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ABSTRACT
In order to be acceptable members of future human-robot
ecosystems, it is necessary for autonomous agents to be re-
spectful of the intentions of humans cohabiting a workspace
and account for conflicts on shared resources in the en-
vironment. In this paper we build an integrated system
that demonstrates how maintaining predictive models of its
human colleagues can inform the planning process of the
robotic agent. We propose an Integer Programming based
planner as a general formulation of this flavor of “human-
aware” planning and show how the proposed formulation
can be used to produce different behaviors of the robotic
agent, showcasing compromise, opportunism or negotiation.
Finally, we investigate how the proposed approach scales
with the different parameters involved, and provide empir-
ical evaluations to illustrate the pros and cons associated
with the proposed style of planning.

1. INTRODUCTION
In environments where multiple agents are working inde-

pendently, but utilizing shared resources, it is important for
these agents to model the intentions and beliefs of other
agents so as to act intelligently and prevent conflicts. In
cases where some of these agents are human, as in the case
of assistive robots in household environments, these are re-
quired (rather than just desired) capabilities of robots in
order for them to be considered “socially acceptable” - this
has been one of the important objectives of “human-aware”
planning, as evident from existing literature in human-aware
path planning [13, 10] and human-aware task planning [5,
9, 3, 15]. An interesting aspect of many of these scenarios,
is the presence of many of the aspects of multi-agent envi-
ronments, but absence of typical assumptions often made in
explicit teaming scenarios between humans and robots, as
pointed out in [4]. Probabilistic plan recognition plays an
important role in this regard, because by not committing to
a plan, that presumes a particular plan for the other agent,
it might be possible to minimize suboptimal (in terms of
redundant or conflicting actions performed during the exe-
cution phase) behavior of the autonomous agent.

Here we look at possible ways to minimize such subopti-
mal behavior by ways of compromise, opportunism or nego-
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tiation. Specifically, we ask the question, what information
can be extracted from the predicted plans, and how this
information can be used to guide the behavior of the au-
tonomous agent. There has been previous work [1, 6] on
some of the modeling aspects of the problem, in terms of
planning with uncertainty in resources and constraints. In
this paper we provide an integrated framework (shown in
Figure 1) for achieving these behaviors of the autonomous
agent, particularly in the context of stigmergic coordination
of human-robot cohabitation. To this end, we modularize
our architecture so as to handle the uncertainty in the en-
vironment separately with the planning process, and show
how these individual modules interact with each other by
the way of usage profiles of the concerned resources.

Figure 1: Schematic diagram of our integrated system for be-
lief modeling, goal recognition, information extraction and
planning. The robot maintains a belief model of the en-
vironment, and uses observations from the environment to
extract information about how the world may evolve, which
is then used to drive its own planning process.
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The general architecture of the system is shown in Figure
1. The autonomous agent, or the robot, is acting (with in-
dependent goals) in an environment co-habited with other
agents (humans), who are similarly self-interested. The robot
has a model of the other agents acting independently in its
environment. These models may be partial and hence the
robot can only make uncertain predictions on how the world
will evolve with time. However, the resources in the envi-
ronment are limited and are likely to be constrained by the
plans of the other agents. The robot thus needs to reason
about the future states of the environment in order to make
sure that its own plans do not produce conflicts with respect
to the plans of the other agents.

With the involvement of humans, however, the problem
is more skewed against the robot, because humans would
expect a higher priority on their plans - robots that pro-
duce plans that clash with those of the humans, without
any explanation, would be considered incompatible for such
an ecosystem. Thus the robot is expected to follow plans
that preserve the human plans, rather than follow a glob-
ally optimal plan for itself. This aspect makes the current
setting distinct from normal human robot teaming scenar-
ios and produces a number of its own interesting challenges.
How does the robot model the human’s behavior? How does
it plan to avoid friction with the human plans? If it is possi-
ble to communicate, how does it plan to negotiate and refine
plans? These are the questions that we seek to address
in this work. Our approach models human beliefs and de-
fines resource profiles as abstract representations of the plans
predicted on the basis of these beliefs. The robot updates
its beliefs upon receiving new observations, and passes on
the resultant profiles onto its planner, which uses an IP-
formulation to minimize the overlap between these resource
profiles and those produced by the human’s plans.

