
Evaluating Coverage Based Intention Selection

Max Waters
RMIT University

Melbourne, Australia
max.waters@rmit.edu.au

Lin Padgham
RMIT University

Melbourne, Australia
lin.padgham@rmit.edu.au

Sebastian Sardina
RMIT University

Melbourne, Australia
sebastian.sardina@rmit.edu.au

ABSTRACT
The Belief Desire Intention (BDI) agent paradigm provides a pow-
erful basis for developing complex systems based on autonomous
intelligent agents. These agents have, at any point in time, a set of
intentions, the various tasks the agent is working on which repre-
sent the agent’s multiple focus of attention. Despite its importance
for intelligent behaviour, the problem of selecting which intention
to progress at any point in time has received almost no attention
and has been left to the programmer to resolve in an application-
dependent manner. In this paper we implement and evaluate a pre-
vious proposal for domain-independent intention selection using
the notion of plan “coverage,” as well as a slight variation which we
predicted to perform better. We compare these with the commonly
used intention selection mechanisms of First-In-First-Out (FIFO)
and Round Robin (RR). We show that the coverage-based technique
performs better under all circumstances, but particularly with low
coverage and volatile environments. Interestingly, we found that a
simple one-step look-ahead applicability check is responsible for
the largest part of the improvement. This is important in that this
can readily be applied to FIFO and RR, giving an extremely simple
and effective mechanism to be added to existing BDI frameworks.

Categories and Subject Descriptors
I.2.5 [Computing Methodologies]: Artificial Intelligence—Pro-
gramming Languages and Software

General Terms
Algorithms, Experimentation, Performance

Keywords
Intention selection, agent reasoning, BDI agents

1. INTRODUCTION
This work is concerned with the important problem of inten-

tion selection in intelligent agent systems. Intelligent autonomous
agents are expected to be able to act appropriately in complex dy-
namic environments, to achieve their overall goals. The Belief
Desire Intention (BDI) paradigm and associated programming lan-
guages and implemented toolkits are amongst the most successful
approaches to realising smart autonomous agents. Under such a

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and
Michael Huhns (eds.), Proceedings of the 13th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS
2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

paradigm, the agent’s behavior arises from its intentions, the cur-
rent set of tasks that the agent has committed to realize—the agent’s
focus of attention. As agents will, in general, pursue multiple in-
tentions, a great deal of the power of the paradigm relies on the
mechanisms for selecting which intention to focus on at any partic-
ular step or point in time. (An equally important deliberation aspect
is how to advance the selected intention, depending on various situ-
ational factors.) However, the mechanisms generally supported by
typical BDI infrastructures for intention selection are very simplis-
tic. Many agent platforms, such as Jack [6], offer a choice between
Round Robin (RR), which does a fixed number of steps on each
intention in turn, or a First-In-First-Out (FIFO) queue, which pro-
cesses each intention in the order received, moving it to the back
of the queue if for some reason it suspends. Some systems such as
JAM [11] also allow priorities or utilities on goals and/or plans for
ordering the intention queue.

Some authors (e.g., [2, 20, 10, 22]) have investigated the schedul-
ing of intentions based on temporal information, such as either the
time a goal must be achieved by, and/or an estimate of the time
plans or goals take to execute. However, this information is gen-
erally not available in BDI programs written in popular BDI lan-
guages such as Jack, Jadex [13] or Jason [4]. Requiring program-
mers to add such information is cumbersome and often problem-
atic. Thangarajah et. al [19] suggested a generic mechanism re-
quiring no additional programmer-provided information. This was
based on compile-time calculations of plans’ coverage which, at the
basic level, represents the percentage of world states which have
some applicable plan for any subgoal within an intention. They de-
fined how this measure could be extended to capture the inherited
effects of lack of coverage of subgoals. They then specified how
this could be used to (amongst other things) focus on potentially
vulnerable intentions that were currently progressable. This mech-
anism is appealing in that it is application-independent and can be
accommodated into the agent execution infrastructure to ensure that
agents deliberate “intelligently” without the need for this to be ex-
plicitly programmed by the developer. Unfortunately though, the
approach had not been implemented or evaluated and hence its ac-
tual benefits cannot be concretely stated.

In this work, we empirically evaluate the coverage-based inten-
tion selection approach (and a slightly improved variation), and
compare it experimentally with both FIFO and single-step RR. En-
couragingly, the proportion of successfully completed intentions
increases by 60 (FIFO) and 62 (RR) percentage points, in volatile
environments, where the plan library contains significant gaps in
coverage. More importantly, in further analysis and experimenta-
tion, we identify a particular aspect of the approach which is re-
sponsible for the majority of the improvement, and can be incorpo-
rated into standard FIFO and RR with minimal effort.

957



We first provide some background on the problem of agent in-
tention selection, including an overview of the coverage-based ap-
proach described in [19]. We then describe the details of the exper-
iments run (including the structure of the programs used), followed
by the results. In Section 5 we analyse two separable aspects of
the coverage-based selection approach, and conclude that, surpris-
ingly, the major part of the gain comes from a simple progressabil-
ity check as part of the intention selection. This is then applied to
both FIFO and RR, giving gains of up to 48 percentage points.

2. THE INTENTION SELECTION TASK
BDI agent-oriented programming is a popular, well-studied, and

practical paradigm for building intelligent agents situated in com-
plex and dynamic environments with (soft) real-time reasoning and
control requirements [1, 9]. Besides its philosophical roots in prac-
tical reasoning [5] and theoretical understandings [7, 15, 17], there
is a plethora of BDI-style programming languages and systems
available, such as Jack, Jason, Jadex, 2APL, and GOAL [3, 8].

