19] present a platform for crowdsourcing
that assumes the worker abilities to be common knowledge
and the costs to be private. Ho and Vaughan [9] look into the
problem of online assignment in crowdsourcing markets and
propose a two phase explore-exploit assignment algorithm.
However, they assume honest agents and also that costs are
the same for all the agents. Our paper overcomes these two
limitations by offering a mechanism design solution with in-
dividual costs. We propose a model that is applicable to
a certain sub-domain of the task outsourcing setting, and
provide a mechanism that satisfies the aforementioned four
very essential properties.

Mechanism design has been used in the literature as a
tool to provide solutions to crowdsourcing problems [6, 13,
15, 23, 19]. Gao et al. [6] consider a crowdsourcing contest
where the competing workers win a reward by exerting the
highest extra effort. They design a contest to maximize the
expected quality at the center while trading it off with the
risk (or variance). Singer and Mittal [24] present a mech-
anism for determining near optimal prices for performing
tasks in online labor markets. Jain et al. [10] develop incen-
tive mechanisms for online question answer forums.

Our work also closely relates to the service procurement
problem [25, 21, 12, 8, 7] and mechanism design version of
the principal agent problem [1, 26, 2]. Babaioff et al. [1]
consider a team of workers employed by a principal where
the principal benefits out of costly effort exerted by the
team. While the effort is not observable, the final outcome
is. The principal wishes to optimally incentivize his team
to exert effort to increase the probability of a favorable out-
come. Stein et al. [25] look at the task of procuring ser-
vices under a strict deadline as a mechanism design problem.
Ramchurn et al. [21] propose trust based mechanisms for
procurement scenarios where there exists uncertainty about
agents successfully completing their assigned tasks. These
mechanisms take into account the subjective measures of the
probability of success of an agent and produce allocations
that are efficient, incentive compatible, and individually ra-
tional. Jurca et al. [12] look at quality of service monitoring
by a trusted monitor based on clients’ truthful feedback on
a service provider.
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Our setting is closely related to the forecast elicitation
problem but more involved. In the standard elicitation task,
the selection of an agent is given. Proper scoring rules pro-
vide an elegant answer (e.g. [3]) and continue to receive a
lot of interest (e.g. [5, 4, 22]). In our setting, the agents
go through two phases, their reports of their accuracies in
the first phase determine if they are selected for the second
round where they incur a cost and receive a payment. So
to provide proper incentives in this richer setting, a proper
scoring rule doesn’t suffice.
The rest of the paper is organized as follows. In Section 2,

we present the formal model and the definitions. The pro-
posed mechanism QUEST is presented in Section 3 and its
properties are presented in Section 4. We discuss why VCG
is not applicable in this setting, compare our mechanism
with that of Mezzetti in Section 4.1 and conclude the paper
in Section 5.

2. THE MODEL AND DEFINITIONS
Let the set of players be denoted by Np, which consists of

a center (player 0) and n labelers N = {1, . . . , n}, i.e., Np =
{0}∪N . The center brings in a task where the final outcome
y can take binary values in the set {0, 1} according to a
Bernoulli distribution with parameter θ which is common
knowledge. The goal of the center is to improve the accuracy
to predict y using experts’ (the labelers’) advice.
Labeler i has an intrinsic quality, given by qi, which is the

probability of a correct observation. If the observed label
is ỹi, then qi = P(ỹi = y). The labelers also have a cost
to make this observation, given by ci, which is assumed to
be common knowledge. However, the quality qi ∈ [0, 1] is
private information to the labeler, and that constitutes the
type set of agent i. In this setting, center does not hold any
private information.
A direct revelation mechanism M = 〈S, r,P〉, decides the

following: (a) an allocation S(q̂) ⊆ N of the labelers given
the quality reports of the labelers, given by q̂, (b) the la-

bel r(ỹS(q̂)(q), q̂) from the binary set after the observations

ỹS(q̂)(q) are received from the selected labelers, where q is
the true quality. Note that the observations come from the
players that belong to S(q̂), but are functions of the true
quality, since that is the noise with which they observe y.
We assume that the actual labels of the labelers ỹS(q̂)(q)
are observable by the center and therefore cannot be misre-
ported. (c) The payment is decided after the true y is re-

alized. Each labeler i ∈ S(q̂) receives Pi(S(q̂), ỹ
S(q̂)(q), q̂, y)

and the consolidated sum is charged to the center (player
0). We adopt the notation ti to denote the transfer to agent
i. Hence,

ti =







Pi(S(q̂), ỹ
S(q̂)(q), q̂, y) i ∈ S(q̂)

0 i ∈ N \ S(q̂)

−
∑

i∈S(q̂) Pi(S(q̂), ỹ
S(q̂)(q), q̂, y) for i = 0

The reward generated by the center after the true y is ob-
served is given by the reward matrix R, which gives a reward
of R(r, y), when the label decided by the mechanism is r and
the true label is y. We assume this reward is observable to
all the participants and the mechanism designer.