The contribution of our paper is thus three-fold, we (1)
propose resource profiles as a concise mode of represent-
ing different types of information from predicted plans; (2)
develop an IP-based planner that can utilize this informa-
tion and provide different modalities of conformant behav-
ior; and (3) provide an integrated framework that supports
the proposed mode of planning - the modular approach also
provides an elegant way to handle different challenges sep-
arately (e.g. uncertainty and/or nested beliefs of humans
leaves the planner). The planner, as a consequence of these,
has properties not present in existing planners - for exam-
ple, the work that probably comes closest is [9] that models
a specific case of compromise only, while the formulation is
also likely to blow up in presense of large hypothesis sets
due to absence of concise representation techniques like the
profiles. We will discuss the trade-offs and design choices in
more detail in the evaluation sections.

The rest of the paper is organized as follows. We will start
with a brief introduction of the agent models that comprise
the belief component, and describe how it facilitates plan
recognition. Then, in Sections 2.3 and 2.4, we are going
to go into details of how resource profiles may be used to
represent information from predicated plans, and describe
how our planner converts this information into constraints
that can be solved as an integer program during the plan
generation process. In Section 3 we will demonstrate how
the planner may be used to produce different modes of au-
tonomous behavior. Finally in Section 4 we will provide
empirical evaluations of the planner’s internal properties.

Figure 2: Use case - Urban Search And Rescue (USAR).

2. PLANNING WITH CONFLICTS
ON SHARED RESOURCES

We will now go into details about each of the modules
shown in Figure 1. The setting (adopted from [14]) involves
a commander CommX and a robot in a typical USAR (Urban
Search and Rescue) task illustrated in Figure 2. The com-
mander can perform triage in certain locations, for which
he needs the medkit. The robot can also fetch medkits if
requested by other agents (not shown) in the environment.
The shared resources here are the two medkits - some of
the plans the commander can execute will lock the use of
and/or change the position of these medkits, so that from
the set of probable plans of the commander we can extract
a probability distribution over the usage (or even the posi-
tion) of the medkit over time based on the fraction of plans
that conform to these facts. These resource availability pro-
files (i.e. the distribution over the usage or position of the
medkit evolving over time) provide a way for the agents to
minimize conflicts with the other agents. Before going into
details about the planner that achieves this, we will first
look at how the agents are modeled and how these profiles
are computed in the next section.

2.1 The Belief Modeling Component
The notion of modeling beliefs introduced by the authors

in [14] is adopted in this work. Beliefs about state are defined
in terms of predicates bel(α, φ), where α is an agent with be-
lief φ = true. Goals are defined by predicates goal(α, φ),
where agent α has a goal φ. The set of all beliefs that
the robot ascribes to α together represents the perspec-
tive for the robot of α. This is obtained by a belief model
Belα of agent α, defined as { φ | bel(α, φ) ∈ Belself },
where Belself are the first-order beliefs of the robot (e.g.,
bel(self, at(self, room1))). The set of goals ascribed to α is
similarly described by {goal(α, φ)|goal(α, φ) ∈ Belself}.

Next, we turn our attention to the domain model Dα of
the agent α that is used in the planning process. We use
PDDL [11] style agent models for the rest of the discus-
sion, but most of the analysis easily generalizes to other
related modes of representation. Formally, a planning prob-
lem Π = 〈Dα, πα〉 consists of the domain model Dα and the
problem instance πα. The domain model of α is defined as
Dα = 〈Tα, Vα, Sα, Aα〉, where Tα is a set of object types;
Vα is a set of variables that describe objects that belong to
types in Tα; Sα is a set of named first-order logical predi-
cates over the variables Vα that describe the state; and Aα is
a set of operators available to the agent. The action models
a ∈ Aα are represented as a = 〈N,C,P,E〉 where N denotes
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the name of that action; C is the cost of that action; P ⊆ Sα
is the list of pre-conditions that must hold for the action
a to be applicable in a particular state s ⊆ Sα of the en-
vironment; and Ea = 〈eff+(a), eff−(a)〉, eff±(a) ⊆ Sα
is a tuple that contains the add and delete effects of ap-
plying the action to a state. The transition function δ(·)
determines the next state after the application of action a
in state s as δ(a, s) |= ⊥ if ∃f ∈ P s.t. f 6∈ s; δ(a, s) |=
(s \ eff−(a)) ∪ eff+(a) otherwise.

