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ABSTRACT
In many domains, an autonomous agent needs to reliably predict the
distribution of behaviors of a population rather than the behavior
of a single agent. For example, when playing the ultimatum game
against several unknown opponents from a large known population,
the agent can perform better by extracting its best-response strategy
based on the distribution of the acceptance value in that population.
In this paper, we demonstrate the efficacy of Peer-Designed-Agents
(PDAs) for producing a distribution of behaviors that highly resem-
bles the distribution of actual behaviors of a specific population of
interest. This is obtained through extensive experiments with more
than 700 different individuals and 132 PDAs, using eight game vari-
ants from three different domains and two different statistical tests.
The analysis of the results demonstrates that PDAs’ technology is
an effective means for generating a reliable distribution of behav-
iors of a population of interest, as long as the similarity between the
group of PDAs’ developers and the latter population is sufficiently
high. Moreover, a comprehensive comparison with the results of
Elicited-Strategy-Agents (ESAs) shows that there is much more to
PDA technology than simply an expression of strategy.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert Systems

General Terms
Experimentation

Keywords
PDAs, Strategy elicitation, Agent-based analysis of human interac-
tions

1. INTRODUCTION
Reliably modeling and predicting the behavior of autonomous

agents in a multi-agent system (MAS) is a key capability sought
both by system and agent designers (e.g., see [17]). System de-
signers depend on these capabilities for evaluating and tuning the
systems and mechanisms they design (e.g., using simulations [27]).
Agent designers take advantage of these capabilities to design bet-
ter strategies for their agents, whenever the outcomes of the actions
taken and choices made by the agent are influenced by the behavior
of others in its environment [14, 16]. While the behavior of fully
rational and computationally unbounded agents can be extracted
numerically or analytically using optimization and game theoretic
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principles, when it comes to bounded rational agents, and partic-
ularly people, alternative approaches should be considered. This
is mainly because people’s behaviors are known to be affected by
a range of cognitive influences [1, 13]. People often use rules of
thumb or adopt simple heuristics either due to their bounded compu-
tational capabilities or because of poor problem solving capabilities
[10, 29]. Recent research has been arguing in favor of and exten-
sively advocating the use of peer-designed agents (PDAs) — com-
puter agents developed by human subjects — as an effective means
for modeling the behavior of MAS whereby the acting individuals
are people [6, 8]. The advantage of using PDAs in that sense (as
opposed to “expert-designed agents”, for example) is that it allows
the generation of a rich set of strategies with a substantially small
overhead, in a timely manner and with much parallelism in the pro-
cess [6]. The underlying assumption in these works is that PDAs
capture people’s behavior adequately, and therefore the PDA-based
system, if equipped with enough PDAs to reliably capture the diver-
sity in people’s behavior, is likely to represent a collective behavior
similar to when populated with people [5]. As such, much work
has been dedicated to empirically investigating the level of similar-
ity observed between PDAs and people. The results reported are not
conclusive — some works suggest a relatively strong correlation be-
tween the behaviors of the two (e.g., [5]), while other works report
on PDAs that act to some extent in a different manner than people [9,
23]. In an effort to resolve the conflict, recent work has shown that
the success of using PDAs as a substitute of people is both setting-
and measure-dependent, therefore the preference of PDAs for mech-
anism evaluation must be re-evaluated whenever switching to a new
setting or using a different measure [8].

While prior literature dedicated to evaluating the suitability of
PDAs as reliable representatives of people is substantial, to the best
of our knowledge, it is all based on either: (a) a comparison of in-
dividual decisions made by a PDA and the person who designed its
strategy, in similar decision situations [5]; or (b) a comparison of
the average or other stylized facts at the system level [8, 16, 2, 18]
in order to determine similarity between PDA-based and people-
based behaviors. None of these works has explored the possibility
of comparing the distribution of behaviors emerging in a given set-
ting when using the two approaches. Nevertheless, in many settings
the “average” behavior does not capture enough information and an
agent’s design can be substantially improved if supplied with the
distribution of choices made by the population of other agents in a
specific scenario. For example, when designing an agent for ultima-
tum games or sealed bid auctions, there is only trivial benefit from
knowing the average acceptance value (cross-opponents) or the av-
erage bid made by others. In this case the agent’s best-response
strategy is derived based on the probability distribution of values
[7, 14]. Therefore, comparing the distribution of choices made by
PDAs and individuals of the population of interest, in a given envi-
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ronment, is a better and more reliable measure for determining the
level of similarity between the two.