The value of the agents in the mechanism M is given by,

vi =







−ci i ∈ S(q̂)
0 i ∈ N \ S(q̂)

R(r(ỹS(q̂)(q), q̂), y) i = 0

Note that the valuation at the center (player 0) depends
on the qualities of all the selected labelers, as the observed
ỹS(q̂) is a function of the true q. This makes this problem
fall under the interdependent valuation setting [14]. The
utilities of the agents are quasi-linear, and are given by,

uM
i (q̂, ỹS(q̂)(q), y|q) = vi + ti,

where q denotes the true quality vector and q̂ is the reported
one. The dynamics of the mechanism is shown in Figure 1.

qi q̂i

Qualities

q1 q̂1

qn q̂n

...

...

...

...

ỹS
∗

Label

...
...

...
...

Reported

Labelers

True

S∗

yq̂, θ
Label

Qualities Labelers

Reward
R(r∗, y) P

Payment

Labels
Observed

r∗

Selection

Rule

Selected

Actual

Figure 1: Illustration of the mechanism design prob-
lem

Let us now define the social welfare with and without an
agent i, which will be useful in presenting the main mecha-
nism of this paper.

Definition 1 (Social Welfare) For a label selection rule
r and a labeler selection rule S, when the true label y is
observed, the center obtains a reward R(r(ỹS(q), q̂), y) and
each selected labeler i ∈ S(q̂) incurs a cost ci. Then, the
social welfare is given by the net gain of the system,

W (r, S(q̂), q̂, y|q) = R(r(ỹS(q̂)(q), q̂), y)−
∑

j∈S(q̂)

cj . (1)

Having chosen labeler set S, one can evaluate the worth of
an agent i ∈ S by calculating the expected social welfare in
absence of i for the same observed y.

Definition 2 (Social Welfare in the Absence of i)
For a label selection rule r and a labeler selection rule S,
when the true label y is observed, the social welfare in the
absence of i is defined as,

W−i(r, S(q̂−i), q̂−i, y|q−i)

= EX



R(r(ỹS(q̂−i)(q−i), q̂−i), y)−
∑

j∈S(q̂−i)

cj



 ,
(2)

where X = ỹS(q̂−i)\S(q̂)|y, q̂−i. We define W−i = 0 for i = 0,
i.e., the absence of the center yields no social welfare.

The set S(q̂−i) may contain labelers that are not present in
the set S(q̂), and hence the labels of those “missing” label-
ers cannot be observed. Hence, we take expectation w.r.t.
their possible reports based on the reported qualities. The
expression X essentially captures this.
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2.1 Design Desiderata
We now look at a list of desirable properties which a mech-

anism in this setting should satisfy. Let us define the ex-
pected social welfare Q(S, q) as follows.

Q(S, q) =



















∑

ỹS∈{0,1}|S|

[

R∗
(

ỹS , q, θ
)

P

(

ỹS |q, θ
)]

−
∑

i∈S

ci

if S 6= ∅

max
r

Ey|θR(r, y), if S = ∅.

(3)

Let us denote, Qθ := maxr Ey|θR(r, y). This represents the
maximum valuation that can be got by center without hiring
any labeler. In the above equation,

R∗(ỹS , q, θ) = max
r

∑

y∈{0,1}

P(y|ỹS , q, θ)R(r, y);

P(ỹS |q, θ) =
∑

y∈{0,1}

P(ỹS |y, q)P(y|θ);

P
(

ỹS |y, q
)

=
∏

i
q
I(ỹi−y)
i (1− qi)

1−I(ỹi−y), where I(x) = 1, if
x = 0, and 0 otherwise.

Definition 3 (Allocative Efficiency) A labeler selection
rule SAE is allocatively efficient if,

SAE(q) ∈ argmax
S⊆N

Q(S, q). (4)

Notice that, Q(S, q) = EỹS |q,θ maxr Ey|ỹS ,q,θW (r, S, q, y|q).
Hence, the efficient allocation maximizes the expected social
welfare. Also, Q(SAE(q), q) ≥ Qθ, by the definition of the
maximizing term (Equation (4)). This inequality holds for
any number of agents, e.g., Q(SAE(q−i), q−i) ≥ Qθ.
Since the actual qualities are private to the agents, we

need to elicit them truthfully as we are interested in maxi-
mizing the true social welfare realized. We use Ex-Post In-
centive Compatibility (EPIC) as the notion of truthfulness.