A typical BDI-style agent system is depicted in Figure 1(a). An
agent consists of a belief base B (the agent’s knowledge about the
world), a set of recorded pending events or goals, a plan library
(encoding the typical operational procedures of the domain), and
an intention base (storing the plans/programs that the agent has al-
ready committed to and is executing).

Almost all BDI systems realize, in one way or another, the basic
abstract rational interpreter described by Rao and Georgeff [16] and
Bratman et. al’s [5] IRMA rational architecture. In a nutshell, the
BDI execution engine in Figure 1(a) responds to events—the inputs
to the system—by selecting some of the pending events to handle
(i.e., to respond to), selecting adequate operational programs from
the plan library for handling such events, and selecting some cur-
rent intentions to advance, that is, to actually execute. There are
thus three important choice points in a rational agent framework.
In this work, we are concerned with the latter one, namely, how to
select which intention to advance next at a given point.

At every step along the execution of an agent system, the inten-
tion base represents the different focuses of attention the system
has in order to respond to those events that the agent has commit-
ted to address [5]. The overarching objective is for the system to be
successful in carrying out all those intention programs to comple-
tion, thus resolving the corresponding events. A problem, though,
is that some such programs may end up failing because their execu-
tion context changes in unexpected ways. This could happen due to
changes in the environment or due to negative interactions among
the various executing intentions.

To tackle various contexts and unexpected changes, it is desirable
for a BDI plan library to contain, for each event of concern, a selec-
tion of different strategies which covers as wide a range of poten-
tial situations as possible. For example, an aircraft controller may
include landing procedures for different weather conditions. How-
ever, in most realistic scenarios, it is not feasible, or even possible,
to provide concrete strategies for every possible situation. Like any
knowledge, the agent’s know-how will be intrinsically incomplete
and have “gaps.” If the agent is able to intelligently address its in-
tentions when the situation for doing so matches its know-how, the
chances of success will be improved.

The problem of intention selection is at the core of the BDI ap-
proach: which intention should the agent select next for execution?
Together with the deliberation mechanisms for event and plan se-
lection, it provides the actual “intelligence” of the whole frame-
work. Unfortunately, however, the problem has been little stud-
ied and solutions are either extremely simplistic or are reliant on
application-specific programming to provide the desired control.

A recent paper [19] suggested an interesting domain-independent
approach to reasoning about intention selection, based on informa-
tion which is already available in the BDI program, or can be com-
puted at compile-time. It is this approach, based on calculations
regarding gaps in agent “know-how” or coverage which we imple-
ment and then evaluate in Sections 3 and 4.

2.1 Coverage-based Intention Selection
The basic idea of the intention selection process proposed in [19],

is to select, at every point, the intention that appears most “vulnera-
ble,” i.e., the one with the smallest executable context. The vulner-
ability of intentions is assessed using a refined version of plan cov-
erage as introduced for Agent Oriented Software Engineering [21].
Coverage denotes the completeness of the know-how available to
address a given event-goal, and is calculated in [19] using a model
counter reasoning over the space of the context conditions. The
lower the coverage for a goal, the less know-how there is available
for different situations and the more vulnerable the event is to fail-
ure. The intention scheduler proposed in [19] basically prioritises
intentions with low coverage, the intuition being that they should
be executed immediately while the opportunity exists.

In order to explain how the coverage calculations of [19] work,
we first describe the basic structure of BDI programs and the goal-
plan trees induced by the plan library.

Goal-Plan trees
Technically, a plan in the plan library is a rule of the form G :
ψ ← δ, meaning that program δ is a “reasonable strategy” to re-
solve event-goal G whenever the context condition ψ is believed
to be true. Among other operations, program δ typically includes
the execution of primitive actions (act) in the environment and the
“posting" of new subgoal events (!G) that ought to be resolved by
selecting (other) suitable plans. A plan may be selected for ad-
dressing an event if it is relevant and applicable, that is, if it is a
plan designed for the event in question and its context condition
is believed true. In contrast with traditional planning, execution
happens at each step. The assumption is that the use of plans’ con-
text preconditions to make choices as late as possible, together with
the built-in goal-failure mechanisms, ensures that a successful ex-
ecution will eventually be obtained while the system is sufficiently
responsive to changes in the environment.

By grouping together plans responding to the same event type,
the plan library induces goal-plan tree templates of the sort shown
in Figure 1(b): a goal (or event) node (e.g., event-goal G1) has
children representing the alternative relevant plans for achieving it
(e.g., plans P1 and P2), which, in turn, have children nodes repre-
senting the subgoals (including primitive actions) of the plan (e.g.,
subgoals G2 and G1 in plan P1). These structures can be seen as
AND/OR trees: for a plan to succeed all the subgoals and actions
of the plan must be successful (AND); for a subgoal to succeed one
of the plans to achieve it must succeed (OR). Leaf plans (e.g., P3

to P8) include no subgoals, but only primitive actions.

Coverage calculations
In [19], the authors proposed a method to measure the coverage
of plans and goals, including the idea of inherited or propagated
coverage in the subtree below a particular goal. Firstly, the basic
coverage CB of a plan is the fraction of the state space where the
plan is applicable, that is, where it can be used. This can be cal-
culated based on the plan’s context condition. While [19] uses a
model counter to calculate this, we use simplified representations
where the coverage can be directly extracted. For example, plan P2

has a 0.5 (or 50%) coverage: its context condition states that the

958



SENSORS

ACTUATORS

dynamic static

Beliefs

E
n v

ir
on

m
en

t
Pending Events

Intention Stacks

BDI engine

actions

events

Plan
library

(a) A typical BDI-style architecture [17].