Furthermore, none of the prior work has attempted to supply any
evidence to the benefit of requesting individuals to program PDAs
rather than simply expressing their strategy. In the latter case, a pro-
fessional programmer could have been used to do the coding. This
issue may have substantial implications since PDAs programming
requires some basic programming knowledge and skills. The con-
straint of using programmers may suggest, in some settings, that
the PDAs used are programmed by individuals from a population
that does not adequately represent the population of interest (behav-
iors from the population the designer is trying to extract). There-
fore, if the requirement for actually programming the strategy can
be waived, a more adequate set of PDAs can be produced.

Motivated by PDA-related research and practice, this paper makes
an important leap forward in advancing PDA research by: (a) pro-
viding empirical evidence of its success in assessing the strategic
behavior of a population in the form of the resulting distribution of
outcomes; and (b) comparing the performance of the PDA-based
method to an alternative approach that uses ESAs — agents whose
strategies were expressed by individuals of the population of in-
terest and then programmed by a programmer. The evaluation re-
ported in the paper encompasses three different games of different
domains, overall with eight different problem settings. It relies on
experimenting with 708 human subjects that generated 5, 599 dif-
ferent observations (which, to the best of our knowledge, is more
than an order of magnitude greater than any former PDA research),
132 PDAs, each, within a given domain, designed by a different
subject, and 132 ESAs whose strategies were described, rather than
programmed, by subjects.

The analysis of our results indeed shows that PDAs can be used
effectively to assess a population’s strategic behavior, whenever the
similarity between the population who programmed the PDAs and
the population of interest is sufficiently high. Since ESAs have been
found to perform worse than PDAs, it is evident that there is much
added benefit to PDA developers programming the agent. In ad-
dition, we demonstrate the advantage of using PDAs for different
variations of a given game. Thus, even though acquiring a PDA
incurs some overhead, the ability to adapt and extend it to various
settings of the environment, reduces the total cost and makes the
method an appealing research tool.

2. RELATED WORK
Many approaches have been taken over the years to generate a

reliable set of agent behaviors for a given environment, including
the use of expert designed agents, modeling based on statistical data
[30], strategy development based on a pre-defined set of events and
reactions [21], the construction of complex behaviors based on a
set of simple ones [31], a combination of rules and finite state ma-
chines to control an agent’s behavior [32], and participatory simu-
lations [12]. While these approaches have yielded many interesting
results their main weakness is in generalizing the behaviors to sit-
uations different from those used to collect the real data which the
strategies constructed were based. For example, it was shown that
the resemblance between people and agents reported for the double
auction environment does not hold once the value of one of the mar-
ket parameters slightly changes [4]. In this sense, PDA technology
offers a great promise for system and agent designers if indeed it is
capable of reliably capturing the distribution of people’s behaviors
in a given domain. The method is inspired by the “strategy method”
paradigm from behavioral economics [26] in the sense of eliciting
people’s strategy. Nevertheless, while in the strategy method people
state their action for every possible situation that may arise in their
interaction (i.e., a state-machine-like description) with PDAs people

are actually required to program their (not-necessarily-state-based)
strategy into an agent.

As discussed in more detail in the previous section, the efficacy
of using PDAs is inconclusive. Furthermore, there is vast evidence
in prior work, originating in a variety of domains, of discrepan-
cies between actual and reported human behavior, in particular in
metacognition research [11]. Examples of such discrepancies in-
clude over-reporting of political participation [3] and contrasting re-
sults between self-reported and performance-based levels of physi-
cal limitations [15]. Indeed, part of the PDA-based literature uses
the technology per-se and does not attempt to make any claims re-
garding the similarity between the agents and some population of
interest (e.g., in TAC [25]). Yet, much of the PDA literature tends to
assume that people can successfully (to some extent) capture their
real-life strategy in a given domain when programming an agent
[23]. Recently, Elmalech and Sarne [8] showed that the success of
PDAs in reliably capturing the average behavior in one setting can-
not be trivially generalized to others, which perhaps is essentially
the main drawback of PDAs.

Regardless of the nature of the results reported in prior work, the
experimental methodology used was limited to comparing a specific
measure’s outcome or some stylized facts (e.g., [16]) or to compar-
ing individual decisions of PDAs and their generators in similar sit-
uations as a means of determining the PDAs’ success. None of the
prior work has actually attempted to compare the collective set of
behaviors as a whole within the two populations, e.g., in the form
of comparing the resulting distribution of outcomes, as performed
in this paper. In this sense, it is possible that with the experimental
and analytic methodologies used in prior PDA research, the PDA
technology can be a suitable replacement for people in a given en-
vironment, though: (a) the PDAs produce a set of behaviors that
are similar to people’s behavior on average, however substantially
different individually; and/or (b) despite a substantial overlap be-
tween the behavior of PDA developers and of the PDAs they pro-
duce, the population of PDA developers does not adequately repre-
sent the population of interest. The methodology used in this paper
attempts to overcome these two shortcomings.

