
Building THINC: User Incentivization and Meeting
Rescheduling for Energy Savings

Jun-young Kwak, Debarun Kar, William Haskell, Pradeep Varakantham∗, Milind Tambe
University of Southern California, Los Angeles, CA, 90089
∗Singapore Management University, Singapore, 178902

{junyounk,dkar,tambe}@usc.edu, wbhaskell@gmail.com, ∗pradeepv@smu.edu.sg

ABSTRACT
This paper presents THINC, an agent developed for saving energy
in real-world commercial buildings. While previous work has pre-
sented techniques for computing energy-efficient schedules, it fails
to address two issues, centered on human users, that are essential in
real-world agent deployments: (i) incentivizing users for their en-
ergy saving activities and (ii) interacting with users to reschedule
key “energy-consuming” meetings in a timely fashion, while han-
dling the uncertainty in such interactions. THINC addresses these
shortcomings by providing four new major contributions. First,
THINC computes fair division of credits from energy savings. For
this fair division, THINC provides novel algorithmic advances for
efficient computation of Shapley value. Second, THINC includes a
novel robust algorithm to optimally reschedule identified key meet-
ings addressing user interaction uncertainty. Third, THINC pro-
vides an end-to-end integration within a single agent of energy ef-
ficient scheduling, rescheduling and credit allocation. Finally, we
deploy THINC in the real-world as a pilot project at one of the main
libraries at the University of Southern California and present results
illustrating the benefits in saving energy.

Categories and Subject Descriptors
I.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed Artificial
Intelligence

General Terms
Algorithms, Experimentation, Human Factors

Keywords
Innovative Applications; Energy Conservation; Fair Division;
Shapley Value

1. INTRODUCTION
Researchers in the multiagent community have begun investigat-

ing energy conservation, specifically sustainable production, deliv-
ery and use of energy [18, 21, 24, 25]. In the present innovative
application paper, we study the problem of scheduling meetings
from user requests in a commercial building — a very significant
source of energy consumption [8, 15, 18] — with the aim of con-

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and
Michael Huhns (eds.), Proceedings of the 13th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS
2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

serving energy. We contribute a new agent for this problem, along
with a suite of supporting algorithms.

Our agent, THINC (agent Tool for Human INcentivization and
Cooperation), leverages user flexibility to gain greater energy sav-
ings while maintaining comfort. Note that majority of research in
energy savings has focused on residential buildings [21, 25]; and
while comparatively much less has focused on THINC’s domain of
commercial buildings [15, 16, 18], THINC provides a significant
advance over this work by addressing three major new challenges.
First, we want to motivate users to participate in the energy conser-
vation process by allocating energy credits among the participants.
While the literature [1, 12] emphasizes that proper credit should be
given based on users’ actual contribution to the total energy savings
(i.e., fair credit), previous work on energy savings in commercial
buildings ignored this challenge. Indeed, computing a fair division
of credit for a large number of users with individual preferences
and flexibility is not trivial. Second, optimally rescheduling meet-
ings often requires a significant amount of interaction between the
system and its users. Previous work [15] often assumes users in key
“energy-consuming” meetings would always agree to change their
meeting time or location based on their algorithms’ suggestions.
This assumption is unrealistic, so we must model uncertainty in
user responses to rescheduling requests. Lastly, physical deploy-
ment and demonstration of such a system in a real building is prac-
tically challenging, but critically needed.

THINC addresses these three challenges by continuously and in-
teractively operating in three steps for energy efficiency. First, users
request meeting slots through THINC while providing some flexi-
bility in their desired slots. Second, THINC finds an optimal sched-
ule and then asks some users to change their meeting time/location
to save more energy. Finally, it notifies users of the amount of en-
ergy credits they have earned based on their given flexibility. User
flexibility allows for energy-efficient scheduling, which leads to
cost savings. To incentivize users to offer flexibility, we want to
divide a portion of the entire savings among users in a fair way.

Our present paper makes four main contributions. First, we
argue that the Shapley value [23] solution concept is appropriate
for our fair division question. While the Shapley value has desir-
able theoretical properties, its limitation in scalability is a major
hindrance to its use in practice [6, 9]. In response we provide
two novel approximation algorithms for scaling up the approxi-
mate computation of the Shapley value: (i) approximation algo-
rithms to efficiently estimate the Shapley value based on random
sampling and graph partitioning; and (ii) a caching and relaxation
method to speed up the computation of the characteristic func-
tion. Second, THINC employs a BM-MDP (Bounded-parameter
Multi-objective Markov Decision Problem) [16] in reallocating key
energy-consuming meetings; it presents two new algorithms for

925

BM-MDPs to handle the two layers of uncertainty: (i) model un-
certainty regarding user interactions, i.e., uncertainty in user re-
sponses to reschedule requests and (ii) unexpected execution-time
uncertainty regarding new meeting requests. Third, THINC is the
first agent integrating (i) energy-efficient scheduling of user meet-
ing requests while considering flexibility, (ii) rescheduling of key
meetings for more energy savings, and (iii) fair credit allocations
based on Shapley value to incentivize users for their energy saving
activities (i.e., providing flexibility). Finally, we deploy THINC in
the real-world as a pilot project and collect real user data from one
of the main libraries at the University of Southern California.

2. BACKGROUND
THINC can be applied to buildings where a large number of

meetings occur. For example, [15] discussed buildings where 100s
of meetings occur per day and showed via simulations that energy-
efficient scheduling could save about $18K/year in a single build-
ing. In this work, THINC is deployed in a similar educational build-
ing as a pilot project. It will later be deployed at other buildings,
where hundreds of meetings are scheduled everyday. Figure 1(a)
shows our testbed building, one of the main libraries at the Univer-
sity of Southern California (USC). Each study room has different
characteristics. The study rooms operate 24 hours a day and 7 days
a week. The temperature is regulated according to two set ranges
for occupied and unoccupied periods of the day. HVAC (Heating,
Ventilating, and Air Conditioning) systems always attempt to reach
the pre-set temperature regardless of the presence of people and
their temperature preferences.