Definition 4 (Ex-post Incentive Compatibility, EPIC)
A mechanism M = 〈S, r,P〉 is ex-post incentive compatible,
if for all true profiles q = (qi, q−i), and for all i and q̂i,

EX1u
M
i (qi, q−i, ỹ

S1 , y|q) ≥ EX2u
M
i (q̂i, q−i, ỹ

S2 , y|q), (5)

where, S1 = S(qi, q−i), S2 = S(q̂i, q−i), and X1 =
ỹS1 , y|q, θ ,X2 = ỹS2 , y|q, θ .

EPIC is a stronger notion of truthfulness than Bayesian In-
centive Compatibility (BIC), but is weaker than Dominant
Strategy Incentive Compatibility (DSIC) [16].
To ensure that the labelers participate voluntarily in this

labeling exercise, the mechanism has to make sure that the
expected utility before observing ỹi’s or y is non-negative
for every agent. This desirable property is captured by in-
dividual rationality, defined as follows.

Definition 5 (Ex-post Individual Rationality, EPIR)
A mechanism M is called ex-post individually rational, if
the expected utility is non-negative for all the agents, i.e.,

EỹS(q),y|qu
M
i (q, ỹS(q), y|q) ≥ 0, ∀ i ∈ N (6)

It should be emphasized that the term ex-post refers to the
fact that the decisions are taken after observing the types
q. The nomenclature does not relate to the realization of y,
as the labeler and label selection decisions are taken before
the realization of y.

Definition 6 (Budget Balance) A mechanism is weakly
budget balanced if the net monetary transfer in the system is
non-positive.

∑

i∈Np
ti ≤ 0,

and when the inequality is met with equality, it is called
strictly budget balanced.

3. THE QUEST MECHANISM
In this section, we present our mechanism QUEST

(quality elicitation from strategic agents), that selects the
set of labelers S∗, decides the label r∗, and the payment to
the selected labelers P∗. Therefore, QUEST = 〈S∗, r∗,P∗〉.

Though the proposed mechanism resembles a VCG mech-
anism it operates under a different setting. VCG is appli-
cable to an independent private value setting, whereas this
setting is that of interdependent values. VCG does not guar-
antee truthfulness in an interdependent value setting [11].

Definition 7 (Labeler Selection Rule) We can write
the labeler selection rule in terms of expected social welfare,

S∗(q̂) ∈ argmax
S⊆N

Q(S, q̂), (7)

where Q(S, q̂) is defined in Equation (3).

Note that when the reported types are q̂, the labelers se-
lected by the mechanism would be S∗(q̂). Depending on
this, the mechanism selects a label that maximizes its re-
ward based on the labels reported by the labelers in S∗(q̂).

Definition 8 (Label Selection Rule) Given the reported
quality vector q̂ and the observations of the labeler set S∗(q̂),
the optimal label r∗ is selected by,

r∗(ỹS∗(q̂)(q), q̂) ∈ argmax
r

∑

y

P(y|ỹS∗(q̂)(q), q̂)R(r, y) . (8)

Using the above setup, we define the payment rule as follows.

Definition 9 (Payment Rule)

ti = P∗
i (S

∗(q̂), ỹS∗(q̂)(q), q̂, y)

=







α× [W (r∗, S∗(q̂), q̂, y|q)
−W−i(r

∗, S∗(q̂−i), q̂−i, y|q−i)] + ci, if i ∈ S∗(q̂)
0, otherwise

t0 = −
∑

i∈S∗(q̂)

P∗
i (S

∗(q̂), ỹS∗(q̂)(q), q̂, y) (9)

This payment rule makes labelers partners in the center’s
venture by paying out a fraction α > 0 of i’s marginal contri-
bution. Theorem 3 shows how the choice of α becomes cru-
cial to ensure EPIR. Algorithm 1 shows the steps of QUEST

using pseudo-code.

4. PROPERTIES OF QUEST
The proposed mechanism satisfies several important prop-

erties given by the following theorems. We denote q =
(qi, q−i) to be the vector of true qualities of the agents. The
following observation on the allocative efficiency and budget
balance of QUEST follows from the definitions.