The belief model, in conjunction with beliefs about the
goals / intentions of another agent, will allow the robot to
instantiate a planning problem πα = 〈Oα, Iα,Gα〉, where
Oα is a set of objects of type t ∈ Tα; Iα is the initial state of
the world, and Gα is a set of goals, which are both sets of the
predicates from Sα initialized with objects from Oα. First,
the initial state Iα is populated by all of the robot’s initial be-
liefs about the agent α, i.e. Iα = {φ | bel(α, φ) ∈ Belrobot}.
Similarly, the goal is set to Gα = {φ | goal(α, φ) ∈ Belrobot}.
Finally, the set of objects Oα consists of all the objects that
are mentioned in either the initial state, or the goal descrip-
tion: Oα = {o | o ∈ (φ | φ ∈ (Iα ∪Gα))}. The solution to
the planning problem is an ordered sequence of actions or
plan given by πα = 〈a1, a2, . . . , a|πα|〉, ai ∈ Aα such that
δ(πα, Iα) |= Gφ, where the cumulative transition function is
given by δ(π, s) = δ(〈a2, a3, . . . , a|π|〉, δ(a1, s)). The cost of
the plan is given by C(πα) =

∑
a∈πα Ca and the optimal

plan π∗α is such that C(π∗α) ≤ C(πα) ∀πα with δ(πα, Iα) |=
Gα. This planning problem instance (though not directly
used in the robot’s planning process) enables the goal recog-
nition component to solve the compiled problem instances.
More on this in the next section.

2.2 The Goal Recognition Component
For many real world scenarios, it is unlikely that the goals

of the humans are known completely, and that the plan com-
puted by the planner is exactly the plan that they will follow.
We are only equipped with a belief of the likely goal(s) of
the human - and this may not be a full description of their
actual goals. Further, in the case of an incompletely speci-
fied goal, there might be a set of likely plans that the human
can execute, which brings into consideration the idea of in-
cremental goal recognition over a possible goal set given a
stream of observations.

2.2.1 Goal Extension
To begin with, it is worth noting that the robot might

have to deal with multiple plans even in the presence of
completely specified goals (even if the other agents are fully
rational). For example, there may be multiple optimal ways
of achieving the same goal, and it is not obvious beforehand
which one of these an agent is going to end up following. In
the case of incompletely specified goals, the presence of mul-
tiple likely plans become more relevant. To accommodate
this, we extend the robot’s current belief of an agent α’s
goal, Gα, to a hypothesis goal set Ψα. The computation of
this goal set can be done using the planning graph method
[2]. In the worst case, Ψα corresponds to all possible goals in
the final level of the converged planning graph. Having fur-
ther (domain-dependent) knowledge (e.g. in our scenario,
information that CommX is only interested in triage-related
goals) can prune some of these goals by removing the goal
conditions that are not typed on the triage variable.

2.2.2 Goal / Plan Recognition
In the present scenario, we thus have a set Ψα of goals that

α may be trying to achieve, and observations of the actions
α is currently executing. At this point we refer to the work
of Ramirez and Geffner who in [12] provided a technique to
compile the problem of plan recognition into a classical plan-
ning problem. Given a sequence of observations θ, we recom-
pute the probability distribution Θ over G ∈ Ψα by using a
Bayesian update P (G|θ) ∝ P (θ|G), where the likelihood is

approximated by the function P (θ|G) = 1/(1 + e−β∆(G,θ))
where ∆(G, θ) = Cp(G − θ) − Cp(G + θ). Here ∆(G, θ)
gives an estimate of the difference in cost Cp of achieving the
goal G without and with the observations, thus increasing
P (θ|G) for goals that explain the given observations. Thus,
solving two compiled planning problems, with goals G − θ
and G + θ, gives us the required posterior update for the
distribution Θ over possible goals of α. The details of the
approach is available at [12].