G1 CE = 0.59375

P1
CB = 0.5
CE = 0.4375

G2CE = 0.5

P3

B

G3 CE = 0.875

P4

C ∨ D

P5

D ∨ E

A

P2
CB = 0.5
CE = 0.75

G4 CE = 0.75

P6

D ∧ E

P7

D ∧ ¬E

P8

¬D ∧ E

¬A

(b) Goal-plan hierarchy for goalG1, with context conditions (edges’
labels) and basic and extended coverage measures (CB and CE).

Figure 1: A BDI agent system architecture and a goal-plan tree hierarchy implicit in the plan library.

plan is applicable in all worlds where proposition A holds true.1

Because both D and E ought to be true for plan P6 to be appli-
cable, its basic coverage amounts to 0.25 (or 25%). The cover-
age of a goal is essentially the sum of the coverage of its plans.2

However the basic coverage of plans is not sufficient as it does not
consider the fact that BDI plans will most often include subgoals,
and any compromise in the coverage of a subgoal will affect the
vulnerability of the higher level goal. Consequently an extended
coverage CE is defined which takes into account the whole goal-
plan hierarchy. The extended coverage of a plan is then calculated
by multiplying its basic coverage by the product of the coverage
of its subgoals (as all must succeed for the plan to succeed). The
extended coverage of a goal is obtained by summing the extended
coverage of all relevant plans (with the necessary adjustments for
overlap). Figure 1(b) shows the basic coverage of plans, and the
extended coverage of plans and goals.

Intention scheduling
We now describe the coverage-based intention scheduler proposed
in [19], which we refer to as C0, and a slight variation which we
propose should be better. Essentially, C0 maintains focus as long
as possible, reconsidering only when the current intention finishes,
blocks (e.g., while awaiting a message response), or becomes un-
progressable (i.e., posts a sub-goal with no applicable plans). When
it does change focus it does so to the progressable intention with
lowest coverage. Thus its first priority is progressability, its sec-
ond is maintaining the current focus, and its third is execution of
low coverage intentions. It is domain-independent and suitable for
integration into any BDI-style system.

However, C0 does not appear to take maximum advantage of op-
portunities to execute vulnerable intentions. We propose a slight
variation, which we will refer to as C1. This is a preemptive vari-
ation of C0 which emphasises the “opportunistic” prioritization of
low-coverage intentions. Whenever a sub-goal is posted, each in-
tention is re-assessed to calculate its coverage, and determine its

1We assume here equal likelihood of A and ¬A.
2We note that because context conditions of relevant plans (for a
given goal event) may overlap, the degree to which the various
plans overlap also needs to be calculated. Though not needed to
understand this paper, we refer the reader to [19] for details.

progressability, that is, whether its current sub-goal has any appli-
cable plans. The scheduler’s first priority is towards progressability
(i.e., the existence of an applicable plan), and its second priority
is to execute intentions with low coverage, even if it means sus-
pending the current intention. This preemption makes the sched-
uler more responsive to changes in the environment. If an environ-
mental change means that an intention with low coverage which
previously had no applicable plans can now be progressed, then the
scheduler can take the opportunity to change focus and execute the
lower coverage intention while the chance is there. Similarly, the
scheduler can respond to any changes in the coverage of the cur-
rently executing intention. As an intention’s plans are executed,
its coverage will change. The preemption allows the scheduler to
change focus to a lower coverage intention once, for example, a
plan relying on a p-effect (see Section 3) has been executed.

We now explain our experimental comparison of C0 and C1 with
both each other and with FIFO and RR.

3. EXPERIMENTAL SETUP
We have run a large number of experiments using automatically

generated goal-plan trees with different coverage levels, executed
in environments with varying dynamism. We describe the details
of these experiments, in particular, (a) the nature and form of the
goal-plan trees used and the source of coverage “gaps” on such
trees; (b) the way a dynamic environment is modelled; and (c) the
overall agent execution setup.

Goal-plan trees, p-effects, and coverage gaps
The goal-plan trees generated automatically for our experiment re-
semble a binary decision tree, where each goal is handled by two
plans, one requiring a particular variable in its context condition,
and the other requiring its negation. Each plan is either a leaf node
or posts exactly one subgoal. Note that the restriction to binary
trees simplifies the automatic generation and control of such tree
structures substantially, and is not a problem in itself, as single
propositions may stand for complex formulae that are abstracted
out. The simplification also means that we can calculate coverage
directly rather than using a model counter as in [19].3 The depth
3There are of course simplifications involved in having a single
goal, and in having no overlap between plans, but we believe these

959



G1

P1Ep = B

G2

P3Ep = ∅

G4

...

B

P4

¬B

A

P2 Ep = ¬C

G3

P5

C

P6 Ep = ∅

G5

...

¬C

¬A

Figure 2: A goal-plan structure for a goal G1 with plans anno-
tated with their p-effects Ep.

of a goal-plan tree is the maximum number of goals from the root
goal to a leaf plan (e.g., the tree in Figure 1(b) has a depth of two).

Probably the most important issue is the nature and form of the
coverage “gaps” in the goal-plan tree structures used. Agent Ori-
ented design methodologies, such as Prometheus [21], recommend
that agent program developers carefully consider any incomplete
goal coverage in their design. Nevertheless, it is common for de-
velopers to write programs so that the agent sets up the context
conditions of plans that are meant to address a subsequent sub-
goal. These “conditions preparing for later steps” are known as
preparatory effects or just p-effects. In the authors’ experience, the
reliance on p-effects is a typical cause of lack of complete cover-
age in agent programs.4 The assumption is that once set up, those
conditions will not be threatened, and therefore there is no need to
provide plans (for the subgoal in question) for situations in which
those conditions do not hold, hence creating a coverage “gap.”

For example, in the goal-plan tree structure shown in Figure 2,
there is no plan for subgoal G2 in situations where proposition B
is false (i.e., no relevant plan for G2 with context condition ¬B).
However, an effect of plan P1 is to make B true, thus “preparing”
the conditions for plan P3 to apply for resolving G2. The setup
distance is the number of subgoals between the setting of the p-
effect and its use in the context condition of a subsequent plan (one
in our example).

