
Checking Consistency of Agent Designs Against
Interaction Protocols for Early-Phase Defect Location

Yoosef Abushark
∗

RMIT University
Melbourne, Australia

yoosef.abushark@rmit.edu.au

John Thangarajah
RMIT University

Melbourne, Australia
johnt@rmit.edu.au

Tim Miller
University of Melbourne

Melbourne, Australia
tmiller@unimelb.edu.au

James Harland
RMIT University

Melbourne, Australia
james.harland@rmit.edu.au

ABSTRACT
Multi-agent systems are increasingly being used in complex
applications due to features such as autonomy, proactivity,
flexibility, robustness and social ability. However, these very
features also make verifying multi-agent systems a challeng-
ing task. In this paper, we propose a mechanism, including
automated tool support, for early phase defect detection by
comparing agent interaction specifications with the detailed
design of the agents participating in the interactions. The
basic intuition of our approach is to extract sets of possi-
ble traces from the agent design and to verify whether these
traces conform to the protocol specifications. Our approach
is based on the Prometheus agent design methodology but is
applicable to other similar methodologies. Our initial eval-
uation shows that even simple protocols developed by rela-
tively experienced developers are prone to defects, and our
approach is successful in uncovering some of these defects.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—methodologies

Keywords
AOSE; verification; multi-agent systems

1. INTRODUCTION
Multi-agent systems are gaining popularity for building

complex applications ranging from critical systems used in
crisis management, to non-critical systems such as infor-
mation exchange [12]. Developing multi-agent systems is
challenging, as these systems are often required to operate
under conditions not conceived by their designers. Several
architectures have been proposed to support the building
of multi-agent systems, including the popular Belief-Desire-
Intention (BDI) agent architecture [20]. In addition, several

∗Acknowledges King Abdulaziz University for scholarship.

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

agent-oriented software engineering (AOSE) methodologies
and notations, such as Prometheus [17], Tropos [2], O-MaSE
[6], ROADMAP [21], and GAIA [23], have been proposed
to help organise the development activities of multi-agent
systems. While these methodologies differ in many ways,
they are common in their inclusion of a number of activi-
ties, namely: analysis, design, implementation, and testing.

Recent work related to these methodologies has proposed
several testing and debugging techniques [5, 14, 16]. While
testing plays a crucial role in software verification, it is well
accepted in software engineering that defects found and fixed
late in a project cost considerably more than those found
earlier [19]. Thus, the ability of find defects in design arte-
facts before implementation commences will positively im-
pact the cost of developing multi-agent systems.

In this paper, we focus on one aspect of design-time verifi-
cation of BDI agent designs: agent interaction protocols. An
interaction protocol strictly defines the way in which agents
ought to communicate in order to accomplish their own ob-
jectives in a joint setting. For example, the way buyers and
sellers should interact in an auction setting.

We describe a method with automated tool support for
checking agent designs against the specification of the inter-
action protocols. This consists of checking execution traces
of the designs to ensure that they are consistent with the
protocol specification. A failure to do so may indicate a
defect in either the protocol specification or the agent de-
sign. This method uses only design-level artefacts, so can
be used before any implementation is produced. However,
this means the main technical challenge is to find an appro-
priate mechanism for evaluating the computational proper-
ties of the design artefacts. We do this by translating both
the protocol specification and the design artefacts into Petri
Nets [13], and checking traces of the execution of the Petri
Nets for consistency.

We have implemented this method and developed tool
support for automating the consistency checks. Our tools
are based on the Prometheus AOSE methodology [17], how-
ever, many of the concepts and tools used are general enough
to be used with any AOSE methodology that supports the
BDI model of agency.

We evaluate our method and tool support on two inter-
action protocols with multiple designs. These designs were
developed by relatively experienced developers and based

933

on the Prometheus methodology. Our results show that the
approach is successful in revealing defects in agent designs
with respect to the interaction protocol specification, how-
ever, some of these defects were false positives.

In Section 2, we briefly highlight the modelling of inter-
action protocols in some AOSE methodologies, and men-
tion how they each support checking design artefacts. We
present our method in Section 3, describe our evaluation in
Section 4, and report results in Section 5. Section 6 con-
cludes the paper.