The specific problem we will look at now is how to inform
the robot’s own planning process from the recognized goal
set Ψα. In order to do this, we compute the optimal plans
for each goal in the hypothesis goal set Ψα, and associate
them with the probabilities of these goals from the distri-
bution thus obtained. Information from these plans is then
represented concisely in the form of resource profiles.

Notes on the Recognition Module
For our plan recognition module we use a much faster vari-
ation [7] of the above approach that exploits cost and in-
teraction information from plan graphs to estimate the goal
probabilities. This saves on the computational effort of hav-
ing to solve two planning problems per goal. Also, note that
while computing the plan to a particular goal G, we use a
compiled problem instance with the goal G + θ to ensure
that the predicted plan conforms to the existing observa-
tions. Details on the compilation is available at [12].

Also, the output of the planner does not need to be as-
sociated with probabilities - this is just the most general
formulation. If we want to deal with just a set of plans that
the robot needs to be aware of, we can treat the plan set
either with a uniform distribution and/or by requiring ex-
actly zero conflicts in the objective of the planner (this will
become clearer in Section 2.4) depending on the preference.

Perhaps the biggest computational issue here is the need
to compute optimal plans. While we still do it for our do-
main, as we will note later in Section 2.3, this might not
be necessary, and suboptimal plans may be used in larger
domains where computation is an issue.

2.3 Resources and Resource Profiles
As we discussed previously, since the plans of the agents

are in parallel execution, the uncertainty introduced by the
commander’s actions cannot be mapped directly between
the commander’s final state and the robot’s initial state.
However, given the commander’s possible plans, the robot
can extract information about at what points of time the
shared resources in the environment are likely to be locked
by the commander. This information can be represented
by resource usage profiles that capture the expected (over
all the recognized plans) variation of probability of usage
or availability over time. The robot can, in turn, use this
information to make sure that the profile imposed by its own
plan has minimal conflicts with those of the commander’s.
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Figure 3: Different types of resource profiles.

Formally, a profile is defined as a mapping from time step
T to a real number between 0 and 1, and is represented by
a set of tuples as follows G : N→ [0, 1] ≡ {(t, g) : t ∈ N, g ∈
[0, 1], such that G(t) = g at time step t}.

The concept of resource profiles can be handled at two
levels of abstraction. Going back to our running example,
shared resources that can come under conflict are the two
(locatable typed objects) medkits, and the profiles over the
medkits can be over both usage and location, as shown in
Figure 3. These different types of profiles can be used (pos-
sibly in conjunction if needed) for different purposes. For
example, just the usage profile shown on top is more helpful
in identifying when to use the specific resource, while the
resource when bound with the location specific groundings,
as shown at the bottom can lead to more complicated higher
order reasoning (e.g. the robot can decide to wait for the
commander’s plans to be over, as he inadvertently brings
the medkit closer to it with high probability as a result of
his own plans). We will look at this again in Section 3.

Let the domain model of the robot be DR = 〈TR, VR, SR,
AR〉 with the action models a = 〈N,C,P,E〉 defined in the
same way as described in Section 2.1. Also, let Λ ⊆ VR
be the set of shared resources and for each λ ∈ Λ we have
a set of predicates fλ ⊆ SR that are influenced (as deter-
mined by the system designer) by λ, and let Γ : Λ → P(ξ)
be a function that maps the resource variables to the set
of predicates ξ = ∪λfλ they influence. Without any exter-
nal knowledge of the environment, we can set Λ = Vα ∩ VR
and ξ = Sα ∩ SR, though in most cases these sets are much
smaller. In the following discussion, we will look at how
the knowledge from the hypothesis goal set can be modeled
in terms of resource availability graphs for each of the con-
strained resources λ ∈ Λ.