Observation 1 QUEST is AE and SBB.
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Algorithm 1 QUEST

1: for agents i = 1, . . . , n do
2: agent i observes qi;
3: agent i reports q̂i;
4: end for
5: select labelers S∗(q̂) according to Definition 7;
6: for agents in S∗(q̂) do
7: center observes noisy label ỹi of labeler i;
8: end for
9: center reports r∗(ỹS∗

(q), q̂) as per Definition 8;
10: true state of the document y is realized;
11: social welfare W is realized
12: make payment P∗

i to agent i, as per Definition 9;
13: charge an amount of

∑

i∈S∗ P
∗
i to the center;

Theorem 1 (EPIC) QUEST is EPIC for all agents.

The proof is given in Appendix.

Theorem 2 (EPIR for all labelers) QUEST is EPIR
for all the labelers.

Proof. If labeler i is not selected in S∗(q), the payoff
and cost are both 0 and EPIR holds. So we consider a q
such that i is a part of S∗(q). We use the shorthand S∗ to
denote S∗(q) and S∗

−i to denote S∗(q−i). Then,

1

α
EỹS∗

,y|q[u
QUEST
i (qi, q−i, ỹ

S∗

, y|q)]

= EỹS∗
,y|q([W

∗ −W ∗
−i]) + (ci − ci)/α

We are done if we show that EỹS∗
,y|qW

∗ ≥ EỹS∗
,y|qW

∗
−i. By

EPIC, Q(S∗(q), q) = EỹS∗
,y|qW

∗.

EỹS∗
,y|qW

∗
−i

= EỹS∗
,y|qEỹ

S∗
−i

\S∗
|y,q

[

R(r∗(ỹS∗
−i , q−i), y)−

∑

j∈S∗
−i

cj
]

Writing S1 = S∗
−i ∩ S∗ and observing that ỹS∗

−i\S
∗

is inde-
pendent of ỹS1 , we get,

EỹS∗
,y|qW

∗
−i

= EỹS∗
,y|qEỹ

S∗
−i

\S∗
|y,ỹS1 ,q

[

R(r∗(ỹS∗
−i , q−i), y)−

∑

j∈S∗
−i

cj
]

= E
ỹS∗

,ỹ
S∗
−i

\S∗
,ỹS1 ,y|q

[

R(r∗(ỹS∗
−i , q−i), y)−

∑

j∈S∗
−i

cj
]

= Q(S∗(q−i), q−i)

Now, Q(S∗(q−i), q−i) is the expected welfare of an AE out-
come when i is not a part of labeler pool. The labeler selec-
tion rule S∗ has the property that the alternatives S∗(q) ∈ A
contain the alternatives S∗(q−i) ∈ A−i. This is because the
available choices of S∗(q−i) are contained in the possible
choices of S∗(q). Therefore we conclude that,

Q(S∗(q), q) ≥ Q(S∗(q−i), q−i)

This concludes the proof.

Due to Theorem 2, we can now treat quality reports as
truthful. Let us call quality vector q to be Pareto better than
quality vector qt, and denote it by q � qt if, qi ≥ qi,t, ∀i,
where qi is the i-th component of q. Observe that a labeler

with q = 0.1 is as good as the labeler with q = 0.9 when
the labels from the former are flipped. Hence it is enough to
consider qualities only above 0.5. Let us denote the quality
vector such that qi,0.5 = 0.5, ∀i as q0.5. The following the-
orem provides a sufficient condition for which the expected
utility of each agent is non-negative under QUEST.

Theorem 3 (EPIR) Let the problem instance (R, c, θ, qt)
be such that the labelers’ qualities are Pareto better than qt,
i.e., q � qt � q0.5, and the expected social welfare at qt be
non-negative, i.e., Q(S∗(qt), qt) := ǫ(R, c, θ, qt) ≥ 0, then
the following choice of α(ǫ(R, c, θ, qt)) ensures that QUEST

is EPIR for the center.

α(ǫ(R, c, θ, qt)) ≤

{

1
n

if Qθ ≥ 0
ǫ(R,c,θ,qt)

n(ǫ(R,c,θ,qt)−Qθ)
otherwise.

Recall the parameter α above from the payment rule given
by Definition 9. We will prove this theorem via the following
lemma on the monotonicity of Q.

Lemma 1 (Monotonicity of Q) If q � qt � q0.5,
Q(S∗(q), q) ≥ Q(S∗(qt), qt).