2. BACKGROUND & RELATED WORK
This section focuses on briefly describing and explaining

the topics related to this paper. We start by describing
the AUML (Agent UML) sequence diagrams [15], which are
used to specify agent interactions by some of the more pop-
ular AOSE methodologies, including Prometheus, Tropos,
O-MaSE, INGENIAS and GAIA. Even though GAIA does
not use AUML sequence diagrams for modelling interaction
protocols directly, there are many proposals for integrating
it. We also provide an overview of these methodologies with
respect to their support for checking design artefacts.

2.1 Modelling Interaction Protocols
AUML sequence diagrams, also called protocol diagrams,

illustrated in Figure 1, specify the allowable sequences of
messages between agents. Specifications consist of vertical
lines identifying agents, horizontal directed arrows repre-
senting messages, and boxes representing a range of control
constructs. Some of the more common control structures are
alternative (alt, as illustrated in Figure 1), optional (opt)
and parallel (par) with the usual meanings. Dashed lines
separate options in choice or parallel boxes. These control
structures can also have guards, which describe a relevant
condition such as alternatives or the termination condition
for a loop. For a full specification of AUML protocols see
Odell et al. [15].

In addition to the graphical representation, methodologies
such as Prometheus adapts a textual notation [22] to gener-
ate the protocol diagram. This textual notation provides a
handle to the various elements of the protocol that can be
used computationally.

2.1.1 Net-Bill Protocol Example
The ‘Net-Bill’ protocol models transactions in the elec-

tronic commerce systems [4]. The protocol specifies the in-
teraction between three agents, ‘Customer’, ‘Merchant’ and
‘Bank’ as shown in Figure 1. The customer optionally sends
a request to the merchant at the start of the interaction.
Then, the merchant responds by sending the ‘Quote’. After
that, the customer may refuse or accept the quote. In the
case where the customer accepts the quote through posting
an ‘Accept’ message to the merchant, the delivering of the
goods along with the payment transaction will take place.
Figure 2 represents one possible design, specified using the
Prometheus methodology, which satisfies the protocol. The
figure shows the detailed design of the three agents, where
the plans that handle incoming messages, and produce the
outgoing messages are specified. Note that the messages are
shown as events.

Despite this being a well-known protocol, it is surprisingly
difficult to verify the correctness of a design based on this
protocol by hand. As we shall see, our method is able to

Figure 1: Net-Bill AUML protocol

detect certain types of defects in the designs based on this
protocol, in particular when messages are sent in the wrong
order, or when too many messages are sent.

2.2 AOSE Methodologies and Design Artefacts
In the context of AOSE, whilst testing [16, 14] and for-

mal validation of agent programs [7] have received attention,
there has been little work into checking the correctness of
BDI designs in the design phase.

In this section, we investigate the support of checking the
correctness of design artefacts in five of the most commonly
used AOSE methodologies: Prometheus, Tropos, O-MaSE,
INGENIAS and GAIA; although, only three provide support
for verifying design artefacts to some limited extent.

Tropos offers two frameworks, each including tool sup-
port, for: (i) validating formal requirements specification
(‘T-Tool’ [8]); and (ii) reasoning with formal goal models
(‘GR-Tool’ [9]). These two frameworks verify the goal dia-
grams that are part of the analysis stage of Tropos. As far
as we are aware, there is no support for validating that agent
designs conform to the interaction protocol specifications.

The INGENIAS Development Kit (IDK) [10] integrates a
tool called ACLAnalyser for analysing the interaction speci-
fications between agents by executing the system and logging
the run-time interactions [1]. Even though this gives valu-
able feedback about the interactions specified in the design
phase, it requires an implementation.

O-MaSE offers an environment for developing agent-based
systems through agentTool III (aT3) [6]. aT3 provides a ver-
ification framework that maintains the consistency between
the related models. The check is done based on a set of the
predefined rules that are specified by the designer.

The Prometheus and the GAIA methodologies provide
agent engineers with a graphical environment for develop-
ing agent-based systems (PDT [17] and GAIA4E [3]). These
tools do not offer any framework for verifying and validating
the agent design artefacts, although earlier versions of PDT
supported limited static consistency checking of the design
for warnings such as events that are not handled, and mes-
sages that should be sent/received according to a protocol.