3. EVALUATION METHODOLOGY
In this section we describe our multi-game/multi-variation eval-

uation methodology. We first outline the goals and scope set for
the experiments. Then, we describe the different populations from
which individuals were recruited to take part in the experiments. We
continue with a description of the three games used and their specific
problem setting variations, followed by a description of the software
infrastructures used and the experiments conducted. Finally, we de-
scribe the experimental methods and the statistical methodology that
was used to analyze the results obtained.

3.1 Goals and Scope
Two primary goals were set for the experiments. The first was to

demonstrate the feasibility of using PDAs for capturing the distribu-
tion of exhibited behaviors, as a whole, in a given population. This,
as opposed to estimating some average or any other stylized facts.
As discussed in the introduction, in many domains the capability of
reliably capturing the behaviors distribution of a population is crit-
ical to provide the best response. Second, we aimed to compare
the accuracy of PDA-based and ESA-based generated distributions.
The purpose of this comparison was two fold. First, since ESAs are
a natural choice and use subjects from the actual population of in-
terest (compared to PDAs that can be programmed only by a small
portion of the population, i.e., those with programming skills) they
are a useful benchmark for comparison. Second, since both methods
are based on capturing one’s stated strategy, the difference between
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the two may be attributed to the fact that with PDAs one needs to
actually program its strategy rather than merely express it.

3.2 Populations and Samples
Our experiments considered two primary populations: a general

one, and a more specific one (subset of the general one, comprising
individuals that can program agents).

General Population.
The population for which our experiments attempted to replicate

its distribution of behaviors is the general population of subjects one
may find in the Amazon Mechanical Turk framework (AMT).1 The
AMT framework allows the publishing of tasks designated for peo-
ple all around the world. Empirical findings [22] suggest that AMT
can serve as a viable alternative for data collection, as subjects from
AMT exhibit the classic heuristics and biases and pay attention to
directions at least as much as subjects from traditional sources. In
order to construct the distribution of behaviors which characterizes
this population, we recruited a large set of participants from the
AMT platform.2 These participants were also used to gather the
strategies upon which the ESAs developed were based.

PDA Developers.
Naturally, the population of PDAs’ developers includes only peo-

ple who were capable of designing and expressing their strategy in
a way that could be programmed into a computer agent. Therefore,
this population was based on computer science and engineering stu-
dents. Indeed, as evidenced in our results section, expressing one’s
strategy to a level that can be programmed into an agent, is not triv-
ial for the general population.

3.3 Games
Three games of three different domains were used for our experi-

ments: the joint shopping game, Blackjack and the centipede game.
For each game, a varying number of different problem settings was
used. The reason for using several games of different domains, and
different variations within each, was to strengthen the validly and
the ability of generalizing the results obtained. Furthermore, the
use of more than a single problem instance enabled reasoning about
the magnitude of influence the similarity between the population
who programmed the PDAs and the population of interest has on
the success of the PDAs in modeling the population of interest.

Joint shopping. This game involves a two-player coordination
game. Each player represents a shopper, interested in buying a spe-
cific product, that can be found in several different stores. A player
can check the posted price in any of the stores while incurring a cost
for each store checked. Once both players have completed their in-
dividual price-checking process, they meet and share prices so that
they both can use the minimum price found by either of them. While
the specific price at each store is a priori unknown, the players are fa-
miliar with the distribution from which prices are derived. The goal
of each player is to minimize her overall expense, measured as the
price paid for the product plus the accumulated costs individually in-
curred along her price-checking process. An agent’s best-response
strategy in this case depends on the distribution of the minimum
value returned as a result of the other player’s price-checking pro-
cess. Given the probability distribution function of this latter param-
eter, denoted fother(x), the agent needs to calculate the threshold r
which satisfies the following equation (see, for example, [19]):

1For a comparison between AMT and other recruitment methods
see [22].
2Since each participant in AMT has a unique ID, connected to a
unique bank account, it is possible to block the same ID from par-
ticipating more than once in a given experiment.

Parameter / Settings 1 2 3

Maximum stores 10 7 4
Store visit cost 3 5 7
Product’s price range 0-100 100-200 200-300

Table 1: Three different settings used in the joint shopping game.

c =

∫ r

y=−∞
f(y)

∫ ∞
x=−∞
(min(r, x)−min(y, x))fother(x)dxdy (1)

where c is the cost of checking a price in a store and f(y) is the
probability distribution function of prices in the stores available to
the agents. The agent should keep checking prices in the stores, as
long as the best (lowest) price it individually found so far is greater
than r. Therefore, the ability to model the distribution fother(x) in
this game is crucial for an agent that wishes to minimize its expected
overall expense. Three different settings of the game were used,
varying in the maximal number of stores each agent can check, the
cost c of visiting a store and the price range of the product prices
(taking the distribution of prices to be uniform within that range).
The different settings and their parameters are listed in Table 1.