The proof is given in Appendix.
Remark: Lemma 1 agrees with the intuition that better
quality labeler set cannot hurt the expected social welfare.
However it is not very obvious given that the result holds
for any reward matrix.
Proof of Theorem 3: Case 1: Qθ ≥ 0. By definition,
Q(S∗(q), q) ≥ Qθ, via Equations (3) and (7). Now, if
S∗(q) = ∅, center’s expected payoff is Qθ ≥ 0. To shorten
the notation here and elsewhere in the paper, we will use
W ∗ to denote the fact that the labeler selection and label
selection were done according to the rule of QUEST (Equa-
tions 7 and 8), with only the relevant arguments inside. In
the following, we use W ∗ to denote W (r∗, S∗(q), q, y|q) and
W ∗

−i to denote W−i(r
∗, S∗(q−i), q−i, y|q−i). If S∗(q) 6= ∅,

then the center’s payoff is given by,

E
y,ỹS∗(q)|q

[

R(r∗(ỹS
∗(q), q, θ), y)−

∑

i∈S∗(q)

P∗
i

]

= E
y,ỹS∗(q)|q

[

R(r∗(ỹS
∗(q), q, θ), y)−

∑

i∈S∗(q)

ci

− α|S∗(q)|W ∗ + α
∑

i∈S∗(q)

W ∗
−i

]

= Q(S∗(q), q)− α|S∗(q)|Q(S∗(q), q) + αE
y,ỹS∗(q)|q

[ ∑

i∈S∗(q)

W ∗
−i

]

≥ Q(S∗(q), q)− α|S∗(q)|Q(S∗(q), q) + α|S∗(q)|Qθ (10)

The first equality comes by substituting Equation (9), and
the second is by the fact that Q(S∗(q), q) = Ey,ỹS∗(q)|q [W

∗].

The inequality is due to the fact that Ey,ỹS∗(q)|qW
∗
−i =

Q(S∗(q−i), q−i) ≥ Qθ, and S∗ is AE. Now, the last term in
Equation (10) can be made non-negative by setting α ≤ 1/n,
since Qθ ≥ 0.

Case 2: Qθ < 0. We are given that Q(S∗(qt), qt) = ǫ ≥ 0.
Therefore, S∗(q) 6= ∅ when q � qt. Then one can show using
Lemma 1 that the last term in Equation (10) is non-negative
when α ≤ ǫ

n(ǫ−Qθ)
and q � qt. Hence, we have shown that

QUEST is EPIR for the center. �
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Theorem 4 (Unachievability Result) If the problem
instance (R, c, θ, qt) is such that the labeler quality vector
q � qt � q0.5, but the sufficiency condition of Theorem 3 is
violated, then no mechanism can satisfy AE, EPIC, EPIR,
and SBB.

Proof: Let us assume there exists a mechanism M =
〈SM , rM ,PM 〉 that satisfies EPIR, EPIC, AE and SBB
simultaneously. The labeler and label selection rule are
the same as QUEST since they are AE by definition, i.e.,
SM ≡ S∗, rM ≡ r∗. Since M is EPIC, we can work with the
true qualities q. Now, we can write the expected utility to
the center by rewriting the first term in Equation (10) for
the mechanism M as follows.

E
y,ỹSM (q)|q

[

R(rM (ỹS
M (q), q, θ), y)−

∑

i∈SM (q)

PM
i

]

= E
y,ỹSM (q)|q

[

R(rM (ỹS
M (q), q, θ), y)−

∑

i∈SM (q)

ci

+
∑

i∈SM (q)

ci −
∑

i∈SM (q)

PM
i

]

= Q(S∗(q), q) +
∑

i∈SM (q)

(ci −PM
i )

The last equality comes as SM ≡ S∗, rM ≡ r∗, hence the
expected welfare underM is same asQ(S∗(q), q), the welfare
under QUEST. As the sufficiency condition of Theorem 3
is violated, it implies, Q(S∗(q), q) = ǫ < 0. The PM

i term
indicates the payment to labeler i. ForM to be EPIR for the
labelers, PM

i − ci ≥ 0, for all i. Therefore,
∑

i∈SM (q)(P
M
i −

ci) ≥ 0. For M to be EPIR for the center, Q(S∗(q), q) +
∑

i∈SM (q)(ci − PM
i ) ≥ 0, which implies,

∑

i∈SM (q)(P
M
i −

ci) ≤ Q(SM (q), q) < 0, which is a contradiction. �

4.1 Comparison with Mezzetti’s Mechanism
Let us compare QUEST vis-à-vis the classic mechanism

given by Mezzetti [17] (we will call this mzt) which too is
EPIC and AE in the interdependent value setting. Due to
Theorem 4, it is sufficient for us to compare when sufficient
condition of the Theorem 3 is met. We note that in the first
stage, mzt determines the allocation based on the type re-
ports q̂i’s, and the allocation rule is the same as in QUEST

(Definition 7). However, the payment in the second round

is different. QUEST is SBB even after observing (y, ỹS∗(q)).
However, this is not guaranteed by mzt even ex-ante observ-
ing (y, ỹS∗(q)). We now explain why. The center’s valuation

after observing (y, ỹS∗(q)) is,

v0 = R(r∗(ỹS∗(q), q), y) .