934

Figure 2: Net Bill detailed design in PDT

These checks were based purely on static relationships be-
tween the design entities. In contrast, our work assessed the
dynamic behaviour of designs.

3. TECHNICAL APPROACH
In this section, we present our method for consistency

checking between interaction protocols and agent designs,
and briefly discuss tool support for automating this. We
discuss the limitations of the method and propose ways to
structure designs to mitigate these limitations.

Our approach is to use Petri Nets, both as a means of
analysing the specification of a given protocol, and as a
means of determining the computational properties of a given
design. Note that in principle a design may incorporate
multiple protocols, or may be incomplete. Hence it may
not always be possible to classify a given design as either
correct or incorrect, but our analysis can find certain types
of defects along the way. We use the previously described
Net-Bill protocol as a running example in this section.

3.1 Overview
Figure 3 shows a high-level overview of the proposed method.

The input to our method is a design file that includes two
parts of the design:

1. protocols that model the interactions between agents;
and

2. designs for agents in the system, which provide a semi-
formal definition of the agents’ plans, percepts (includ-
ing incoming messages), actions (including outgoing
messages), and causal relationships between these.

Each protocol is analysed and translated into a Petri Net
[13]. Using the design artifacts, a plan graph is constructed,
which outlines the causal relationships between plans and

Figure 3: Process for our method

messages for all agents/roles involved in the protocol. The
set of possible message traces are derived from the plan
graph, and are dynamically run against the protocol’s cor-
responding Petri Net, logging any violations.

3.2 Process
The intention of our approach is to find design defects, ei-

ther in the agent detail design artifacts or in the protocols,
by checking the consistency between the two. As shown in
Figure 3, there are five steps involved in the method: (1)
translate a protocol into a Petri Net representation, pre-
serving its semantics; (2) construct a plan graph from the
agent detailed design, including only those agents who are
participants in the protocol; (3) extract all possible traces
permitted by the plan graph; (4) check all traces against the
protocol’s Petri Net; and (5) record all violations.

3.2.1 Translating AUML protocols to Petri Nets
Our tool support is written for the Prometheus Design

Tool, therefore, it assumes protocols are specified using AUML
[15]. However, AUML does not have a precise semantics, so
we choose to transform interaction protocols into a more
general model, specifically Petri Nets [13], as they can cap-
ture the essential fragments of interactions such as selection,
loops and parallelism. This generalises the proposed method
to include other interaction modelling notations that can be
translated into that general model.

As an example, Figure 4 depicts the corresponding Petri
Net that models the semantics for the Net-Bill protocol de-
scribed in Figure 1. We perform this transformation by di-
rectly adopting the AUML to Petri Net translation algo-
rithm proposed by Poutakidis et al. [18].

3.2.2 Constructing a plan graph from agent designs
Interaction protocols define the possible interactions be-

tween agents within an agent-based system. Thus, each par-
ticipant (agent) should be designed in a way that captures
its role in a particular protocol. In the Prometheus method-
ology, protocols are reflected in the participants’ detailed
designs in terms of outgoing and incoming events that are as-
sociated with plans. According to the design of the Net-Bill
system in Figure 2, the ‘Customer’ agent sends the ‘Request’
message using the ‘AskForQuote’ plan. On the receiver side,
this message is handled by one plan ‘MatchCustomerInfo’
that posts the ‘Quote’ message.

As this example demonstrates, agent designs correspond-
ing to a protocol are scattered across the multiple detailed
designs of its participants. To generate the set of possi-
ble traces for a design over more than one agent, all design

935

Figure 4: The Petri Net of the Net-Bill protocol

constructs (plans and events) within these designs that are
related to a protocol need to be located and organised into
a single coherent artifact. Thus, following Miller et al. [11],
we construct a plan graph for representing the information
relevant to a given protocol.

Definition 1. A plan graph is a directed bipartite graph,
G = (P,M,E), where P and M are the sets of plans and
messages directly, and E the set of edges in the graph, which
represent causal relationships between plans and messages.
That is, the edge p 7→ m represents that plan p sends mes-
sage m, and the edge m 7→ p represents that message m is a
trigger for plan p.