Of course, in the absence of any environmental changes and any
interleaving of the agent’s intentions, the lack of coverage due to
reliance on p-effects will have no adverse effect, as plans will be
“chained” as the developer assumed. Indeed, under such (strong)
assumptions, plan P3 will be applicable and ready to execute, and
the agent will experience no problems from the lack of coverage
for goal G2. However, agents are intended to operate in dynamic
environments and should be able to interleave intentions.

In order to model coverage gaps based on p-effects, the basic
binary structure initially generated is modified to create trees with
less than full coverage by removing one of the plans handling a
goal (e.g., removing plans P4 and P5 in Figure 2), and adding an
appropriate p-effect into one of the goal’s ancestors (e.g., adding
B and ¬C as a p-effects of P1 and P2, respectively). Removing
a plan in this way reduces the basic coverage of the corresponding
goal (goals G2 and G3) from CB = 1.0 to CB = 0.5.

simplifications are justifiable and are discussed in Section 6.
4Work has been done to recognise p-effects and ensure that the
agent does not itself undo them prematurely [18].

In order to be able to set up more specific and fine-grained cov-
erage gaps, we use special propositions in context conditions that
are sampled using a particular distribution. Conceptually this can
be seen as equivalent to “merging” multiple plans/branches into a
single representation. For example, consider goal G4 and its three
plans in Figure 1(b), with an extended coverage of 0.75. A simpli-
fied version of this sub-tree can be obtained by merging plans P6,
P7, and P8 into a single plan P678 whose context condition refers
to a single “synthetic" proposition, say X , to be sampled true with
probability 0.75. In this way, we can conveniently and automati-
cally generate goal-plan tree structures with arbitrary gap sizes.

There are of course other causes of incomplete coverage, such
there being simply no way to achieve a goal from a particular world
state. However, because reliance on p-effects is a common source
of coverage gaps, we will focus on them here.

The environment and the agent’s beliefs
As any BDI agent, our agents track (the state of) the environment
using a set of belief propositions, which are then used in the agent’s
plans as part of their context conditions for on-the-fly decision mak-
ing (see Section 2). Because the external environment the agent is
situated in is dynamic, we expect those propositions to sometimes
change unexpectedly (that is, without the intervention of the agent).
How frequent those unexpected changes are is determined by the
so-called dynamism rate d of the environment (where d ∈ [0, 1],
with d = 1 being very dynamic and d = 0 being fully static).

In our experiments, an environment variable is a tuple 〈p, s, b〉
comprised of a belief proposition p, a sampling probability s ∈
[0, 1], and a boolean value b ∈ {true, false} representing its current
state. Whenever a subgoal is posted by the agent, random changes
are applied to the environment based on the dynamism rate d. More
concretely, any given environment variable 〈p, s, b〉 is re-sampled
with probability d, and if it is re-sampled, then the current state b is
set to true with probability s (or false with probability 1− s).

Testbed setup
We ran agents with ten intentions, each being a goal-plan tree with a
depth of five, a setup distance of one, and two places with coverage
gaps (i.e., goals whose plans do not cover the whole state space).

Each test run is set up with (i) a randomly selected dynamism
level d; (ii) a sample of the environment’s initial state, generated
using the sampling probabilities of each proposition; and (iii) a ran-
domly selected average coverage for the agent’s goal-plan trees. As
explained above, the sampling probability distributions of the rel-
evant environment variables are adjusted to ensure that the agent’s
goal-plan trees have the required coverage.

With the above settings as parameters to test runs, each of the
four intention selection algorithms, namely, C0 C1, RR and FIFO,
were tested and their success rates—the proportion of intentions
that are successfully carried out to completion—recorded. A total
of 100, 000 tests were generated and tested with each algorithm.
To compare two algorithms, we took the difference between their
success rates, as measured in percentage points (pp). For example,
if scheme A has a success rate of 0.3 (i.e., 30% of intentions com-
plete) and scheme B has a success rate of 0.4 (i.e., 40%), then we
say that B improves on A by 0.1, or 10pp.

4. COVERAGE-BASED SELECTION
Figure 3 depicts the first experimental results obtained when com-

paring intention scheduling approach C1 with FIFO, RR, and C0.
The x and y axes range over the environmental dynamism rate d
(as d approaches 1 the environment becomes more volatile) and
the average coverage of the goal-plan trees used (as it approaches 1,

960



0.5

0.25

0.25

0.05
0.05

0.05

0.05

0.05

10.80.60.40.2

1

0.8

0.6

0.4

0.2

Dynamism

C
ov

er
ag

e

(a) C1 − FIFO

0.5
0.5

0.250.25

0.25

0.050.05
0.05

10.80.60.40.2

1

0.8

0.6

0.4

0.2

Dynamism

C
ov

er
ag

e

0 0.2 0.4 0.6 0.8 1

(b) C1 − RR

0.05

10.80.60.40.2

1

0.8

0.6

0.4

0.2

Dynamism

C
ov

er
ag

e

(c) C1 − C0

Figure 3: A comparison of the success rates of C0, C1, FIFO and RR. The colour indicates the difference in success rate achieved
by the given algorithms, with 0 (white) indicating no difference and 1 (red) indicating an improvement of 100pp. The contour lines
indicate the point at which the difference in success rate crosses a specified threshold.

coverage is higher and hence programs more robust). The colour
intensity indicates the difference in success rate achieved by C1 and
each of the other three algorithms.

The overall conclusion is that C1 constitutes a significant im-
provement over both FIFO and RR, and there are no circumstances
in which FIFO or RR have a statistically significant advantage over
C1. As expected, such improvement gets more pronounced as the
environment gets more dynamic and the coverage of goals decreases.