Blackjack. This game considers a simplified version of the clas-
sic Blackjack game.3 The game involves the person playing and the
dealer. Both the player and the dealer initially receive two cards.
The player can either Hit, to obtain an additional card, or Stand to
end the game. The dealer has to hit until her cards total 17 or more
points. At the end of the game the player has to outrank the dealer
without busting (hand of cards that exceeds 21). Our simplification
of the game suggests that the deck of cards is re-shuffled at the be-
ginning of each game and that the player’s reward function assigns 1
for winning the game and 0 for losing it, i.e., no stakes are involved,
thus the player’s aim is simply to win the game.

In this game, from the casino’s point of view, there is a great ad-
vantage in knowing the proportion of winnings when players come
from a specific population, for example to determine an entrance
fee. With the PDA-generated data, the probability of the dealer win-
ning in a given game can be calculated using the probability distri-
bution of the sum of cards the player receives, denoted ppeople(y),
as follows:4

21∑
y=2

ppeople(y)

21∑
x=max(y,17)

pdealer(x) + (1−
21∑
y=2

ppeople(y)) (2)

where Pdealer(x) is the probability distribution function of sum of
the dealer’s cards at the end of the game when following the “hit
until cards total 17 or more points” rule. The first term in Equation
(2) relates to cases where the player ends up with a sum of 21 or
below, hence the dealer can win only if her cards total a greater sum,
up to 21. The second term relates to the case where the player has
busted, hence the dealer wins. The probability of having the player
win is the complementary probability of the above.

Centipede game. The centipede game, first introduced by Rosen-
thal [24], is a two-player extensive form game. In this game, each
player, on her turn, can either “Take” a larger share of an increas-
ing pot, or “Pass” the pot to the other player. The best response
action in this game depends on the probability the other player will
choose “Take” for the first time on turn i, denoted ppeople(i). The
agent’s expected-benefit-maximizing turn to first choose “Take” is

3http://wizardofodds.com/blackjack
4Of course one could have used the average number of winning di-
rectly from the PDAs’ data. Yet, the determination that the PDAs-
generated data appropriately represent the population of interest,
which is the condition for using this data in the first place, is stronger
when comparing the distribution of cards sums rather than merely
the winnings.
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Parameter / Settings 1 2 3 4

Maximum turns 6 6 4 4
Starting player P O P O

Table 2: Four different settings of the centipede game used in the experi-
mentation. P/O stands for the tested player or its opponent, respectively.

thus determined according to:

argmax
k

T∑
i=k+1

ppeople(i) · U(k) (3)

where T is the total number of turns in the game and U(i) is the
amount received if stopping on turn i. The equation essentially cal-
culates for each turn k the product of the player’s gain if the game
is terminated this turn and the probability the players will actually
reach that turn (i.e., the probability the other player will choose
“Take” later than turn k). This valuable information can assist an
automated agent in the decision of whether to choose “Take” in a
given stage, when matched with people from that population.

In this game we also experimented with several different settings
of the game. The initial pot in all settings was set at 5 and was
doubled each turn until the maximum number of possible turns was
reached. On any given turn, the player whose turn it is to choose
received 3

4
of the pot if she chooses “Take”. The four settings used

differ in the number of turns and the identity of the player who goes
first in the game (the experimenting subject or her opponent). The
different settings of the game are listed in Table 2 and are the same
as the ones tested with people in [20]. The theoretical Nash equi-
librium for this game is to always choose “Take”. If this strategy is
used the game ends in the very first round. Still, there is vast exper-
imental evidence that people do not adopt the equilibrium strategy
in this game [20].

These three games offer a variety of features. For example, in the
joint shopping game and the centipede game one must consider the
strategy of the other player, which is a priori unknown. In Black-
jack, the strategy of the dealer is a priori known, however the under-
lying optimization problem is complex for people in general. The
centipede game has an equilibrium that does not require any cal-
culation, whereas the equilibrium in joint shopping game is more
complex to derive. While these do not encompass the full set of
different features one might encounter in real life, the three games
seem to offer a decent range.

3.4 Experiment Infrastructure
To administrate the experiments using the AMT framework we

implemented a designated application for each game. The applica-
tion enabled the presentation of a clear description of the situation
needing a decision, at each point, and receipt of the participant’s
corresponding decision. One implementation detail that required
considerable care was the modeling of the opponent against whom
the people played. While pairing people for games was possible,
this approach had a significant drawback in the form of possible
influence from their experiences, and consequently their belief con-
cerning their counterparts’ strategies, on the strategy they will use
in subsequent games. Having a person play only once was infea-
sible since participants had to undergo a practice session to ensure
they understood the game rules. While this issue was completely
avoided in the BlackJack game, as the dealer’s strategy is a priori
defined and known to the user, a solution was required for the other
two games. Therefore, in the joint shopping game, we bypassed this
problem by telling participants that the results obtained by the other
player, in all games played, would be revealed only at the end of the
experiment, and only then their performance in the game would be
calculated. For the centipede game, we had to reveal the opponent’s
actions to the participants in real time. Therefore, we used the distri-

bution of first “Take” decisions according to the empirical findings
reported in [20] for the specific setting we used.