A plan graph for a given protocol and set of agent de-
signs is constructed by extracting each plan that sends or
receives the messages of the specified protocol, and the mes-
sages that are associated with these plans from the detailed
designs. Since it is possible for a protocol to have more than
one starting point (e.g. more than one plan can send the
initial message, or there can be more than one possible ini-
tial message), we add a single dummy ‘Start’ message as the
first node of the plan graph, which is linked to all nodes that
represent the protocol’s starting points.

Figure 5 shows the plan graph corresponding to the design
of the Net-Bill system. This plan graph effectively merges
the designs of the three agents in Figure 2, but includes only
the information that is relevant to the specified protocol.

3.2.3 Extracting execution traces from a plan graph
The generated plan graph acts as a static view of the com-

bined designs for the participants in the relevant protocol.
As a result, each path of that plan graph represents a pos-
sible sequence of plans and corresponding messages of the
protocol. Considering the plan graph in Figure 5, the trace
‘Start, MatchCustomerInfo, Quote, BrowseQuote, ExitSys-
tem, SayBye ’ is one possible path of that plan graph, and
represents an instance of dynamic behaviour of the system.
After filtering out the plans from that execution trace, we are
left with one possible trace of observable messages: ‘Quote,
ExistSystem’.

Figure 5: Plan graph for the Net-Bill design from
Figure 2

A plan graph may capture many execution flow fragments
including: sequential composition, selection (choice), loops
and parallel execution; each outlined in Figure 6. The paral-
lel fragment is captured when one plan posts multiple mes-
sages or multiple plans run in parallel, whilst the selection
fragment appears when a message can trigger more than one
plan, but the execution semantics specify that exactly one
plan will be selected. Due to the non-deterministic nature
of BDI agent frameworks1, plan graphs must be traversed
to extract all possible traces.

In our method, we assume that parallelism represents non-
deterministic interleaving of both plans and messages, as
this would be the observable behaviour demonstrated by
most BDI frameworks. Consequently, a simple depth-first-
traversal is not sufficient to generate traces.

To extract traces, we translate our plan graphs into Marked
Petri Nets [13]. We choose this formalism because Petri
Nets are expressive enough to model the semantics of our
plan graphs, and because our plan graphs are syntactically
similar to Petri Nets. Further, we can make use of existing
theories for analysing the generated model.

Definition 2. A marked Petri Net is a tuple M = {P, T, I,
O, µ}, in which P is a finite set of places, T is a finite set
of transitions, such as P ∩ T = ∅, I is an input function, O
an output function, and µ is the marking of the Petri Net
defined as an n-vector, µ = {µ1, µ2, µ3,, µn}, in which
n = |P | and each µi ∈ N, i = 0, 1.

The transformation of a plan graph into a marked Petri
Net is straightforward for most plan graph constructs: mes-
sages are translated into Petri Net places, and plans are
translated into transitions. This simple mapping is sufficient
for sequential composition, selection, and loops, but for par-
allelism, a synchronisation fragment is used to capture the
interleaving parallelism in the cases where plans post mul-
tiple messages. Figure 7 shows an example of such a case.
1Plan choices are dependent on the context at the time of
deliberation.

936

Figure 6: Plan graph execution flow fragments

Figure 7: Plan graph with plan that posts multiple
messages

If more than one plan can trigger the commencement of the
protocol, a Petri Net for each starting point is created.

To extract the traces, we calculate the reachability graph
of the Petri Net, which is a transition relation that defines
the state and transitions of the Petri Net.

Each state within the reachability graph is in fact a mark-
ing vector that shows the distribution of tokens across the
places (messages) of the Petri Net. Figure 8 shows the reach-
ability graph for the Petri Net from Figure 7. When the
reachability graph is in state S0, this represents the mark-
ing {1, 0, 0, 0, 0}. Using the legend at the bottom of Figure 8,
this means that a token is in the Petri Net place ‘Start’, be-
cause the first slot in the marking is 1, while the remainder
are 0. When the graph moves to state S1, there are tokens
in the Petri Net places ‘Sync1’ and ‘Sync2’. State S2 repre-
sents the state in which there are tokens in ‘Sync1’ and ‘M2’,
indicating that message ‘M2’ has been sent. By analysing
the changes in markings between transitions, we can repre-
sent which messages are sent and in which order, as defined
in the plan graph.