The first section of Figure 4(e) shows the combined test results,
grouped by scheduling algorithm. The table displays, for each sam-
ple group, the mean (µ) and standard deviation (σ) of the success
rate r as averaged over all levels of coverage and dynamism. Even
though each algorithm was tested 10, 000 times, over a wide range
of coverage and dynamism levels, the values of σr for C0 and C1
are relatively low, suggesting that the samples are clustered tightly
around µr . Indeed, the groups were compared using a two-tailed,
paired t-test, revealing that C1 improves upon C0 by 1pp, FIFO by
13pp and RR by 23.5pp, all with p-value < 0.001.

Figure 3(a) shows that there is no circumstance in which FIFO
out-performs C1. In test cases which used either very robust pro-
grams or an almost static environment (i.e., as coverage approaches
1 or dynamism approaches 0), there is little to no difference be-
tween the success rate of the two algorithms (< 1pp, or too small to
be statistically significant). However, as the programs become less
robust and the environment more volatile, the difference becomes
more pronounced. Indeed, as coverage dips below 0.6 and dy-
namism rate exceeds 0.4, C1 improves upon FIFO by 15pp. In more
extreme circumstances, differences of up to 60pp are observed.

Similarly, Figure 3(b) shows that C1 always improves on RR, in
particular, under high environmental dynamism and low goal cov-
erage areas, where improvements of up to 62pp are observed. In-
terestingly, and in a marked difference with FIFO, C1 out-performs
RR even in relatively static environments. The fact is that, even
in slightly dynamic environments, p-effects are more vulnerable
when running RR as the intention scheduler. This is because RR
will make the agent change focus (i.e., change intention) at every
execution step, meaning that between a p-effect being enacted and
the dependent plan being executed, every other intention will be
executed at least once. As a result, there is more time for the envi-
ronment to undo the changes made by the p-effect.

Finally, Figure 3(c) demonstrates that C1’s preemption scheme
(see Section 2) gives it an advantage of up to 14pp over C0 when
running poor-quality plan libraries in dynamic environments, though
in most of the space there is no real difference between them.

5. APPLICABILITY CHECKING
There are some significant differences between the selection meth-

ods used by C1 and FIFO. FIFO stores all intentions in a queue,
and simply steps through them one at a time, with no prioritisa-
tion beyond arrival time. C1 selects, at each step, the progressable
intention with the lowest coverage. Only if all intentions are un-
progressable will an intention with no applicable plans be selected.
This will cause the current subgoal to fail, and either an alterna-
tive approach (which may have become applicable due to changes
in the world) will be tried due to failure recovery, or the intention
itself will fail as a whole. C1 is therefore doing more than just
prioritisation—it is also performing a very simple form of “look-
ahead.” Indeed, C1 looks ahead by just one step in an intention, and
attempts to foresee whether the next subgoal would fail (due to no
applicable plan) if the intention were selected.

This raises two questions. Firstly, how much of C1’s advantage
over FIFO and RR can be attributed to its look-ahead, rather than
its prioritisation? Secondly, can FIFO or RR be improved by the
inclusion of this simple look-ahead technique?

To answer these questions we define two look-ahead variants
FIFOLA and RRLA. Scheme FIFOLA selects the first progressable in-
tention in its queue, and maintains focus until the intention becomes
unprogressable. When all intentions are unprogressable, FIFOLA

behaves as FIFO by selecting (and applying failure recovery to) the
intention at the head of the queue. Like RR, the RRLA approach
selects intentions cyclically, but skips over any unprogressable in-
tentions. If all intentions are found to be unprogressable, it selects
an intention (for failure recovery) as per normal RR behaviour.

These two intention selection variants were tested under the same
experimental setup described in Section 3. Interestingly, and to our
surprise, the experiments showed that the use of look-ahead signif-
icantly improves the effectiveness of both FIFO and RR schemes.
This is important, as incorporating look-ahead into standard BDI
scheduling algorithms is (almost) trivial.

Figure 4(e) shows the mean success rates of FIFO, RR, FIFOLA

and RRLA, averaged over all tests. Using the same t-test as in Sec-
tion 4 reveals that look-ahead improves FIFO’s performance by
12.6pp. Similarly, look-ahead in RRLA is responsible for an im-
provement of 18pp over RR. (Both with p-value < 0.001.)

Figures 4(a)–4(d) depict the effect of look-ahead in more detail.
It is clear from Figure 4(a) that the use of look-ahead is never detri-
mental to the operation of FIFO: even on robust programs (coverage
> 0.8) or under fairly static environments (d < 0.2), it produces
a 5pp increase in its success rate. As coverage falls below 0.6,

961



0 0.2 0.4 0.6 0.8 1

0.25

0.25

0.25

0.1

0.1

0.1

0.1

0.05

0.05
0.05

0.05

0.05

10.80.60.40.2

1

0.8

0.6

0.4

0.2

Dynamism

C
ov

er
ag

e

(a) FIFOLA − FIFO

0.4
0.4

0.4
0.4

0.250.25

0.25

0.15
0.15

0.15

0.15

0.05

0.050.05

0.05

0.05

10.80.60.40.2

1

0.8

0.6

0.4

0.2

Dynamism

C
ov

er
ag

e
(b) RRLA − RR

0.1

0.01

0.01

10.80.60.40.2

1

0.8

0.6

0.4

0.2

Dynamism

C
ov

er
ag

e

(c) C1 − FIFOLA

0.250.25

0.1
0.10.1 0.05

0.05
0.05

0.05
0.05

0.05

10.80.60.40.2

1

0.8

0.6

0.4

0.2

Dynamism

C
ov

er
ag

e

(d) C1 − RRLA

SCHEDULER µr σr

Setup distance s = 1
C0 0.953 0.098
C1 0.963 0.079
FIFO 0.825 0.204
RR 0.728 0.256
FIFOLA 0.951 0.101
RRLA 0.909 0.144

Setup distance s = 2
C0 0.936 0.121
C1 0.952 0.095
FIFO 0.781 0.238
RR 0.729 0.272
FIFOLA 0.935 0.125
RRLA 0.882 0.168

Setup distance s = 3
C0 0.931 0.131
C1 0.948 0.101
FIFO 0.775 0.246
RR 0.746 0.274
FIFOLA 0.928 0.137
RRLA 0.870 0.176

(e) Mean (µ) and standard deviation (σ) of the suc-
cess rate r, averaged over all levels of coverage and
dynamism.