2.1 Meeting Scheduling
For one of THINC’s components, energy-efficient scheduling,

we use the algorithm from [15], where user flexibility can be lever-
aged to gain greater energy savings while maintaining comfort. The
input to this algorithm is a set of meeting requests defined as fol-
lows. Let T represent the entire set of time slots available and L
represent the set of available locations each day. A schedule re-
quest ri is represented as the tuple: ri =< Ti, Li, δi, ni >, where
Ti ⊂ T is the set of preferred time slots for the start of the meet-
ing, e.g., Ti=4–5pm means the meeting may start at 4pm or 5pm.,
Li ⊂ L is a set of preferred locations, δi is the duration of the
meeting and finally, ni is the number of attendees.

Given a set of requests, R, e.g., 100 meeting requests that arrive
during a day, [15] computes an energy-cost minimizing schedule by
solving the following mixed integer linear program (MILP). The
MILP will attempt to schedule meetings in smaller rooms or off-
peak hours or back-to-back in order to save energy.

min
∑

i∈R\RU

∑
t∈T

∑
l∈L

ei,l,t, (1)

s.t. ei,l,t ≥ xi,l,t · Ei,l,t −
∑

i′∈R\RU\{i}

xi′,l,t−1 · C, (2)

ei,l,t ≥ 0, ∀i ∈ R \RU , l ∈ L, t ∈ T (3)∑
t∈T

∑
l∈L

xi,l,t · Si,l,t ≥ B, ∀i ∈ R \RU (4)

∑
i∈R\RU

xi,l,t ≤ 1, ∀l ∈ L, t ∈ T (5)

∑
i′∈R\RU\{i}

t+δi−1∑
t′=t

xi′,l,t′ ≤M(1− xi,l,t), (6)

xi,l,t ∈ {0, 1}, ∀i ∈ R \RU , l ∈ L, t ∈ T (7)

(a) Actual research testbed (library) (b) THINC

Figure 1: Research testbed & THINC

In this MILP,1 xi,l,t is a binary variable that is set to 1 if meet-
ing request ri is scheduled in location l starting at time t and is
set to zero otherwise (for xi,l,t, l ∈ Li and t ∈ Ti), ei,l,t is a
continuous variable that corresponds to the energy consumed be-
cause of scheduling meeting i in location l at time t, and Si,l,t is
a value that indicates the satisfaction level obtained with users in
meeting request ri for scheduling the meeting in location l at time
t. Constraint (2) computes the energy consumed by scheduling a
meeting (xi,l,t ·Ei,l,t), subtracting a constant amountC if meetings
are scheduled back-to-back. The key take-away of this constraint
is that it allows the scheduling agent to consolidate similar meet-
ings in one room, which makes HVACs operate efficiently to main-
tain the desired temperature level and thus leads to energy savings.
Constraint (4) is for checking if the computed schedule maintains
the given comfort levelB. Constraints (5) and (6) are the allocation
restrictions that for each assignment slot, only one meeting can be
scheduled considering the given time duration of meeting. We let
x∗(R) denote the optimal assignment of meeting requests R.

There is also a quantitative metric of flexibility provided in [15]
that we repeat here for convenience. The flexibility of meeting re-
quest ri is represented by a tuple αi :< αTi , αLi >. Specifically:
αTi = |Ti|−1

|T |−δi
× 100 is the time flexibility of meeting i (in %) (|T |

is 24 hours per day). For example, given a range of Ti = 4–7pm on
Monday (|Ti| = 4) and a meeting time duration of 2 hours, αTi =
(4-1)/(24-2) × 100 = 13.64%. However, if Ti = 4pm only, then αTi
= 0%, i.e., there is no time flexibility. Similarly, αLi = |Li|−1

|L|−1
×100

is the location flexibility of meeting i (%) (|L| > 1).

2.2 Coalitional Games & Shapley Value
Cooperative game theory [17] allows players to band together

and form coalitions. Formally, a cooperative game is defined by a
pair (N, v), where N = {1, 2, . . . , n} is a set of players, and v
is a characteristic function specifying the value created of different
subsets (i.e., coalitions) of the players in the game. Specifically, the
characteristic function, v(S), associates with every subset S of N
a value v(S), the value of the coalition S.

In a cooperative game, we often want to encourage the grand
coalition N to form. The challenge is to allocate the overall payoff
v(N) among the players in a fair way so that they will not deviate
and form their own coalitions. Several solution concepts such as
the Shapley value [23], the core [10], and the nucleolus [22] exist to
guide allocation. These solution concepts all find a vector x ∈ RN
that represents the allocation to each player.

The Shapley value yields a unique allocation x(v) = φ(N, v)
that is also fair. Specifically, the Shapley value satisfies the effi-
ciency, symmetry, dummy player, and additivity properties which
axiomatize fairness. Other concepts in cooperative game theory

1This MILP is an abbreviated version of an SMILP in [15].

926

such as the core and the nucleolus focus on yielding stable out-
comes, but not necessarily fairness, which is of key interest in our
work. Furthermore, the existence and uniqueness of the core are
not guaranteed.

We use two (equivalent) definitions of Shapley value in our pa-
per. The Shapley value is obtained by averaging the marginal con-
tributions over all possible coalitions. Specifically, the Shapley
value for player i is:

φi(N, v) =

n−1∑
s=0

s!(n− 1− s)!
n!

∑
S⊆N\{i},|S|=s

(v(S∪{i})−v(S))

(8)
where φi(N, v) is the savings due to i ∈ N in the game (N, v).

An alternative definition of the Shapley value can be expressed
in terms of all possible orders of the players N . Let O :
{1, . . . , n} → {1, . . . , n} be a permutation that assigns to each
position k the player O(k). Let us denote by π(N) the set of all
possible permutations with player set N . Given a permutation O,
let us denote by P i(O) the set of predecessors of the player i in
the order O (i.e., P i(O) = {O(1), ..., O(k − 1)}, if i = O(k)).
Thus, the Shapley value can be expressed in the following way:

φi(N, v) =
∑

O∈π(N)

1

n!
(v(P i(O)∪i)−v(P i(O))), i = 1, . . . , n.