To allow the generation of PDAs for each game, we generated a
skeleton PDA, one for each game, according to the common prac-
tices used in recent PDA literature [8]. These skeleton agents were
equipped with all the functionalities needed, such as communication
and observation of the environment. They only lacked the strategy
that determines which actions they will take based on the inputs re-
ceived. Computer science students were given this skeleton in order
to develop PDAs, hence requested to program and debug only the
agent’s strategy. We also used these skeleton agents to implement
the ESAs by transferring the strategies described by the AMT play-
ers into codes.

3.5 Flow of the Experiment
All participants in our experiments were given detailed written

instructions, explaining the rules of the game, and their individual
goal according to which their performance would be calculated, for
the specific game of their experiment. In order to qualify to par-
ticipate in the experiment, the participants also had to undergo a
short multiple choice test, verifying that they carefully read the in-
structions and understood the rules and the method of measuring
their performance. In all three games a participant’s performance
was calculated according to the average “score” she achieved in the
game instances played: (a) in the joint shopping game the score in
a game was considered the individual expense; (b) in the Blackjack
game the score was 1 if the player won the game and otherwise zero;
and (c) in the centipede game, the score was the amount received
upon a “Take”. The performance measure was used to compensate
participants linear to their performance.

After reading the game instructions and passing the qualification
test, all participants (both AMT and CS/Engineering students) were
requested to play several practice games (3-5 mandatory practice
games, depending on the game; each subject could extend the prac-
tice stage until she felt confident in her ability to succeed). The
games in the practice games included all game variants (whenever
applicable). Once the participants felt ready, they were requested to
play several instances of the specific game in which they were par-
ticipating. The instances were of all variants of the specific game,
and were presented to the participant in a random order to avoid
bias. Then, the participants were requested to either express the
strategy they use in this game, in free form text (AMT participants),
or develop a PDA based on a skeleton supplied, using the strategy
they use for this game (CS/Engineering students).5 Each valid (i.e.,
programmable) strategy that was expressed by an AMT participant
was used by us to program an ESA. Nonetheless, in order to keep
conditions equal, we stopped developing ESAs once we reached the
same number of valid PDAs received for each game.

Both the PDA-developers and AMT participants expressing their
strategy were asked to use a general strategy that does not apply to
a specific game variant of the game used (e.g., in the joint shopping
application PDAs were requested to use as an input the number of
stores that can be visited, any store visit cost, and any interval on
which the price-distribution is defined. In the same sense AMT par-
ticipants were requested to set their strategy capable of handling
these parameters). The purpose of this requirement was to allow
the use of any of the PDAs/ESAs in all the variants tested. While
this suggested a slight compromise in the level of accuracy that can
be obtained with the use of the PDAs/ESAs, it served our purpose
well, i.e. to show that PDAs encompass the benefit of being able

5This followed the common practice used in PDAs development,
to ensure that the programmed strategy resembles the one the PDA
developer uses in real life (e.g., see [6]).
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Figure 1: The experimental methodology.

to be used for a wide range of settings without having to be re-
programmed, and the failure of ESAs as a general modeling tool.

The following data was stored for each game played, either by a
person, a PDA or an ESA:

• Joint shopping - the lowest price found by the player through-
out the game.

• Blackjack - The sum of card values the player ended up with.
• Centipede game - the turn the game ended.

Therefore, after completing the experiments we had the following
datasets for each game variant in the three domains (see Figure 1):

• General population distribution - the set of observations col-
lected from the games played by people from AMT (i.e., cor-
responding to the general population).

• ESA-based distribution - the set of observations collected from
the set of ESAs that played the specific game variant several
times.

• PDA-based distribution - the set of observations collected from
the set of PDAs that played the speciic game variant several
times.

• Strategy designers’ distribution - the set of observations col-
lected from the games played by the PDA developers them-
selves (i.e., corresponding to the PDA developer population).

The first dataset among the above four is in fact the distribution
that needs to be modeled. The PDA-based and ESA-based datasets
are the distributions one is likely to obtain with the two distribu-
tions that generate the methods evaluated in this paper. These can
be potentially utilized in agent design to extract the agent’s best-
response strategy for the applicable game, as explained and exem-
plified above. Therefore, the main comparisons that were carried
out were between the distribution represented by the first dataset
and the latter two datasets. The last dataset was used to evaluate the
level of similarity between CS/Engineering students and the general
population, therefore it was compared with the first dataset.