We consider true q since mzt is EPIC. The value of a la-
beler i ∈ S∗(q) is given by, vi = −ci. Therefore, tmzt0 =
−
∑

i∈S∗(q) ci. The transfer to the labeler i is given by,

tmzti = Pmzt
i = R(r∗(ỹS∗(q), q), y)−

∑

j∈S∗(q)\{i}

cj .

Therefore, the net monetary transfer is given by,
∑

i∈Np

tmzti = n
(

R(r∗(ỹS∗(q), q), y)−
∑

j∈S∗(q)

cj
)

.

If we take the expectation of the net monetary transfer w.r.t.

(y, ỹS∗(q)), the expression on the RHS becomes,

nEy,ỹS∗(q)|q

(

R(r∗(ỹS∗(q), q), y)−
∑

j∈S∗(q)

cj
)

= nQ(S∗(q), q) ≥ 0.

The inequality comes from the sufficient condition of The-
orem 3. Hence mzt is ex-ante BB only when the expected
social welfare is zero. In the more interesting scenario, where
the system generates a positive social welfare, mzt may run
into a budget deficit. However, QUEST is SBB even ex-post
observing (y, ỹS∗(q)).

4.2 Comparison with VCPM Mechanism
A drawback of Mezzetti’s mechanism is weak IC reports

of the realized payoffs in second round. Nath and Zoeter
[20] address this issue by proposing the VCPM mechanism
which is applicable when the outcome is a subset allocation.
VCPM also assures IR when free to choose pivot term hi is
chosen to be W−i. In the setting considered, as valuations
of all the agents are revealed, the second stage report is
truthful and so the value consistency term g is vacuously 0.
Thus, with the choice of g and h as discussed above, the
expectation of monetary transfer w.r.t. (y, ỹS∗(q)) is given
by

nQ(S∗(q), q)−

n
∑

i=1

Q(S∗(q−i), q−i) ≥ 0.

So, there is a budget deficit when VCPM is used and so
VCPM fails to be budget balanced.

5. DISCUSSION AND FUTURE WORK
In this paper, we studied the problem of a decision maker

wanting to hire experts to provide more information about
a problem before a decision is made. This paper introduced
a novel mechanism, QUEST, to coordinate the hiring of
experts by such a decision maker. The mechanism is al-
locatively efficient, ex-post incentive compatible, ex-post in-
dividually rational for labelers, and strict budget balanced.
The ex-post individual rationality for the decision maker is
also achieved under a weak assumption that the social wel-
fare is non-negative.

The mechanism makes the experts partner in the deci-
sion maker’s venture. In addition to the compensation of
the labeling costs, a part of the decision maker’s return is
redistributed to the selected experts (or in the case of an
unfortunate roll of the dice, a part of the cost). Since the
return to the decision maker depends on the quality of the
experts, standard mechanisms such as VCG that rely on the
independence between valuations cannot be used. QUEST

leverages special properties of the outsourcing setting such
that it ensures strong budget balance, whereas the classic
mechanism for general dependent value settings [17] doesn’t.

QUEST provides a mechanism with several strong prop-
erties for a class of important outsourcing problems. As dis-
cussed in the introduction, the studied setting is applicable
in several real-world scenarios. Furthermore, there are many
clear directions for future work by relaxing assumptions.

If the true label y is not observed before making pay-
ments, a weaker solution concept and ideas from peer-
prediction [18] can possibly be used to base payments on
how well the reported labels correspond to the reports made
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by others. The assumption that errors are made indepen-
dently can be a good enough approximation if experts use
very different techniques (e.g. different types of scans in a
hospital). However it is often a dangerous assumption to
make. Since individual experts are not likely to have perfect
knowledge about correlations between errors, such a scenario
would require a form of learning, to learn such correlations
from data. It is interesting to relax the assumption of the
critical event being binary, as well as relaxing the assump-
tion of costs being common knowledge. Such more general
settings lead to multi-dimensional mechanism design prob-
lems. For practical applications, even with a small set of
labelers, this would require reasonable approximations.
Platforms such as Mechanical Turk, oDesk, etc., make it

easier to outsource and crowdsource tasks. We expect that
QUEST and its future extensions can provide a fundamen-
tal basis to balance the cost and final quality of outsourced
tasks, thereby increasing the usefulness of such platforms.
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APPENDIX

Proof of Lemma 1

Proof: Consider two quality levels q = {q1, . . . qn} and let
q̃ = {q̃1, . . . , q̃n} such that ∀i ∈ {1, 2, . . . , n}, qi ≤ q̃i. We
will show that,

Q(S∗(q), q) ≤ Q(S∗(q), q̃) ≤ Q(S∗(q̃), q̃).