3. RELATED WORK
Energy Conservation in Commercial Buildings: The previous
work that is closest to the research presented in this paper is [15,
16], over which THINC provides a clear-cut advance in the state
of the art of agent technology. Within a single agent, THINC, our
work presents an end-to-end integration of improvements upon the
existing capabilities of previous work as well as additional new ca-
pabilities. Specifically, Kwak et al. [16] exclusively focus on in-
dividual meeting rescheduling by interacting with users under un-
certainty, but not the scheduling of entire groups of meetings based
on flexibility. In addition, we also provide credit allocation, a key
novelty in our research contribution. We have also developed new
algorithms for solving the BM-MDP model introduced in [16]. On
the other hand, while we do use energy-efficient meeting schedul-
ing algorithms from [15], we relax the unrealistic assumption that
users would always agree to any change suggested to their meet-
ing times/locations. THINC recognizes that users may not always
follow its recommendations, and thus reschedules identified key
meetings using BM-MDPs while considering uncertainty in user
behavior. Furthermore, neither [15] nor [16] address credit alloca-
tion to users which is the major part of this paper. Thus, both [15]
and [16] only attacked a part of the energy-efficient scheduling
challenge, which is why neither has been deployed in real build-
ings. In contrast, integrating all of the required capabilities enabled
us to deploy THINC in an educational building as a pilot project;
providing a holistic, end-to-end agent in the real-world. Recently,
there has been some work focusing on energy-aware scheduling in
commercial buildings [18]. The authors do not consider meeting
rescheduling, nor do they consider credit allocation.
Cooperative Game Theory and Fair Division in Energy Sys-
tems: Alam et al. [2] showed that agents can coordinate and regu-
late the exchange of energy between homes, which leads to energy
surpluses. Each agent’s contribution is computed using the Shapley
value and an approximation method is used to speed up this com-
putation. Stein et al. [24] introduce an online incentive compatible
mechanism to schedule cooperative but self-interested agents for
charging their electric vehicles while focusing on the fairness using
pre-commitment in smart grid domain, which is not directly appli-

cable in commercial buildings. Kamboj et al. [14] explore how a
coalition of Electric Drive Vehicles (EDVs) may make more profit
in electric power markets. However, this work uses proportional
allocation and not Shapley value. THINC is different in that it is
an integrated agent that focuses on fair credit allocations, based on
novel efficient Shapley value computation while exploiting the do-
main properties. This is for incentivizing users to participate in this
energy saving process in commercial buildings.
Shapley Value Approximation Techniques: Mann et al. [19]
proposed a Monte-Carlo simulation technique for approximating
the Shapley value and applied it to analyze the US electoral-voting
system. Owen’s [20] multilinear extension method for approximat-
ing the Shapley value in weighted voting games is linear in the
number of players. Fatima et al. [9] also provided an approxima-
tion method for the Shapley value which is linear in the number
of players for k-majority games. Our approximation technique is
different from previous work as we exploit domain properties to
integrate a novel graph partitioning algorithm, caching technique,
and an LP relaxation method to approximate the Shapley value and
simultaneously speed up its computation. In addition, THINC in-
tegrates this technique within an agent that (re)schedules meetings.
Robust MDP & Multi-objective Optimization Techniques:
Chatterjee et al. [7] considered MDPs with multiple discounted re-
ward objectives. Uncertainty in MDPs has also been considered [5,
13]. Our work is different as we simultaneously consider both mul-
tiple objectives and model uncertainty.
Human-subject Experiments with Shapley Value: To the best
of our knowledge, there has been no work on perception of the
Shapley value, as done in our work. However, studies with human
subjects playing a weighted voting game show that Shapley value
can be used as a method to predict human negotiation schemes [4].

4. THINC
THINC is made up of three specific algorithms (as shown in Fig-

ure 1(b)): (i) the scheduling algorithm described in Section 2.1, (ii)
novel approximation algorithms that efficiently compute fair indi-
vidual allocations based on the Shapley value, and (iii) a new robust
algorithm that reschedules user meetings under uncertainty.

4.1 Fair Division of Credit
In our problem, users indicate their flexibility which determines

their marginal contributions to the total energy savings. Given the
energy savings, the idea is to allocate some energy credit (e.g., a
significant portion of the savings) to individual users. In allocat-
ing credit, equal allocation may not be perceived as fair as shown
in [1, 12] and our survey results (Section 5.1.1). Furthermore, pro-
portional allocation based on flexibility fails in practice because the
amount of flexibility does not necessarily reflect users’ true contri-
butions to energy savings. For example, out of two users A and B,
let A offer 80% flexibility late at night, while B offers 40% flex-
ibility during peak hours. Since B requests a meeting at a peak
time/location (where given individual flexibility can be jointly ex-
ploited with others for more energy savings, e.g., back-to-back ef-
fect described in Section 2.1) and A at an off-peak time/location,
flexibility of B may lead to more energy savings as compared to
A due to the exploitation of joint flexibility. Therefore, flexibility
of B has a greater effect in this case and hence B’s compensation
should be higher. If we used proportional allocation, A would get
higher compensation which will not be perceived as fair.

Our energy-cost minimizing scheduling problem can be framed
as a coalitional game, (N, v), where:
• N is a finite set of players, indexed by i. In our case, N

indicates the set of meeting requests.

927

Figure 2: Illustrative example: Li & Ti mean available rooms and
time slots, respectively. Each meeting request ri has a set of preferred
locations and time, which indicates location and time flexibility.

• S is a coalition ⊆ N . In our case, it is a subset of meeting
requests that provide flexibility.2 So a coalition is formed
from meetings that provide flexibility.