3.6 Statistical Measures
To facilitate a comprehensive validation and understanding of the

results, several measures and comparisons were used. First, we
ran the Kolmogorov-Smirnov statistical test ([28], Chapter 2) based
on the population of interest (General population dataset) and each
of the two other datasets (ESA- and PDA-based datasets). The
Kolmogorov-Smirnov test (hereafter denoted K-S) is a nonparamet-
ric test that compares the cumulative distributions of two datasets.
Its null hypothesis is that the data in the two datasets are from the
same distribution. Therefore, this test is a natural candidate for iden-
tifying the cases where the population of interest and the sample
produced with any of the methods were not taken from the same
population (i.e., when the null hypothesis is rejected).

An additional complementary measure that was calculated to sup-
port the analysis is the similarity between the PDA developers and
the general population of interest. This was measured based on the

p-value obtained by comparing the first and fourth datasets. This
measure was calculated both when taking the complete datasets, and
also for subsets of varying sizes taken from these two datasets. The
first was used as the ultimate measure for the similarity between
the two populations (programmers versus people in general) and the
second was used to evaluate the overhead required for reasoning
about the similarity between the two populations in general, as ex-
plained in more detail in the following section.

In order to reduce the dependence of the findings on the specific
statistical test used, we repeated the analysis of the results, this time,
however, using the Wilcoxon rank sum test ([28], Chapter 2). The
Wilcoxon rank sum test is a non-parametric test, designated to test
the difference between two samples by comparing the two popula-
tion medians.

4. EXPERIMENTS AND RESULTS
In this section we report the results of the analysis carried out.

Due to space considerations, the results reported are those obtained
using the K-S statistical test. Towards the end of the section we
briefly discuss the differences between these results and those ob-
tained with the Wilcoxon rank-sum test.

Overall, there were 135 different PDA developers (CS and En-
gineering students) and 573 different AMT human participants who
took part in the experiments. Of the 135 PDA developers, 62, 40 and
33 took part in the joint shopping, Blackjack and centipede games,
respectively. Of the 573 AMT human participants, 160, 247 and
166 took part in the joint shopping, Blackjack and centipede games,
respectively. The number of games each student or AMT partic-
ipant played was: 3, 2 and 3 (for variants 1-3 of the joint shop-
ping game), 5 (for the BlackJack game) and 3 (for each variant of
the centipede game). Table 3 summarizes the number of observa-
tions collected from the PDA developers’ games (denoted “CS”), the
number of functional PDAs and ESAs developed (denoted “PDAs”
and “ESAs”, respectively) and the number of observations collected
from the AMT participants’ games. Note that the number of PDAs
listed in the table for each game is slightly smaller than the number
of students that took part in the game, because the table lists only
the functional agents that were produced. The table also includes,
for each game and setting, the p-value of the K-S test comparing the
AMT population and the last dataset (CS-played games) as a mea-
sure of the similarity between the computer science subjects and
the population gathered from AMT. Based on the value received, it
is apparent that CS/Engineering students play BlackJack differently
than AMT participants and play the other two games quite similar to
them. The only exception in this sense is the similarity between the
two groups in the third setting of the joint shopping game (which
is substantially low). This can be explained by the relatively low
number of stores and the relatively high cost of price checking char-
acterizing this setting. With these values, the optimal strategy for
the agent is to check only one store, regardless of the strategy of the
other player, which might be easier for CS students to grasp.

One notable result from our attempts to produce ESAs is that the
process is associated with substantial overhead. While participants
were specifically requested to describe a strategy that we could then
program into a computer agent, only a very small percentage of the
strategies received were actually “programmable”. This can be seen
from the ESA column in Table 3, where the numbers in the paren-
thesis represent the numbers of strategies we had to review until
we reached the same number of valid strategies as the number of
PDAs obtained. The numbers given in the column corresponds to
38%, 46% and 19% programmable strategies specified in the joint
shopping, Blackjack, and centipede, respectively. For the Blackjack
game the results are more encouraging, mainly due to the fact that
the game is simpler and the threshold for hitting or standing was
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Game and Settings CS PDAs ESAs AMT Similarity

Joint Shopping 1 186 60 (62) 60 (160) 480 0.54
2 124 60 (62) 60 (160) 320 0.52
3 186 60 (62) 60 (160) 480 0.02

Blackjack 1 200 40 (40) 40 (86) 1,235 0.00

Centipede 1 99 32 (33) 32 (166) 498 0.78
2 99 32 (33) 32 (166) 498 0.58
3 99 32 (33) 32 (166) 498 0.62
4 99 32 (33) 32 (166) 498 0.51