The second inequality above is true by the definition of
labeler selection rule (Equation (7)). Hence we need to
prove only the first inequality. In fact, we show that the
inequality holds for any S, i.e., Q(S, q) ≤ Q(S, q̃). For
S = ∅ the result is true vacuously.
Case 1: |S| = 1. For notational convenience, we will use
shorthand Rry to denote R(r, y). For the single labeler set
S, the expected social welfare is given by,

Q(S, q) =
∑

ỹ∈{0,1}

max
r∈{0,1}

[ ∑

y∈{0,1}

RryP(ỹ|y, q, θ)P(y|θ)
]

−
∑

i∈S

ci.

(11)

The cost term on the RHS of Equation (11) appears in
both Q(S, q) and Q(S, q̃). Hence, WLOG assume ci = 0.

Q(S, q) = max
r1∈{0,1}

{Rr10(1− θ)q +Rr11(1− q)θ
︸ ︷︷ ︸

=:f(r1,q)

}

+ max
r2∈{0,1}

{Rr20(1− q)(1− θ) +Rr21qθ
︸ ︷︷ ︸

=:g(r2,q)

}

= max
(r1,r2)∈{0,1}2

(f(r1, q) + g(r2, q))

= max{R1(q), R2(q), R3(q), R4(q)}, (12)

where,

R1(q) = f(0, q) + g(0, q) = R01θ +R00(1− θ), invariant with q,

R2(q) = f(0, q) + g(1, q) = mq + a,

R3(q) = f(1, q) + g(0, q) = −mq + b,

R4(q) = f(1, q) + g(1, q) = R11θ +R10(1− θ), invariant with q,

where, m =
(

R00(1− θ)−R01θ −R10(1− θ) +R11θ
)

,
a = R01θ +R10(1− θ) and b = R00(1− θ) +R11θ. As R1

through R4 are affine functions of q, their maximum given
by Equation (12) is convex in q. The lines R2(q), R3(q)
intersect at (q = 0.5 , d), as shown in Figure 2 for m ≥ 0
(the complementary plot for m < 0 would be similar with
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the lines R2(q) and R3(q) flipped around q = 0.5). The
maximizer of the two lines is given by the equation
|m(q − 1/2)|+ d. Combined with the max of R1(q) and
R4(q), we get the desired result.

q

Q(S, q)

11
2

0

max{R1(q), R4(q)}or

−mq + b mq + a

m ≥ 0

d

Figure 2: Expected Welfare versus q when |S| = 1

Case 2: |S| > 1. It is enough to consider the case when for
only one particular player i, the quality is increased, i.e.,
q̃i ≥ qi, and the other players’ qualities are held fixed. The
expected social welfare is,

Q(qi, q−i, S)

=
∑

ỹ
S−i

{ ∑

ỹi∈{0,1}

max
r∈{0,1}

[ ∑

y∈{0,1}

(

RryP(ỹ
S−i |y, q−i, θ)

)

P(ỹi|y, qi, θ)P(y|θ)
]}

−
∑

i∈S

ci.

The term in curly braces for a fixed ỹS−i resembles
Equation (11) and hence is non-decreasing in qi ∈ [0.5, 1]
by a similar argument as used when |S| = 1. Since the total
welfare is the sum of such functions, the result follows. �

Proof of Theorem 1

Since the center has a singleton type space, which is
common knowledge, the EPIC result is required only for
the labelers. To show that QUEST is EPIC, let us assume,
WLOG, that only agent i is a potential misreporter. We
assume that the true type profile is given by q = (qi, q−i)
and reported profile q̂ = (q̂i, q−i). For notational simplicity,
we will use the shorthands W ∗(q̂i, q−i) to denote
W (r∗, S∗(q̂), q̂, y|q) and W ∗

−i(q̂i, q−i) to denote
W−i(r

∗, S∗(q̂−i), q̂−i, y|q).

Lemma 2 Let S1 = S∗(q̂i, q−i), S2 = S∗(qi, q−i) then,
EỹS1 ,yW

∗
−i(q̂i, q−i) = EỹS2 ,yW

∗
−i(qi, q−i) for all q̂i.