• v : 2N 7→ R is a characteristic function. In our case, v(S)
is the total energy-savings obtained when requests in S are
flexible and requests in N \ S are not flexible. Formally:
v(S) = ê(S)−e(S), where e(S) is the energy consumption
when meeting requests in S provide flexibility and ê(S) is
the energy consumption when requests in S do not provide
flexibility, while requests in N \ S are held constant as not
providing flexibility (i.e., requests not providing flexibility
are considered to be fixed to most preferred time/location as
determined by data collected on all meetings).3

For our game, we appeal to the Shapley value [23] solution con-
cept for guidance on how to fairly allocate credit. The Shapley
value is computationally complex (2n×2×O(v) for each player),
where O(v) is the complexity of the characteristic function [23].
The computational challenge for computing the Shapley value in
THINC is actually two-fold. First, computing the Shapley value for
a single meeting request is challenging because we need to know
the marginal contribution to all possible coalitions (Equation (8)).
Second, we need to solve the MILP (Eq. (1)–(7) in Section 2.1)
many times for computing the characteristic function values, and it
is difficult to scale up this computation to a large number of meet-
ing requests. For instance, as shown in Figure 2, let us assume that
there are five meeting requests r1, r2, . . ., r5 with flexibility. Even
in this small example, to compute the exact Shapley value for each
meeting request, we are required to repeatedly compute v(S) 64 (=
25 × 2) times in total, which is computationally expensive. Given
these difficulties, we turn to approximation methods.

4.1.1 Approximate Shapley computation
We efficiently approximate the Shapley value using: (i) sampling

and (ii) graph partitioning.
Sampling: Random sampling can be used to approximate the
Shapley value [6, 9, 19, 20]. In particular, Castro et al. [6] pre-
sented the ApproShapley algorithm, a sampling mechanism for
polynomial-time approximation of the Shapley value. In Ap-
proShapley, the characteristic function value is repeatedly com-
puted (m × 2) times per each player, where m is the number of
samples. In the above example, for each meeting request, we now
only need to compute v(S) 20 (= 10 × 2) times with 10 samples,
which is smaller than the exact Shapley value computation.
Graph Partitioning: In addition to using ApproShapley, we can
partition the entire meeting request set into multiple independent
2This definition can be easily extended to the case where each sep-
arate coalition is defined based on a discretized level of flexibility.
3e(S) is computed using the MILP in Section 2.1.

subsets, which reduces the overall computational burden. This idea
is justified by the inessential axiom defined below. The entire meet-
ing request set R can be represented as an unweighted undirected
graph denoted G = (V,E). As shown in Figure 2, each vertex
in V represents a meeting request in R. If the flexibility ranges of
any two meeting requests overlap, then those meeting requests are
connected as an unordered pair in the graph defining the edge set
E (with edge weight defined by the amount of overlap). For exam-
ple, in Figure 2, r2 and r3 overlap, defining an edge between them.
We can define a notion of independence between two meeting re-
quest subsets Rm and Rn, where Rm, Rn ⊆ R, as follows. Two
important technical lemmas then follow:

Definition Independence: Rm and Rn are independent if e(Rm ∪
Rn) = e(Rm)+ e(Rn), where e(R) is the energy consumption of
the given meeting request set R.4

LEMMA 4.1. The characteristic function v for independent
meetings in our coalitional game is inessential [11].

PROOF. (Sketch) Let us assume that two meeting request sub-
sets R1 and R2 (⊆ R) are independent. Recall that, in our prob-
lem, v(R) indicates energy savings caused by a joint flexibility in
R: v(R) = ê(R) − e(R). In addition, due to the independence
between R1 and R2, e(R1 ∪ R2) = e(R1) + e(R2) (i.e., satisfies
the inessential property both with (e) and without flexibility (ê)).

v(R1 ∪R2) = ê(R1 ∪R2)− e(R1 ∪R2)

= [ê(R1) + ê(R2)]− [e(R1) + e(R2)] (∵ e, ê: inessential)
= [ê(R1)− e(R1)] + [ê(R2)− e(R2)] = v(R1) + v(R2).

LEMMA 4.2. Assume that two meeting request subsets R1 and
R2 (⊆ R) are independent. If meeting request i is in R1, then the
Shapley value satisfies: φi(R1 ∪R2, v) = φi(R1, v).

PROOF. (Sketch) Let S = S1 ∪ S2, where S1 ⊆ R1 and S2 ⊆
R2. SinceR1 andR2 satisfy independence, S1 and S2 also hold the
same property. Then, the equation (8) can be rewritten as follows:

φi(R1 ∪R2, v) =

n−1∑
s=0

s!(n− 1− s)!
n!

× ∑
S=S1∪S2⊆R1∪R2\{i},|S|=s

v(S1 ∪ S2 ∪ {i})− v(S1 ∪ S2)

=

n−1∑
s=0

s!(n− 1− s)!
n!

× ∑
S=S1∪S2⊆R1∪R2\{i},|S|=s

[v(S1 ∪ {i})+v(S2)]−[v(S1)+v(S2)]

(∵ the inessential property of v(R1 ∪R2) & S1 ∪ {i} ∈ R1, S2 ∈ R2)

=

n−1∑
s=0

s!(n− 1− s)!
n!

∑
S=S1⊆R1\{i},|S|=s

(v(S1 ∪ {i})− v(S1))

= φi(R1, v).

Based on these two properties, the graph G can be partitioned
and the Shapley value for meetings in each partition can be com-
puted separately — thus partitioning can speed up computation
of Shapley value. Please note that only when there are non-
overlapping meetings (i.e., complete independence), we can parti-
tion without loss in accuracy of Shapley value, as shown in Lemma
4Please note that we need to run the MILP to test for independence.

928

4.2. However, as shown in Figure 2, if there are partitions that cut
across an edge, some loss in accuracy occurs; but we can minimize
this loss by finding partitions that minimize the number of edges
cut. This trade-off in number of partitions and accuracy will be
discussed in the evaluation section.