Table 3: Number of observations (CS and AMT), PDAs and ESAs in the
different settings, as well as the similarity of computer science (CS) sub-
jects to the same population populated from AMT in the different games and
settings. Similarity was measured using the Kolmogorov-Smirnov test.

written clearly in the people’s strategy. Nevertheless, even in this
game many of the strategies received were too obscure, vague or
nonspecific enough to allow the generation of an agent, e.g., a strat-
egy stating that if the sum of cards is “close” to 21 then stand, and
otherwise hit. This strategy is not specific enough to program an
ESA. This tendency to use subjective conditions as part of the ex-
pressed strategy was reflected to a greater extent in the other two
games. For example, in the joint shopping game we frequently
ran into strategies that advocated browsing until a price is found
which is “significantly below the other prices or not worth to con-
tinue browsing”. In contrast to ESAs, PDAs were generally valid,
and the only problem encountered was with agents that got stuck in
some states or crashed. Still, the number of such cases is negligi-
ble (as can be seen by the difference between the overall number of
PDAs received, in parenthesis in the PDA column, and the number
of valid PDAs).

Figure 2 presents the K-S p-value as a function of the agent-
based dataset size used, for each of the different variants of the three
games. The different curves differ in the size of the pool of agents
(either PDAs or ESAs) that were used for generating the data, and
each data point is the average of 10,000 p-value results of a specific
combination of these different parameters values. For example, in
the most upper left graph in Fig. 2 each data point of the curve 35
PDAs is the average of the 10,000 p-values obtained when compar-
ing a subset of size x values (according to the horizontal axis) gener-
ated using 35 random PDAs from the total 60 available. The purpose
of the graphs is to demonstrate that the p-valueswe use for the anal-
ysis, which are those obtained with datasets of size 10,000, are those
the system has converged to, and none of the conclusions made re-
sult from using a dataset of insufficient size. The idea in presenting
the different curves, corresponding to different agent pool sizes, is to
show the effect of the number of agents used, overall, over the level
of similarity achieved. Intuitively, the greater the number of PDAs
or ESAs programmed, the greater the chance that, if the method
is indeed effective in terms of modeling the behavior of the popu-
lation of interest, the agents will be capable of exhibiting a richer
set of behaviors, therefore performing more closely to the popula-
tion of interest. The fact that each time we re-sampled the pool of
PDAs/ESAs from the full repository, assures that the results are not
biased due to running into a poor or favorable set of strategies.

Figure 2 demonstrates that only with one setting of the joint shop-
ping (setting 3) and in the Blackjack game the null hypothesis, whereby
the PDAs-generated samples and the sample taken from the pop-
ulation of interest were taken from the same populations, can be
rejected (e.g., with α = 0.05). The statistical tests executed for
all other cases with PDAs yielded p-values that are substantially
greater than what is typically used to reject the null hypothesis (e.g.,
greater than 0.2 and in some cases even 0.5 and 0.8). The only
factor that differentiates the two cases, whereby the null hypothesis
is rejected, from the other cases is in which the level of similarity
between the PDA developers and the population of interest, as re-

flected in the K-S p-value for the two (see the last column in Table
3), is relatively low (0.02 for the third setting of the joint shop-
ping, and 0 for Blackjack). This explanatory factor is quite straight-
forward — if the similarity between the PDA developers and the
population of interest is a priori low, then modeling the latter using
strategies designed by the first is likely to be futile.

Interestingly, even with a moderate number of PDAs (e.g., with
10 or with 20), we were able to obtain good results, making it very
difficult to reject the null hypothesis regarding the similarity be-
tween the two populations. This is in contrast to results obtained
with the ESAs, where substantially worse results were revealed. In
most cases the statistical tests for the maximum number of ESAs
yielded p-values below 0.05, thus rejecting the null hypothesis that
ESAs-generated samples and the sample taken from the population
of interest were taken from the same populations. Only in three set-
tings (one of the joint shopping and two of the centipede games)
the p-values obtained were higher than 0.05. Still, in those cases
the p-values obtained with the PDAs were substantially greater
than those attained with ESAs (for the centipede game) or were ini-
tially insignificant (for the joint shopping variant), indicating that
the method was not suitable for these variants in the first place.

One important phenomena reflected in the different graphs relates
to the benefit in increasing the pool of PDAs/ESAs used for gener-
ating the datasets. Whenever the similarity between the population
was high an increase in the number of agents generated higher p-
values, whereas in the other cases a reverse phenomenon was re-
vealed, indicating that the method is useless. This is because, as
discussed above, when PDA/ESA technology is generally suitable
for a given setting, having more agents is generally beneficial, as
it enables the emulation of behaviors that are even less common in
the population of interest. However, when the approach is a priori
not suitable for a given setting (i.e., due to the initial low resem-
blance between the PDA-developers and the population of interest)
the influence of agents that do correspond well to some individu-
als from the population of interest becomes more apparent with a
small pool of agents. This is the case because even if these agents
are more likely to be initially picked, the portion of the observations
they will produce will be substantial, resulting in relatively high p-
value whenever picked. With a large pool, however, even though
they will be initially picked more often, their influence in each run
for the most part will be almost insignificant.