Figure 4: The effect of look-ahead on FIFO and RR scheduling (4(a) and 4(b)); a comparison of the success rates of C1 with FIFOLA

and RRLA (4(c) and 4(d)); and success rates for all schedulers on three setup distances (4(e)).

improvements of 15pp are obtained. In extreme cases, where the
dynamism rate approaches 1 and coverage is 0.1, an improvement
of 48pp is seen. Similarly, Figure 4(b) shows that look-ahead never
hinders the performance of RR, but rather produces improvements
of over 40pp, even in relatively static environments.

By comparing C1’s results with look-ahead based algorithms, it
is possible to isolate the benefit provided by C1’s prioritization. A
t-test reveals that, on average, C1 is more successful than FIFOLA

and RRLA, but by merely 1.2pp and 5.3pp, respectively (both with
p-value < 0.001).

Nonetheless, Figures 4(c) and 4(d) suggests that there may be
situations in which it is still preferable to use C1 over FIFOLA or
RRLA. While prioritizing by coverage has little benefit for robust
programs (coverage > 0.5), it can in fact provide a benefit of up to
14pp over FIFOLA and 35pp over RRLA when running fragile pro-
grams in adverse conditions. Further to this, there are no circum-
stances in which prioritizing low coverage intentions is detrimental
to the operation of the program.

Many interacting intentions
As stated in Section 3, agents in the above experiments had ten
concurrent intentions, as it is unlikely an agent would be managing
more than this number of parallel tasks of different types. However,
many more intentions may be required in applications where an
agent may have multiple instances of a single type of task, such
as in a warehouse or factory. Consequently, we have explored the
value of FIFOLA and RRLA in such situations.

The goal-plan trees for these experiments were produced in the
same way as described before (see Section 3), but now using struc-
turally identical trees (to represent different instances of the same

intention). Also, we allow them to refer to the same domain vari-
ables to capture that such intentions will typically have the potential
to conflict, as they could potentially change the same aspects of the
environment and require access to the same resources.

Before each test run, the variables referred to by the context con-
ditions of each plan across every goal-plan tree are selected (with a
50% chance of negation) from a pool of a fixed size nv . Clearly, the
fewer variables (nv), or the greater the number of goal-plan trees
(ni), the more likely it is that a variable will occur in more than one
goal-plan tree. Therefore the amount of interaction between the in-
tentions is inversely proportional to nv/ni—the lower this value,
the more interaction. By varying the values of ni and nv before
each test run, the amount of interference can be controlled.

Because the goal-plan trees are structurally identical, and all
variables have the same distribution, all of the goal-plan trees have
the same initial extended coverage. Therefore, we have examined
only the gains from the look-ahead mechanism, performing 40, 000
test runs on FIFO, FIFOLA, RR, and RRLA, with varying levels of dy-
namism, variable pool sizes nv , and number of goal-plan trees ni.

As would be expected, FIFO is affected not by the number of
intentions or the amount of interaction between them, but only by
the dynamism of the environment. However, FIFOLA is affected by
both the dynamism rate and the number of concurrent intentions.
Figure 5(a) compares their performances under different values for
these two variables. While both FIFO and FIFOLA achieve a success
of 100% in static environments, the use of look-ahead yields signif-
icant advantages in more dynamic situations. For example, when
ni = 5 and d = 1.0, FIFOLA gives a success rate improvement
of 42pp over FIFO; and when ni = 80, FIFOLA’s success reaches
99%, an improvement of 57pp over plain FIFO.

962



0.4

0.4

0.25

0.25

0.05

0.05

10.80.60.40.2
5

10

20

40

80

Dynamism

n
i

(a) FIFOLA − FIFO

0.25

0.25

0.25

0.05

0.05

10.80.60.40.20

5

10

Dynamism

n
v
/
n
i

0 0.2 0.4 0.6 0.8 1

(b) RRLA − RR, ni = 5

0.5

0.50.25

0.25

10.80.60.40.20

5

10

Dynamism

n
v
/
n
i

(c) RRLA − RR, ni = 80

Figure 5: The effect of look-ahead on FIFO and RR scheduling, with multiple interacting intentions.

The increase in FIFOLA’s success rate with the increase of the
number of intentions is a direct consequence of the use of look-
ahead. A look-ahead based scheduler prioritizes progressable in-
tentions, i.e., failure recovery will only kick in if all intentions are
stuck. The more intentions the scheduler has to choose from, the
more likely it is that at least one will be progressable.

The RR and RRLA schedulers behave in more complex ways—
their success rates are affected by the amount of interaction, the
dynamism rate, and the number of intentions. Because RR con-
stantly switches from task to task, it is more susceptible to failure
due to tasks interfering with each other. Hence, its success rate
drops as the ratio nv/ni decreases. Figure 5(b) shows that the in-
tegration of look-ahead improves on this. With low nv/ni values,
and a static environment, RRLA improves on RR by up to 32pp.