4.1.2 Approximate characteristic value computation
In our work, the characteristic function, v(S), itself is computa-

tionally intensive because it is an MILP. To compute the Shapley
value, we need to solve multiple instances of these MILPs. Thus,
we introduce efficient methods to approximate the characteristic
value computation by relying on (i) caching and (ii) LP relaxation.
Caching: This technique exploits the following property:

Definition Exchangeability: v is exchangeable if, for every per-
mutation π of S ⊆ N , v(S) = v(π(S)) [3].

v(S) in our problem is exchangeable. Thus, we can further speed
up the Shapley value computation by storing evaluations of v(S).
In this way, the characteristic function value of each coalition and
all its permutations is computed only once.
LP Relaxation: It is natural then to use MILP relaxation to ap-
proximately compute v(S). We specifically relax the integrality
constraint (7) in (MILP) to 0 ≤ xi,l,t ≤ 1 for getting a linear pro-
gram (LP). The optimal solution of (LP) is a lower bound on the
optimal value of (MILP). We empirically show the strength of the
LP relaxation for our specific MILP in the evaluation section.

4.2 THINC Rescheduling Algorithm
While THINC performs energy-efficient scheduling, it may per-

ceive that shifting some carefully selected meetings can lead to
significant energy savings. THINC then makes suggestions to in-
volved users on how to best reschedule their meetings while ensur-
ing a balance between energy savings and user comfort (hence, our
multi-objective MDP). We cannot know the exact likelihood that
users will comply with suggestions, and we may also be uncertain
about the reward from energy-savings and user comfort (hence the
model uncertainty). We provide new algorithms for BM-MDPs in
THINC in addressing these challenges.

As a concrete example of how THINC can reschedule meetings,
suppose two meeting requests (r1 and r2), which are originally
scheduled in (10am, Room A) and (10am, Room B) respectively,
are identified for rescheduling. THINC’s policy may suggest r1
and r2 to be rescheduled to different times but the same location
as r3 (12pm, Room B). This way, the agent can consolidate all
three meetings (r1 – r3) together in a smaller room B which is less
expensive to heat/cool. Now, assuming that r1 can only be sched-
uled either at 10am or 12pm, the best scenario is to reschedule r1
to (10am, Room B) and r2 to (11am, Room B) so that all three
meetings only use Room B from 10am to 12pm, sequentially. Let
us also assume that the r2 is less likely to agree to reschedule, and
the likelihood of r1 and r3 is high. In this situation, if r2 does
not comply (given low likelihood) then THINC’s computed pol-
icy needs to provide an alternative action given r2’s refusal, while
considering the likelihood of acceptance for this alternative. In par-
ticular, THINC instead suggests rescheduling r3 to (11am, Room
B) and r1 to (12pm, Room B), which is highly likely to be ac-
cepted by users. In addition, if an unexpected new meeting request
(r4) arrives and is identified as an energy-consuming meeting to be
rescheduled, then the rescheduling policy may need to change.

We thus provide two novel algorithms in this work: (i) a robust
multi-objective MDP algorithm for solving BM-MDPs which al-
lows for stochasticity in user response at planning time and (ii) re-
planning methods to handle execution-time uncertainty (e.g., due to

the arrival of r4). We first discuss our robust multi-objective MDP
algorithm. Earlier work [16] provides “optimistic” or “pessimistic”
heuristics to solve BM-MDPs, but without any performance guar-
antee. Instead, our present robust BM-MDP can be solved exactly
by finite horizon value iteration. First, we compute the robust op-
timal expected value using the robust value iteration [5] for each
objective. Next, given an optimal robust value for each objective,
we compute the regret across all objectives. Lastly, we choose a
robust policy that minimizes the regret.
STEP I: Computing the robust optimal value for each objec-
tive: We denote the (finite) state space (set of meeting requests)
by S and the (finite) space of actions by A (i.e., the set of energy-
efficient meeting rescheduling suggestions by THINC). We fix a
finite time horizon T = {0, 1, . . . , T}, i.e., we always use a T
period lookahead policy when (re)planning. Let I index a set of
reward functions ri : S × A → R to allow for multiple objec-
tives. These include energy efficiency and comfort of different
users. We let τ (j | s, a) denote the transition probabilities, the
probability of transitioning to state j ∈ S given (s, a). For each
state and action, we let Ri (s, a) denote the uncertainty set for re-
ward ri, and we let τ (s, a) denote the uncertainty set for τ . The
uncertainty set defines possible realizations of the uncertain pa-
rameters, e.g., uncertainty set of reward for comfort may be the
interval say 1–5. For emphasis, both of these uncertainty sets de-
pend on the current state-action pair. We let τ = {τ (s, a)}s, a
and Ri =

{
Ri (s, a)

}
s, a

be the collections of these uncertainty
sets. For fixed i ∈ I , we want to maximize the worst-case reward,
i.e., maxa∈Aminτ∈τ , ri∈Ri Eπτ

[∑T
t=0 γ

tri (st)
]
, where Eπτ [·]

explicitly indicates the dependence on the transition probabilities
and the policy, and st is the state at time t. Because the uncertainty
sets only depend on the current state-action pair, we can write the
Bellman equation for the above robust MDP

V it (s) =max
a∈A

min
τ∈τ(s,a), ri∈Ri(s,a)

{
ri (s)+γ

∑
j∈S

τ (j | s, a)V it+1 (j)

}

where V it is the time t value function. The values
{
V it (s)

}
s∈S, t∈T

can be computed through maximin value iteration since we have a
finite time horizon [5].
STEP II: Computing the regret across all objectives: Because
our problem is multi-objective, we want a policy that accounts for
all objectives i ∈ I . So, we introduce a notion of regret that ac-
counts for all objectives. We will use a vector-valued value func-
tion {Wt}t∈T ⊂ R|I| where Wt (s) =

(
W i
t (s)

)
i∈I , ∀t ∈ T. For

a given policy π (which is different from the policy that computed
V it in Step I), the quantity

max
i∈I

min
τ∈τ(s,a), ri∈Ri(s,a)