Each path of the reachability graph represents a possible
trace of the Petri Net. From the reachability graph, we

Figure 8: Reachability Graph of the Petri Net in
Figure 7

can use a standard depth-first traversal to extract the set of
all possible traces defined by the Petri Net (and therefore
its corresponding plan graph). As a final step, the places
added in the synchronisation fragment, such as ‘Sync1’ and
‘Sync2’ in Figure 7, must be filtered from the traces.

3.2.4 Running traces against the protocol
Finally, each possible trace is verified by checking that it

is a valid execution trace of the protocol’s Petri Net (note:
not the plan graph’s Petri Net), using the messages from the
trace as tokens on the protocol Petri Net.

As an example, consider the protocol Petri Net from Fig-
ure 4. At the start, there is a token in the ‘Start’ place.
The first message is taken from the trace, and a token is put
into the Petri Net place that corresponds to that message.
If the first message is ‘Request’, then a token is placed here,
and the Petri Net is executed. The transition T1 can fire
because both of its input places contain tokens, and the re-
sult is a token in place P0. The process then repeats for the
next message in the trace. An algorithm for performing this
check is shown in Algorithm 1.

Algorithm 1 The algorithm for verifying traces against a
Petri Net
Require: traces (a set of sequences of message labels)
Require: petri net (a Petri Net representing a protocol)

while traces 6= ∅ do
choose a trace ∈ traces
while trace 6= 〈〉 do

next message← head(trace)
place next message in petri net
if petri net.execute = fail then

record the fault
end if
trace← tail(trace)

end while
remove trace from traces

end while

When the Petri Net fails to execute, it indicates an incon-
sistency between the trace and the Petri Net; representing
an inconsistency between the agent design and the protocol.
For example, if the first message in the trace had been ‘Exit-
System‘, a token would be placed on the ‘ExitSystem‘ place,
meaning that the Petri Net could not be executed because
no transition has tokens in all of its input places.

937

Table 1: Categorisation of causes for failures

Failure (executing protocol Petri net) Cause (in plan graph)

1 The remaining trace is empty, but the Petri Net has not ter-
minated (there is no token in a termination place).

1. The trace contains less messages than it should, relative to
the protocol.

2 The Petri Net has terminated, but the remainder of the trace
is non-empty.

2. The trace contains more messages than it should, relative
to the protocol.

3 A token is placed into the Petri Net, but the Petri Net cannot
be executed.

3.(a) The message that needs to be sent is missing in the trace;
or
3.(b) Ordering between messages within the trace is not as it
should be.

3.2.5 Recording violations
A trace is recorded as “passed” if and only if the execution

of the Petri Net hits a termination place and the remaining
trace is empty. Otherwise, it is recorded as failed. To im-
prove reporting, a cause for a failure can be used to provide
debugging information. There are four broad reasons why
failures occur, outlined in Table 1.

3.3 Implementation
We have implemented an eclipse plug-in that integrates

with the Prometheus Design Tool (PDT) to automate our
approach. The tool takes the PDT’s design file (including
at least the AUML protocols and agent detailed designs)
as an XML file, generates the protocol Petri Net and plan
graph, extracts the traces from the plan graph, executes
these traces against the protocol Petri Net, recording and
categorising all failures. The output is a report that pro-
vides: (1) detailed logs of the erroneous traces, including
their categorisation (Table 1); and (2) an execution sum-
mary. The summary includes information such as the exe-
cution time and the number of traces that passed and those
that failed.

3.4 Discussion
The method presented in this section checks the consis-

tency between design artefacts to flag potential defects. How-
ever, given the partial nature of the agent detailed designs
used in Prometheus and other semi-formal AOSE method-
ologies, neither soundness nor completeness are possible.

Specifically, our method may raise false positives due to
the underspecification of the designs. Given an agent plan
that posts several messages, our method assumes that all
messages are posted by the plan. However, a designer may
intend only some of these messages to be posted for any sin-
gle execution of the plan, depending on some logic internal
to the plan. In Prometheus, such logic is not captured at
the design level. As such, the set of possible traces gener-
ated by our method could be larger than the set of traces
intended by the designer, and some of the additional traces
may violate the corresponding protocol.