The negative results achieved by RR are exacerbated by any in-
crease in the dynamism of the environment. Interestingly, RRLA

thrives in such conditions. In a chaotic environment (dynamism
d = 1) with closely related intentions (nv/ni = 0.5), as the num-
ber of concurrent intentions increases from 5 to 80, the success
of RRLA increases from 76% to 99%. As shown in Figures 5(b)
and 5(c), these results constitute, respectively, increases of 43pp
and 57pp over RR. The explanation for this is the interaction be-
tween progressability and dynamism (arising both from the envi-
ronment and interacting intentions). Once progressability checking
is included to prevent unnecessary failure, the environmental dy-
namism also ensures frequent opportunities for success. As long as
there are a sufficient number of intentions, something can almost al-
ways be successfully progressed, and an unprogressable intention
will soon become progressable again.

From these results we conclude that integrating look-ahead into
standard BDI intention selection strategies provides increased ben-
efits as the number of concurrent (same type) intentions increases.

Setup distance effects
As explained in Section 3, the setup distance s is the number of
subgoals posted between a p-effect and its dependent plan. Along
with coverage, it is a measure of an intention’s robustness—the
greater the setup distance, the less robust the intention. While the
experiments reported so far have s = 1, we have also experimented
with other values.

To do so, we used the same experimental setup from Sections 4
and 5, with varying values for the dynamism rate, coverage as well
as setup distance. We performed 50, 000 test runs for each algo-
rithm C0, C1, FIFO, FIFOLA, RR and RRLA, and the results show that
both coverage and look-ahead based selection methods are more
able to handle higher setup distances.

The results are shown in Figure 4(e). Unexpectedly, RR’s suc-
cess rate actually increases with the setup distance. RR’s lack of fo-
cus means that there is an increased opportunity for p-effects to be
undone by random environmental changes. As the delay between
a p-effect and its dependent plan increases (e.g., by increasing the
setup distance), the chance of the p-effect holding decreases, and
the likelihood of the dependent plan still being usable approaches
the coverage measure of the plan’s context condition. Increasing
the delay beyond this convergence point has no further effect. RR
is therefore affected only slightly by increasing s. However, a side-
effect of increasing the setup distance s is that the opportunity for
failure recovery increases, due to dependent plans occurring deeper
within the goal-plan tree. In the case of RR, this is enough to coun-
teract the slight effect of increasing the setup distance.

Other than this one anomaly, all algorithms perform worse as
s increases, with those incorporating look-head (C1, FIFOLA and
RRLA) being affected slightly less. For example, as s increases from
1 to 3, FIFOLA’s success rate decreases by 2.3pp, while FIFO’s suc-
cess rate drops by 5pp. The use of coverage as a priority further
enables a selection method to handle longer setup distances, e.g.,
C1’s success rate drops by just 1.5pp over the same distance range.

As before, more pronounced differences are seen under low cov-
erage and/or high dynamism situations. In such circumstances and
with s = 1, C1 has an advantage over FIFOLA of 14pp, increasing
to 17pp with s = 2, and 20pp with s = 3. Similarly, C1’s advan-
tage over RRLA increases from 35pp to 40pp and then to 45pp as s
increases. The difference between C1 and C0 increases from 12pp
to 14pp and then 16pp.

6. DISCUSSION AND FUTURE WORK
In this paper, we have empirically analysed various intention se-

lection mechanisms for BDI agent architectures, a key aspect of the
BDI agent-oriented programming paradigm. Our experimentation
clearly demonstrates that the use of progressability checking when
doing intention selection gives a substantial improvement in the
number of successfully completed intentions, and that the use of
prioritisation based on coverage further improves this, especially
in volatile environments where coverage is low. The substantial
value of progressability checking is an important result, in that it is
straightforward to incorporate this into any BDI language/system in
the AgentSpeak [14] tradition. Indeed, the operations required to
implement it (i.e., calculating the applicable set and testing context
conditions) are standard elements of this family of agent languages.

One aspect of this approach is that having made a decision as
to how to accomplish a particular (sub)goal, the agent is strongly
committed to continuing with that approach, and is less responsive

963



to the changing situation. In practical applications this may have
both advantages and disadvantages. Being fast to react, fail the sub-
goal, and look for alternative ways to accomplish the higher level
intention (standard behaviour) can result in unnecessary wasted ef-
fort or wasted resources, so postponing progression (as we do via
progressability checking) can be advantageous. However, if the
intention is urgent, then waiting, rather than actively looking for
an alternative solution, would be undesirable. If our agent was at-
tempting to shut down a malfunctioning nuclear reactor, we would
not want it to wait for the situation to change for the better, rather
than fail the current approach and attempt some other plan. The nat-
ural response to this is simply to provide one or more mechanisms
to allow flexibility regarding exactly when progressability checking
is used. A combination with a simple priority scheme could ensure
that urgent intentions are never paused. Alternatively, the agent
could remain committed to the current approach, only until some
alternative plan at a higher level in the goal-plan tree was known
to be applicable, as described in [17]. The experimental work of
Kinny and Georgeff [12] on the impact of agent commitment levels
under different rates of change in the environment is orthogonal to
ours, and it would be very interesting to extend our experiments to
account for cautious and bold agents.

The goal-plan trees that we have used for this experimentation
are clearly simplified as compared with real BDI programs. In par-
ticular one would virtually never have plans with a single subgoal.
Also, the lack of overlap means that there is less opportunity for
failure recovery than might be present in actual programs (depend-
ing on the design). However, these simplifications do not impact
the ability to explore the effect of the intention selection mecha-
nisms, and they do allow the use of large numbers of automatically
generated intention structures. In future work we plan to explore
the behaviour when this approach is used with a complex existing
JACK program, to document and qualitatively explore actual dif-
ferences in overall execution behaviour. It is however key to first
understand the behaviour well on simplified structures.