{
ri (s)+γ

∑
j∈S

τ (j | s, a)W i
t+1 (j)−V it (s)

}

is the regret at time t in state s ∈ S for action a, where V it for each
objective i is given as a constant from Step I. Notice that this def-
inition takes the minimum over all reward functions. The quantity
ri (s) + γ

∑
j∈S τ (j | s, a)W i

t+1 (j) is the value for objective i,
and V it (s) is the optimal value for objective i.
STEP III: Choosing the robust policy that minimizes the regret:
In state s at time t, we choose a regret minimizing action

π∗t (s) ∈ argmin
a∈A

max
i∈I

min
τ∈τ(s,a), ri∈Ri(s,a){

ri (s) + γ
∑
j∈S

τ (j | s, a)W i
t+1 (j)− V it (s)

}
,

929

and then we set

W i
t (s) = min

τ∈τ(s,π∗t (s)), r∈Ri(s,π∗t (s)){
ri (s) + γ

∑
j∈S

τ (j | s, π∗t (s))W
i
t+1 (j)

}
, (∀s ∈ S, ∀i ∈ I).

The optimal action is chosen in consideration of all objectives
i ∈ I , and then each component ofWt is updated separately assum-
ing the same optimal action is taken in each update. The resulting
policy π∗ = (π∗t)t∈T is the optimal regret minimizing policy.

During the execution of such a policy, THINC sometimes en-
counters unexpected situations, e.g., in the example above r4 ar-
rived when it was not part of the initial BM-MDP state-space
and was an energy-consuming meeting in need of rescheduling.
THINC’s key insight is to continue to use the current BM-MDP
policy to the extent possible, replanning only when new meetings
are seen to potentially interfere with that policy. One alternative
approach is to avoid BM-MDP planning altogether and only react
to the current state. Another alternative is to stay completely com-
mitted to the original policy until completion while ignoring the
new meetings. THINC rejects both of these extreme approaches
and occupies a middle ground: it does use a BM-MDP policy, but
when new meetings arrive, it checks if they interfere with the cur-
rent policy. Specifically, the majority of incoming meeting requests
propose locations and times that do not affect the current policy,
allowing THINC to accrue the benefits of its optimal planning (car-
ried out to completion) in majority of cases; but THINC will oc-
casionally compute a new policy if the new meetings are seen to
potentially interfere. Using real meeting arrival data in a large uni-
versity building, THINC demonstrates that this “middle-ground”
approach outperforms the two extreme approaches in our domain.

5. EMPIRICAL VALIDATION
We evaluate THINC in this section. For the evaluation, we built

upon the simulation testbed developed in [16] by using a large data
set of real meeting requests and building statistics collected from
the testbed building. For experiments with meetings, we selected
data from our library, where 100 meetings may arrive per day. Our
experiments were run on Intel Core2 Duo 2.53GHz CPU with 8GB
memory. We solved MILPs using CPLEX version 12.1. We ran all
algorithms for 100 independent trials and report average values.

5.1 Shapley Value Evaluation

5.1.1 Fair Division: Why Shapley Value?
The Shapley value gives a theoretically fair allocation and has

been previously applied in energy domains [2, 24]. However, we
wished to check user reactions in our own domain, i.e., whether
people believe that the Shapley value produces fair allocations of
energy credits. So, we launched a survey on Amazon Mechanical
Turk (AMT) and collected data for 53 unique samples. We showed
survey participants two different allocations: one based on Shapley
value and the other based on equal division. We then asked survey
participants to rate fairness of each allocation scheme on a scale of
1 to 7 while varying information, where 7 indicates high fairness.
We found that people perceive Shapley value based allocations to
be more fair than those based on equal division. The average fair-
ness rating over all users for Shapley based allocation is 5.2, as
compared to 3.6 for equal division and this result is statistically
significant (paired t-test; p ≤ 0.04).

5.1.2 Approximation

Table 1: Runtime Comparison (hours) (# of meetings: 100)hhhhhhhhhhhhh# of samples
of partitions 5 10 20

20 0.19 0.07 0.04
50 0.49 0.17 0.11

100 0.97 0.33 0.20

Figure 3: Runtime comparison
– S: Sampling (# of samples), C:
Caching, P: Partitioning (# of par-
titions), L: LP Relaxation

We already know that the
Shapley value is computation-
ally expensive for our set-
ting. As shown in Figure 3
for the illustration purpose, as
the number of meetings (x-
axis) increases from 5 to 100,
the average runtime (y-axis) of
the Shapley value computation
increases exponentially — in
fact the computation was not
completed within a reasonable
amount of time. As shown
in the figure, the overall run-
time could be significantly im-
proved (sped up by orders of magnitude) by combining our approx-
imation methods.

As we provide a set of different Shapley approximation algo-
rithms, we need to understand the contribution of different com-
binations of our approximation methods. In particular we need
to derive settings that would allow the right tradeoff between so-
lution quality and efficiency for our actual setting involving 100
meeting inputs per day. We thus evaluated potential speed-up by
using graph partitioning on top of ApproShapley in conjunction
with caching and LP relaxation. To perform graph partitioning, we
relied on the METIS library5, an open-source library for partition-
ing graphs based on the multilevel recursive-bisection and multi-
constraint partitioning schemes. We tested the performance of our
approximation algorithms using real meeting data while varying
the number of samples and partitions. Table 1 shows the average
runtime when a large number of meeting requests are given (100).
Even with a large number of meeting requests, we were able to
complete the overall computation in a timely fashion.

We next investigated the solution quality while keeping the same
condition that was used during the runtime comparison. Figure 4
plots the average error (i.e., the average relative variance) (y-axis)
against the number of partitions (5–20; x-axis) with a fixed number
of samples (100) for ApproShapley.We see that as the number of
partitions increases, the overall runtime decreases (Table 1) while
the average error increases (Figure 4). We conclude that the com-
bination of 100 samples and 5 partitions provides a reasonable so-
lution (about 10% error) in a timely fashion (within 1 hour) when a
large number of meeting requests arrive.