With regards to the categorisation in Table 1, some causes
can result in false positives, but others will not. Causes 1
and 3(a) (short trace and missing message) will always be
true positives, because the partial nature of the designs will
result in more traces than may be intended, but never less.
Additional traces result from designs in which plans post
multiple messages, but the designer intended only some of
these to be posted at any time. Our method assumes that
all messages must be posted, which will not result in shorter
traces or missing messages. On the other hand, causes 2 and

Figure 9: Sale Transaction AUML Diagram

3(b) in Table 1 can result from underspecification, so may
contain false positives.

To avoid false positives, agent detailed designs can be
structured such that a plan intended to post only a subset of
its specified messages is broken into sub-plans, in which all
messages specific are intended to be posted, thus providing
a deterministic way to calculate the messages that will be
sent by each plan.

4. EVALUATION
This section details the empirical evaluation of our mech-

anism. The goals of this evaluation are:

1. to assess whether the proposed mechanism is able to
detect defects in agent designs with respect to interac-
tion protocols;

2. to determine the level of false positives generated by
the proposed approach; and

3. to determine whether the time taken to run the tools is
reasonable considering the complexity of the protocol
and the design of its participants.

4.1 Objects of analysis
Two interaction protocols were used in this evaluation;

namely, ‘Sale-Transaction’ and the ‘Net-Bill’ protocol. We
investigated three designs for the ‘Sale-Transaction’ protocol
and one for the ‘Net-Bill’. Each design was produced by a
person outside of our research team who was familiar with
BDI modelling and the Prometheus methodology.

938

Table 2: Number of design units

Design #Plans #Messages Total

ST1 17 27 44

ST2 11 17 28

ST3 9 17 26

NB 13 22 35

Table 3: Categorisation of defects over all iterations

Design True False Unknown Total
Pos Pos

ST1 3 0 2 5
ST2 2 0 2 4
ST3 4 0 0 4
NB 0 1 0 1

Total 9 1 4 14

Figure 9 shows the AUML protocol for the ‘Sale-Transaction’
system, which was designed by one of the authors. The cor-
responding system models an online store as a multi-agent
system with three agents (‘Seller Agent’, ‘Buyer Agent’ and
‘Bank Agent’) that interact with each other. We asked three
participants to complete detailed designs for all the agents
involved in the protocol, resulting in three different designs.

A complete design of the agent system following the ‘Net-
Bill’ protocol (see Section 2.1.1) was produced by a research
programmer with extensive experience in the Prometheus
methodology. Details about the number of plans and mes-
sages in these designs are summarised in Table 2.

4.2 Experimental Process
After manually checking the consistency of the message

names against the messages of the protocol, we followed an
iterative process for checking each design. This iterative
process involves the following three steps for each design:

1. Execution: We ran our tools over the PDT design file
(including both the protocols and agent design) to pro-
duce a report. We used a laptop running a 64-bit Intel
core i7 processor clocked at 2.4 GHz. 3 GB of RAM is
dedicated to be used by the Java Virtual Machine.

2. Inspection: Using the reports generated, we analysed
the causes of failed traces, categorising each cause as
either a true positive, a false positive, or unknown. A
false positive is a warning raised that we believe is not
a defect in the design, but is caused by a clear and
valid assumption made by the designer. An unknown
categorisation implies that the design produces traces
that fail, perhaps because the designer made explicit
design assumptions that we do not understand.

3. Modification: Some defects mask the presence of other
defects. As such, we modified the design in a way
to rectify the causes of the reported failures, includ-
ing false positives and unknowns. The changes involve
adding, removing, and modifying plans, events, and
associations.