As the strength and efficacy of PDAs is shown to rely highly on
the similarity between those who programmed the PDAs and the
target population, we administrated an additional battery of experi-
ments to assure that the similarity can be easily measured based on a
small sample of the population. In these experiments we incremen-
tally compared the subjects who programmed the PDAs to the target
population from AMT using the K-S test. The results, depicted in
Fig. 2 (bottom right graph), show the average p-value over 10,000
trials for each population size, i.e., each time taking two subsets of
a similar size from the two populations. It can be seen that even
when a small amount of subjects is tested a rather accurate conclu-
sion can be reached regarding the nature of the similarity between
the two populations; thus the usefulness of the PDAs in this case can
be determined.

A comparable analysis based on the Wilcoxon rank-sum test yielded
similar qualitative results. Table 4 summarizes the qualitative simi-
larities and differences in the results when the analysis is performed
based on K-S compared to the results based on the Wilcoxon rank
sum test. The comparison is with respect to the decision of whether
to accept or reject the null hypothesis (withα = 0.05), denoted “Ac-
ceptance”, and the determination regarding the similarity between
PDA developers and the population of interest, based on small sam-
ples as given in bottom right graph in Fig. 2, denoted “Trendline”.

954



Figure 2: Results for the joint shopping, Blackjack and the centipede game using Kolmogorov-Smirnov test and similarity analysis between computer science
students and the target population from AMT.

Game and Settings PDAs ESAs
Acceptance Trendline Acceptance Trendline

Joint Shopping 1 = 6= = =
2 = 6= 6= =
3 = = = =

Blackjack 1 = = = =

Centipede 1 = = = =
2 = = = =
3 = = = =
4 = = = =

Table 4: Qualitative similarities and differences in the results of PDAs and
ESAs when the analysis is performed based on K-S compared to the anal-
ysis based on the Wilcoxon rank sum test for all games and settings, with
respect to acceptance/rejection of the null hypothesis (with α = 0.05) and
the trendline of the similarity based on the population size.

5. CONCLUSIONS
The results reported in the paper are encouraging in the sense that

whenever the behavior of PDA’ developers and individuals of the
population of interest is sufficiently similar, PDA technology is an
efficient means for extracting an accurate distribution of behaviors
found in the population of interest. In all the experimental settings,
where the statistical test indicated a reasonable similarity between
the two populations, even with a moderate number of PDAs, we
revealed distributions whereby the K-S p-value, when compared
with the population of interest, was far from a rejection of the null
hypothesis that the two samples are from the same population. The
fact that the same set of PDAs was proved to be useful in more than
a single setting of a given game further strengthens our findings that
this method is an efficient alternative to other methods.
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Indeed, before using PDAs the level of similarity obtained be-
tween the population of PDA developers and the population of in-
terest needs to be checked, since this parameter has a critical effect
on performance. This holds when using the same PDAs for differ-
ent variants of the same problem setting. Naturally, this raises the
question of whether the additional overhead associated with such
a comparison does not make the whole process futile. Our results
show that one can correctly determine whether or not the two pop-
ulations are alike even with relatively small samples. Therefore, the
method can and should be used with a relatively small overhead of
extracting small samples from both populations by carefully check-
ing the similarity and then proceeding with PDAs whenever a level
of similarity considered to be reasonable is found.

The comparison between PDAs and ESAs in this sense offers sev-
eral important insights. First, we observe that PDAs, whenever ap-
plicable, performed substantially better than ESAs. This is in spite
of the fact that the ESAs are produced by a set of individuals that
better represent the population of interest. This finding suggests
that there is much more to PDA technology than simply express-
ing one’s strategy. Another possible explanation for the success of
PDAs compared to ESAs is that the PDA developer population is
better at generalizing and expressing their strategy than the general
population. We note that ESAs are not only less efficient, but also,
as reported in the preceding section, more difficult to produce due to
the substantial overhead in the form of the exceptionally low ratio of
strategies that can actually be programmed from of the total number
of strategies collected.

Future work warrants investigation of the possible tradeoff be-
tween the amount of distinguished PDAs required to efficiently sub-
stitute people in modeling the distribution of behaviors of a given
population. Another venue is to better understand the limitations of
elicited strategies and use PDAs as a tool to better elicit strategies
from people.
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