So far, we analyzed two different layers of approximations pre-
sented in our work. The question now is that how close our approx-
imate solutions are to the true Shapley value with different combi-
nations of these approximations. Thus, we measured the average
deviation of a combination of our approximation algorithms (i.e.,
sampling, caching with partitioning using 20 samples and 2 parti-
tions; φ20,2

SCP) from the exact Shapley value (φS). We conducted
this experiment on 20 sampled days selecting 5 meetings per day,
from real meeting data. We used a small number of meetings (5) in
this test as the exact Shapley value cannot scale up beyond that.

5http://glaros.dtc.umn.edu/gkhome/views/metis

930

Figure 4: Solution quality Figure 5: Average deviation (%)

Figure 6: Efficiency violation (%) Figure 7: Solution quality

Figure 5 shows the average deviation of φ20,2
SCP in percentage (y-

axis) on 20 sampled days (x-axis). As shown in the figure, our
approximation method generally followed the exact Shapley al-
locations, and the average deviation of φ20

SC from φS was 7.73%
(6.18–9.43%), which was fairly small.

It is important to verify that our approximation methods are still
able to generate solutions close to theoretically fair allocations even
when the problem size increases. Given the limited scalability of
Shapley value, we instead focus on showing what properties out of
the four that axiomatize fairness in the Shapley value are satisfied
by our approximations. Our approximate allocations automatically
satisfy the additivity and dummy player properties, but they do not
always guarantee satisfaction of the efficiency and symmetry prop-
erties.6 We can test empirically how often our approximation algo-
rithms violate the efficiency and symmetry properties.

Figure 6 shows the likelihood that allocations computed from
a graph partitions violate efficiency (in percentage) on the y-axis
while varying the number of partitions on the x-axis. Intuitively, as
the number of partitions increases, the likelihood that the efficiency
property is violated also increases. However, the overall likelihood
was still less than 8%. In particular, when we use 5 partitions, the
likelihood was less than 3%. With respect to the symmetry, the
maximum violation rate was less than 9.2% when the number of
partitions varied from 0 to 20. These results show that our alloca-
tions approximately satisfy the properties that axiomatize fairness.

5.2 Performance of replanning BM-MDP
In this section, we first tested if our robust multi-objective

MDP algorithm that solves BM-MDPs could generate robust well-
balanced solutions (i.e., lower average regret) as compared to the
standard MDP with a unified reward based on the weighted sum
method and the average model from uncertainty sets, and the pes-
simistic heuristic for solving BM-MDPs [16]. The uniform weight
distribution was applied to the weighted sum method. 50 different

6The formal proof is provided in the following website: http://
teamcore.usc.edu/junyounk/THINC/Supplementary.pdf

(a) Time flexibility (b) Location flexibility

Figure 8: Measured users’ flexibility

Table 2: Rescheduling real meetings: uncertainty in user reactions
% of no-response % of rejection

First suggestion 35.0 48.0
Second suggestion 26.5 40.5
Third suggestion 20.7 39.8

instances were used.7 Each problem is based on real meeting data.
On average, the MDP showed the worst result among three (2.13
times higher regret than our method) and the pessimistic heuristic
achieved 1.19 times higher regret than ours, which clearly shows
that our method is even more robust than the best known algorithm
for solving BM-MDPs.

We then evaluated the performance of the replanning BM-MDP
against three approaches while rescheduling meetings under un-
certainty at both planning and execution time: (i) full-online re-
planning: it chooses the local best action at every time point, (ii)
full-offline BM-MDP: it commits to the original policy until com-
pletion while ignoring the new meetings, and (iii) TESLA [15] that
assumes users would always agree to reschedule their meetings.
We compared these four approaches on 100 different instances in
simulation and reported the average performance.

Figure 7 shows the normalized performance (y-axis) of each
algorithm compared to the average regret achieved by THINC’s
MDP. As the figure shows, the offline BM-MDP achieved about
1.38 times higher regret as compared to the replanning MDP perfor-
mance, and the reactive strategy achieved about 1.63 times higher
regret. TESLA showed the worst result (i.e., highest average re-
gret), and it can be arbitrarily bad as it does not consider any uncer-
tainty while rescheduling user meetings. Our replanning BM-MDP
strategy is most robust as compared to the others.

5.3 Deployed Application
We deployed our integrated agent THINC as a pilot project at one

of the main libraries at USC (Figure 1(a)). We wanted to test the
performance of THINC in this smaller building first before deploy-
ing it at a much bigger building where there are indeed hundreds
of meetings per day. 45 students used THINC during the pilot de-
ployment. Figure 8 shows the students’ reported time and location
flexibility. The x-axis shows the discretized flexibility level and the
corresponding frequency is reported on the y-axis. Participants re-
ported varying levels of time and location flexibility. The average
time flexibility was 27.05%, and time flexibility ranged between
0.0% and 68.18%. The average location flexibility was 42.48%,
and location flexibility ranged from 0.0 to 100.0%. This shows
that, in practice, people are willing to provide a reasonable amount
of flexibility allowing significant energy savings.

7We generate different problem instances while varying the level
of uncertainty (0–100%).

931

As part of the pilot deployment, we identified 20 key meetings
for rescheduling. THINC’s BM-MDP policy suggested different
slots (i.e., a pair of time & location) every 6 hours. The mea-
sured uncertainty while interacting with users for rescheduling their
meetings was significant (see Table 2), which emphasizes that pre-
vious work [15] cannot be applied in real situations. We achieved
the average compliance rate of 45% for successfully rescheduling
them with 3.6 interactions per user. This result clearly shows that
BM-MDP for rescheduling identified meetings is useful rather than
simply assuming users will blindly accept every suggestion.