We iterated through each design until our tool reported no
problems. In each iteration, we recorded the following: (1)
the number of warnings raised by the tool; (2) the number
of true positive, false positive, and unknown defects; (3) the

Table 4: Summary of potential problems raised by
the tool per iteration (Iter: Iteration, MM: missing

messages, TS: trace too short, TL: trace too long, OE:

misordering between messages)

Design Iter MM TS TL OE

ST1 1 3 0 0 0
2 0 0 0 2
3 0 0 0 0

ST2 1 1 0 2 13
2 1 0 0 1
3 0 0 0 2
4 0 0 0 0

ST3 1 0 4 0 0
2 0 0 0 0

NB 1 0 0 4 5
2 0 0 0 0

Table 5: Time Analysis of Traces

Design Iter Traces Extract Exec # Failed
Time Time Traces

ST1 1 4 0.33s 0.01s 4
2 6 0.36s 0.02s 4
3 4 0.4s 0.03s 0

ST2 1 154440 6.2s 335m 154440
2 14 0.32s 0.09s 12
3 14 0.32s 0.09s 10
4 4 0.48s 0.04s 0

ST3 1 4 0.36s 0.02s 4
2 4 0.4s 0.03s 0

NB 1 20 0.30s 0.06s 20
2 4 0.32s 0.02s 0

time taken for extracting the traces from the reachability
graph; and (4) the number of the extracted traces.

5. RESULTS
This section presents the results of the empirical evalua-

tion outlined in Section 4. Following the iterative process
described we were able to identify and categorise the to-
tal number of defects found (true positives), the number of
false positive defects found, and the number of potential de-
fects that could not be accurately categorised for each of
the designs. The findings are shown in Table 3. As the
table shows, we were able to detect nine defects in four dif-
ferent designs with only one false positive and four that we
were unable to categorise. Although a more comprehensive
evaluation is necessary to provide concrete claims, this pre-
liminary set of experiments provide an indication that the
tool does indeed detect defects in agent designs with respect
to interaction protocols, with few false positives and in a
reasonable amount of time as we show ahead.

Table 4 shows information about the potential problems
raised by the tool in each iteration of each design. As this ta-
ble demonstrates, some defects manifest themselves as more
than one reported problem. At the end of each iteration,
a known category of problems were addressed, for example
in ‘Sale Transaction 1’, the missing messages were fixed af-
ter iteration one. This fix may cause the number of defects
found in the next iteration to decrease (defects are removed),
or increase (a defect is removed but it was masking others).

939

Figure 10: Buyer Agent Overview Diagram

For example, in ‘Sale Transaction 2’, the correction of the
missing message and the two long traces from the first it-
eration revealed an additional missing message in the next
iteration, but also removed 12 of the 13 message ordering
related warning messages.

As mentioned in Section 4.2, there will be some failures
that do not represent defects in the agent designs. In ‘Sale
Transaction 2’, there are still two problems raised in the
third iteration (Table 4) that are categorised as unknown.
Figure 10 shows one of these. The participant designed both
messages ‘Accept The Price’ and ‘Make Payment By Card’
to be sent by one plan. Our approach considered that these
messages could be sent in any order. However, ‘Accept The Price’
must be sent first to correspond to the protocol. Despite
this, we have not classified this as a true positive defect,
because it is unclear if the participant assumed that the or-
dering is implicit.

Table 5 shows the time-cost for extracting traces from the
reachability graph and executing them against the proto-
col’s Petri Net. The cost is low for all iterations, except for
iteration 1 of ‘Sale Transaction 2’. Although the time for
extracting such a large number of traces was relatively low,
a defect in that design caused an explosion in the number of
traces, which consequently took over five and a half hours
to execute on the Petri Net. This indicates a potential for
explosion in execution time, and that further work is needed
to mitigate this problem.

6. CONCLUSIONS
In this paper, we proposed an approach and tool support

for finding defects in agent designs with respect to interac-
tion protocol specifications. This approach involves generat-
ing the set of possible traces permitted by the agent detailed
designs, and checking whether the sequences of messages in
these traces are valid with respect to a given protocol spec-
ification. Although our tool supports only designs written
using the Prometheus methodology, we believe the approach
is general enough to work with other AOSE methodologies
that follow the BDI model of agency.

We evaluated our approach on four designs developed by
relatively experienced developers. The results showed that
the proposed approach is able to detect defects in agent de-
signs, with a low number of false positives and generally in
a reasonable amount of time.

In future work, we will refine the approach to reduce false
positives. One step would be to allow context conditions in
BDI plans, which could then be used to filter out some traces
that currently lead to false positives. Our evaluation indi-
cated that some designs can result in an explosive number
of traces, and therefore, long execution times. To mitigate
this problem, we plan to prioritise traces, with the goal of
finding and reporting defects early in the execution.