This lemma shows that the expected social welfare in the
absence of i is independent of i’s reported quality.
Proof: Write S3 = S∗(q−i) \ S1 and S4 = S∗(q−i) \ S2. We
will use the shorthand S∗

−i to denote S∗(q−i) from now on.

E
ỹS2 ,y

W ∗
−i(qi, q−i)

= E
ỹS2 ,y

E
ỹS4 |y

[

R(r∗(ỹS
∗
−i , q−i), y)−

∑

j∈S∗
−i

cj

]

= E
ỹS2 ,y

E
ỹS4 |ỹS2 ,y

[

R(r∗(ỹS
∗
−i , q−i), y)−

∑

j∈S∗
−i

cj

]

∵ ỹS2 ⊥ ỹS4 |y

= E
ỹS2 ,ỹS4 ,y

[

R(r∗(ỹS
∗
−i , q−i), y)−

∑

j∈S∗
−i

cj

]

= E
ỹ
S∗
−i

(q−i),y

[

R(r∗(ỹS
∗
−i , q−i), y)−

∑

j∈S∗
−i

cj

]

= E
ỹS1 ,y

W ∗
−i(q̂i, q−i) (following similar steps).

The third inequality comes from (S2 ∪S4 ⊇ S∗
−i(q−i)). �

Lemma 3 For any S ⊆ N , the expected social welfare is
maximal when every agent in S reports truthfully. In other
words, with true quality profile q = (qi, q−i), we have
EỹS ,y|qW

∗(qi, q−i) ≥ EỹS ,y|qW
∗(q̂i, q̂−i).

Proof:

EỹS ,y|qW
∗(qi, q−i)− EỹS ,y|qW

∗(q̂i, q̂−i)

= EỹS |qEy|ỹS ,q

[

W ∗(qi, q−i)−W ∗(q̂i, q̂−i)
]

= EỹS |qEy|ỹS ,q

[

R(r∗(ỹS , (qi, q−i)), y)−
∑

j∈S

cj

−R(r∗(ỹS , (q̂i, q̂−i)), y) +
∑

j∈S

cj

]

Write r1 = r∗(ỹS , (qi, q−i)), y), r2 = r∗(ỹS , (q̂i, q̂−i)), y).

EỹS ,y|qW
∗(qi, q−i)− EỹS ,y|qW

∗(q̂i, q̂−i)

= EỹS |q

[∑

y P
(
y|ỹS , q

)
R(r1, y)−

∑

y P
(
y|ỹS , q

)
R(r2, y)

]

≥ 0. (from Definition 8) �

Lemma 4 Suppose S1, S2 are as defined in Lemma 2. For
any i, EỹS2 ,y|qW

∗(qi, q−i) ≥ EỹS1 ,y|qW
∗(q̂i, q−i), that is,

the expected social welfare for the center is maximal when
everyone reports truthfully.

Proof:

E
ỹS2 ,y|qW

∗(qi, q−i)

= E
ỹS2 |qEy|ỹS2 ,q

[

R(r∗(ỹS2 , q), y)−
∑

j∈S2

cj

]

≥ E
ỹS′

|q
E
y|ỹS′

,q

[

R(r∗(ỹS
′
, q), y)−

∑

j∈S′

cj

]

(∵ Definition 7)

≥ E
ỹS′

|q
E
y|ỹS′

,q

[

R(r∗(ỹS
′
, (q̂i, q−i)), y)−

∑

j∈S′

cj

]

(∵ Lemma 3)

The last inequality holds true even for S′ = S1. �

Proof of Theorem 1: The payment under QUEST is given
by Equation (9). The utility of agent i is

uQUEST
i = Pi − ci = α(W ∗(q̂i, q−i)−W ∗

−i(q̂i, q−i)). To show
the mechanism is EPIC, we need to show that,

E
ỹS2 ,y|q [u

QUEST
i (qi, q−i, ỹ

S2 , y|q)] ≥

E
ỹS1 ,y|q [u

QUEST
i (q̂i, q−i, ỹ

S1 , y|q)],

where S1 = S∗(q̂i, q−i), S2 = S∗(qi, q−i) which is same as

E
ỹS2 ,y|q

[
W ∗(qi, q−i)−W ∗

−i(qi, q−i)
]
≥

E
ỹS1 ,y|q

[
W ∗(q̂i, q−i)−W ∗

−i(q̂i, q−i)
]
.

Now, the W ∗
−i terms on either side of the inequality cancel

out due to Lemma 2, so to show EPIC, we need to show,

EỹS2 ,yW
∗(qi, q−i) ≥ EỹS1 ,yW

∗(q̂i, q−i).

The above follows directly from Lemma 4. �
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