We then divide a portion of our energy savings based on the
Shapley value. To test if the users of THINC perceived our credit
allocation scheme to be fair, we asked the same participants to rate
fairness and their willingness to participate in energy savings on
a scale of 1 to 7, where 7 denotes a high rating for fairness and
willingness to participate. The average fairness rating is 5.24 and
the average willingness to participate rating is 6.0. Thus we can
see that users of the system perceive the Shapley based allocation
scheme to be highly fair. This average fairness rating is also con-
sistent with the result from the AMT survey, which further supports
the use of Shapley value as a fair allocation method.

6. CONCLUSION
THINC advances the state-of-the-art in agent technology for op-

timizing energy usage in commercial buildings. There are several
novelties in this paper. First, we built THINC, the first agent which
integrated the following: (i) energy efficient scheduling of user
meeting requests with flexibility, (ii) rescheduling of identified key
meetings for further energy savings and (iii) fair credit allocation to
incentivize users for their energy saving activities. Second, we pro-
vided novel approximation algorithms to efficiently compute the
Shapley value, and to speed up the characteristic function com-
putation. Third, we proposed a new robust method to optimally
reschedule identified meetings while considering uncertainty. We
also deployed THINC in the real-world as a pilot project and illus-
trated that THINC can indeed realize significant savings with user
flexibility. While THINC demonstrates a concrete deployed study
using concepts from cooperative game theory as a critical first step,
a future implementation will need to take the next step to conduct
more human subject experiments and investigate topics such as a
different modeling choice.

7. ACKNOWLEDGMENTS
This material is based upon work supported by the National Sci-

ence Foundation under Grant No. 1231001. Any opinions, find-
ings, and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

8. REFERENCES
[1] W. Abrahmase, L. Steg, C. Vlek, and T. Rothengatter. A

review of intervention studies aimed at household energy
conservation. J Environ. Psychol., 25:273–291, 2005.

[2] M. Alam, S. D. Ramchurn, and A. Rogers. Cooperative
energy exchange for the efficient use of energy and resources
in remote communities. In AAMAS, 2013.

[3] D. Aldous. Exchangeability and related topics. École d’Été
de Probabilités de Saint-Flour XIII, pages 1–198, 1985.

[4] Y. Bachrach, P. Kohli, and T. Graepel. Rip-off: playing the
cooperative negotiation game. In AAMAS, 2011.

[5] J. Bagnell, A. Y. Ng, and J. Schneider. Solving uncertain
markov decision problems. CMU-RI-TR-01-25, 2001.

[6] J. Castro, D. Gómez, and J. Tejada. Polynomial calculation
of the shapley value based on sampling. Computers &
Operations Research, 36(5):1726–1730, 2009.

[7] K. Chatterjee, R. Majumdar, and T. A. Henzinger. Markov
decision processes with multiple objectives. In STACS, 2006.

[8] M. Conferencing. Meetings in america: A study of trends,
costs, and attitudes toward business travel and
teleconferencing, and their impact on productivity. A network
MCI Conferencing White Paper, 2001.

[9] S. S. Fatima, M. Wooldridge, and N. R. Jennings. A linear
approximation method for the shapley value. Artificial
Intelligence, 172(14):1673–1699, Sept. 2008.

[10] D. B. Gillies. Solutions to general non-zero-sum games.
Contributions to the Theory of Games, 4:47–85, 1959.

[11] G. Hamiache. Associated consistency and shapley value.
International Journal of Game Theory, 30(2):279–289, 2001.

[12] K. A. Hassett and G. E. Metcalf. Energy tax credits and
residential conservation investment: Evidence from panel
data. Journal of Public Economics, 57(2):201–217, 1995.

[13] G. N. Iyengar. Robust dynamic programming. Mathematics
of Operations Research, 30(2):257–280, 2005.

[14] S. Kamboj, W. Kempton, and K. S. Decker. Deploying power
grid-integrated electric vehicles as a multi-agent system. In
AAMAS, 2011.

[15] J. Kwak, P. Varakantham, R. Maheswaran, Y.-H. Chang,
M. Tambe, B. Becerik-Gerber, and W. Wood. TESLA: an
extended study of an energy-saving agent that leverages
schedule flexibility. Autonomous Agents and Multi-Agent
Systems, doi=10.1007/s10458-013-9234-0, pages 1–32,
2013.

[16] J. Kwak, P. Varakantham, R. Maheswaran, M. Tambe,
F. Jazizadeh, G. Kavulya, L. Klein, B. Becerik-Gerber,
T. Hayes, and W. Wood. SAVES: A sustainable multiagent
application to conserve building energy considering
occupants. In AAMAS, 2012.

[17] K. Leyton-Brown and Y. Shoham. Essentials of game theory:
A concise multidisciplinary introduction. Synthesis Lectures
on AI and ML, 2(1):1–88, 2008.

[18] A. Majumdar, D. H. Albonesi, and P. Bose. Energy-aware
meeting scheduling algorithms for smart buildings. In
Buildsys, pages 161–168. ACM, 2012.

[19] I. Mann and S. S. Llyod. Values of large games, iv:
Evaluating the electoral college by monte-carlo techniques.
Technical report, The Rand Corporation, 1960.

[20] G. Owen. Multilinear extensions of games. Management
Science, 18(5):64–79, Jan. 1972.

[21] S. D. Ramchurn, P. Vytelingum, A. Rogers, and N. R.
Jennings. Agent-based control for decentralised demand side
management in the smart grid. In AAMAS, 2011.

[22] D. Schmeidler. The nucleolus of a characteristic function
game. SIAM Journal on applied mathematics,
17(6):1163–1170, 1969.

[23] L. S. Shapley. A value for n-person games. Kuhn HW, Tucker
AW, editors. Contributions to the theory of games II, Annals
of mathematics studies, 28:307–317, 1953.

[24] S. Stein, E. Gerding, V. Robu, and N. Jennings. A
model-based online mechanism with pre-commitment and its
application to electric vehicle charging. In AAMAS, 2012.

[25] G. Xiong, C. Chen, S. Kishore, and A. Yener. Smart
(in-home) power scheduling for demand response on the
smart grid. In ISGT, 2011.

932