7. REFERENCES
[1] J. Bot́ıa, J. Gómez-Sanz, and J. Pavón. Intelligent data

analysis for the verification of multi-agent systems
interactions. IDEAL, pages 1207–1214, 2006.

[2] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and
J. Mylopoulos. Tropos: An agent oriented software
development methodology. AAMAS, 8(3):203–236, 2004.

[3] L. Cernuzzi and F. Zambonelli. GAIA4E: A tool supporting
the design of MAS using Gaia. In ICEIS, pages 82–88, 2009.

[4] B. Cox, J. Tygar, and M. Sirbu. NetBill security and
transaction protocol. In First USENIX Workshop on
e-Commerce, pages 77–88, 1995.

[5] M. Dastani, J. Brandsema, A. Dubel, and J.-J. Meyer.
Debugging bdi-based multi-agent programs. Programming
Multi-Agent Systems, pages 151–169, 2010.

[6] S. A. DeLoach and J. C. Garcia-Ojeda. O-mase: a
customisable approach to designing and building complex,
adaptive multi-agent systems. IJAOSE, 4(3):244–280, 2010.

[7] L. Dennis, M. Fisher, M. Webster, and R. Bordini. Model
checking agent programming languages. Automated
Software Engineering, 19(1):5–63, 2012.

[8] A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso.
Model checking early requirements specifications in tropos.
In Proceedings of 5th IEEE International Symposium on
Requirements Engineering, pages 174–181. IEEE, 2001.

[9] P. Giorgini, J. Mylopoulos, and R. Sebastiani.
Goal-oriented requirements analysis and reasoning in the
tropos methodology. Eng. App. of AI, 18(2):159–171, 2005.

[10] J. J. Gomez-Sanz, R. Fuentes, J. Pavón, and
I. Garćıa-Magariño. INGENIAS development kit: a visual
multi-agent system development environment. In AAMAS,
pages 1675–1676. IFAAMAS, 2008.

[11] T. Miller, L. Padgham, and J. Thangarajah. Test coverage
criteria for agent interaction testing. AOSE XI, pages
91–105, 2011.

[12] S. Munroe, T. Miller, R. Belecheanu, M. Pechoucek,
P. McBurney, and M. Luck. Crossing the agent technology
chasm: Lessons, experiences and challenges in commercial
applications of agents. KER, 21(4):345, 2006.

[13] T. Murata. Petri Nets: Properties, analysis and
applications. Proceedings of the IEEE, 77(4):541–580, 1989.

[14] C. Nguyen, S. Miles, A. Perini, P. Tonella, M. Harman, and
M. Luck. Evolutionary testing of autonomous software
agents. AAMAS, 25(2):260–283, 2012.

[15] J. Odell, H. Van Dyke Parunak, and B. Bauer.
Representing agent interaction protocols in UML. In
AOSE, pages 201–218. Springer, 2001.

[16] L. Padgham, J. Thangarajah, Z. Zhang, and T. Miller.
Model-based test oracle generation for automated unit
testing of agent systems. IEEE Transactions on Software
Engineering, 39(9):1230–1244, 2013.

[17] L. Padgham and M. Winikoff. Developing intelligent agent
systems: a practical guide, volume 1. Wiley, 2004.

[18] D. Poutakidis, L. Padgham, and M. Winikoff. Debugging
mass using design artifacts: The case of interaction
protocols. In AAMAS, pages 960–967. ACM, 2002.

[19] R. Pressman. Software engineering: a practitioner’s
approach, volume 7. McGraw-Kill New York, 2009.

[20] A. Rao and M. Georgeff. BDI agents: From theory to
practice. In AAMAS, pages 312–319, 1995.

[21] L. Sterling and K. Taveter. The Art of Agent-Oriented
Modeling. MIT Press, 2009.

[22] M. Winikoff. Towards making agent UML practical: A
textual notation and a tool. In Quality Software,
2005.(QSIC’5), pages 401–406. IEEE, 2005.

[23] M. Wooldridge, N. Jennings, and D. Kinny. The Gaia
methodology for agent oriented analysis and design.
AAMAS, 3(3):285–312, 2000.

940