The addition of generic reasoning mechanisms to improve the
“intelligence” of intention selection is a crucial area of research for
intelligent agent technology. It is also important from a practical
point of view that such approaches do not require substantial addi-
tional information to be provided by the developer. Both the pure
look-ahead approach as well as the coverage-based intention selec-
tion scheme that we have explored in this work meet this criteria.
We expect that following the necessary qualitative exploration with
some complex existing programs, at least the FIFOLA and RRLA al-
gorithms might be integrated into existing BDI agent platforms.

Acknowledgements
We acknowledge the support of the Australian Research Council
under Discovery Project DP1094627. We also thank Agent Ori-
ented Software for providing us with a Jack license.

7. REFERENCES
[1] S. S. Benfield, J. Hendrickson, and D. Galanti. Making a strong

business case for multiagent technology. In Proc. of Autonomous
Agents and Multi-Agent Systems (AAMAS), pages 10–15, 2006.

[2] R. H. Bordini, A. L. C. Bazzan, R. de Oliveira Jannone, D. M. Basso,
R. M. Vicari, and V. R. Lesser. AgentSpeak(XL): Efficient intention
selection in BDI agents via decision-theoretic task scheduling. In
Proc. of Autonomous Agents and Multi-Agent Systems (AAMAS),
pages 1294–1302, 2002.

[3] R. H. Bordini, L. Braubach, M. Dastani, A. Fallah-Seghrouchni, J. J.
Gómez Sanz, J. Leite, G. O’Hare, A. Pokahr, and A. Ricci. A survey
of programming languages and platforms for multi-agent systems.
Informatica (Slovenia), 30(1):33–44, 2006.

[4] R. H. Bordini, J. F. Hübner, and M. Wooldridge. Programming
Multi-agent Systems in AgentSpeak Using Jason. Wiley, 2007. Wiley
Series in Agent Technology.

[5] M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and
resource-bounded practical reasoning. Computational Intelligence,
4(3):349–355, 1988.

[6] P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas. JACK
intelligent agents: Components for intelligent agents in Java.
AgentLink Newsletter, 2:2–5, Jan. 1999.

[7] P. R. Cohen and H. J. Levesque. Intention is choice with
commitment. Artificial Intelligence, 42:213–261, 1990.

[8] F. S. de Boer, K. V. Hindriks, W. van der Hoek, and J.-J. Meyer. A
verification framework for agent programming with declarative
goals. Journal of Applied Logic, 5(2):277–302, 2007.

[9] M. P. Georgeff and F. F. Ingrand. Decision making in an embedded
reasoning system. In Proc. of the International Joint Conference on
Artificial Intelligence (IJCAI), pages 972–978, 1989.

[10] B. Horling, V. Lesser, R. Vincent, and T. Wagner. The Soft
Real-Time Agent Control Architecture. Autonomous Agents and
Multi-Agent Systems, 12(1):35–92, 2006.

[11] M. J. Huber. JAM: A BDI-theoretic mobile agent architecture. In
Proc. of the Annual Conference on Autonomous Agents (AGENTS),
pages 236–243, 1999.

[12] D. Kinny and M. P. Georgeff. Commitment and effectiveness of
situated agents. In Proc. of the Int. Joint Conference on Artificial
Intelligence (IJCAI), pages 82–88 1991.

[13] A. Pokahr, L. Braubach, and W. Lamersdorf. JADEX: A BDI
reasoning engine. In R. H. Bordini, M. Dastani, J. Dix, and A. E.
Fallah-Seghrouchni, editors, Multi-Agent Programming: Languages,
Platforms and Applications, volume 15 of Multiagent Systems,
Artificial Societies, and Simulated Organizations, pages 149–174.
Springer, 2005.

[14] A. S. Rao. Agentspeak(L): BDI agents speak out in a logical
computable language. In Proc. of the European Workshop on
Modelling Autonomous Agents in a Multi-Agent World, volume 1038
of LNCS, pages 42–55. Springer, 1996.

[15] A. S. Rao and M. P. Georgeff. Modeling rational agents within a
BDI-architecture. In J. F. Allen, R. Fikes, and E. Sandewall, editors,
Proc. of Principles of Knowledge Representation and Reasoning
(KR), pages 473–484, 1991.

[16] A. S. Rao and M. P. Georgeff. An abstract architecture for rational
agents. In Proc. of Principles of Knowledge Representation and
Reasoning (KR), pages 438–449, 1992.

[17] S. Sardina and L. Padgham. A BDI agent programming language
with failure recovery, declarative goals, and planning. Autonomous
Agents and Multi-Agent Systems, 23(1):18–70, 2011.

[18] J. Thangarajah, L. Padgham, and M. Winikoff. Detecting & avoiding
interference between goals in intelligent agents. In Proc. of the
International Joint Conference on Artificial Intelligence (IJCAI),
pages 721–726, 2003.

[19] J. Thangarajah, S. Sardina, and L. Padgham. Measuring plan
coverage and overlap for agent reasoning. In Proc. of Autonomous
Agents and Multi-Agent Systems (AAMAS), pages 1049–1056, 2012.

[20] K. Vikhorev, N. Alechina, and B. Logan. Agent programming with
priorities and deadlines. In Proc. of Autonomous Agents and
Multi-Agent Systems (AAMAS), pages 397–404, 2011.

[21] M. Winikoff and L. Padgham. Developing Intelligent Agent Systems:
A Practical Guide. John Wiley and Sons, 2004.

[22] H. Zhang, S. Y. Huang, and Y. Chang. An agent’s activities are
controlled by his priorities. In Proc. of the KES International
Conference on Agent and Multi-agent Systems: Technologies and
applications, pages 723–732, 2008.

964