Consider the set of plans ΨP
α containing optimal plans

corresponding to each goal in the hypothesis goal set, i.e.
ΨP
α = {π∗G = 〈a1, a2, . . . at〉 | δ(π∗G, Iα) |= G, ai ∈ Aα∀i, G ∈

Ψα} and let l(π) be the likelihood of the plan π modeled on
the goal likelihood distribution ∀ G ∈ Ψα, p(G) ∼ Θ as
l(πG) = c|πG| × p(G), where c is a normalization constant.

At each time step t, a plan π ∈ ΨP
α may lock one or

more of the resources λ. Each plan thus provides a profile
of usage of a resource with respect to the time step t as
Gλπ : N → {0, 1} = {(t, g) | t ∈ [1, |π|] and g = 1 if λ

is locked by π at step t, 0 otherwise} such that Gλπ (t) =
g ∀ (t, g) ∈ Gλπ . The resultant usage profile of a resource
λ due to all the plans in ΨP

α is obtained by summing over
(weighted by the individual likelihoods) all the individual
profiles as Gλ : N → [0, 1] = {(t, g) | t ∈ {1,maxπ∈ΨPα

|π|}
and g ∝ 1

|ΨPα |
∑
π∈ΨPα

Gλπ (t)× l(π)}.
Similarly, we can define profiles over the actual ground-

ings of a variable (shown in the lower part of Figure 3) as

Gf
λ

π = {(t, g) | t ∈ [1, |π|] and fλ = 1 at step t of plan π,
0 otherwise}, and the resultant usage profile due to all the

plans in ΨP
α is obtained as before as Gf

λ

= {(t, g) | t =

1, 2, . . . ,maxπ∈ΨPα
|π| and g ∝ 1

|ΨPα |
∑
π∈ΨPα

Gf
λ

π (t) × l(π)}.
These profiles are helpful when actions in the robot’s domain
are conditioned on these variables, and the values of these
variables are conditioned on the plans of the other agents in
the environment currently under execution.

One important aspect of this formulation that should be
noted here is that the notion of “resources” is described here
in terms of the subset of the common predicates in the do-
main of the agents (ξ ⊆ Sα ∩ SR) and can thus be used
as a generalized definition to model different types of con-
flict between the plans between two agents. In as much as
these predicates are descriptions (possibly instantiated) of
the typed variables in the domain and actually refer to the
physical resources in the environment that might be shared
by the agents, we will stick to this nomenclature of calling
them “resources”. We will now look at how an autonomous
agent can use these resource profiles to minimize conflicts
during plan execution with other agents in its environment.

Notes on Usefulness of Profile Computation
One interesting aspect of computing resource profiles is that
it provides a powerful interface between the belief on the en-
vironment and the planner. On the one hand, note that the
input from the previous stage (goal/plan recognition mod-
ule) is as generic as possible - a set of plans possibly asso-
ciated with probabilities. Given any changes in preceding
stages, e.g. modeling stochasticity or more complex belief
models, still yields a set of plans that the robot needs to be
aware of. Thus the plan set and resource profiles provide
a surprisingly simple yet powerful way of abstracting away
relevant information for the planner to use.

The profiles may also be leveraged to address different
modalities of conformant behavior, for example with multi-
ple humans and their relative importance, by (1) weighing
the contributions from individual profiles by the normalized
priority of the human, which would cause the planner to
avoid conflicts with these profiles more than with those with
lower priorities; or (2) requiring zero conflicts on a subset of
profiles which would cause the planner to avoid a subset of
conflicts at all costs, while minimizing the rest.

A somewhat implicit advantage of using profiles is its abil-
ity to form regions of interest given the possible plans. This
will become clear later in Section 4.2 when we show that the
predicted conflicts provide well-informed guidance to avoid-
ing real conflicts during execution (as evident by the robust-
ness in performance with just 1-3 observations, and zero ac-
tual conflicts in low probability areas in the computed pro-
files). Right now this has the implication that we need not
necessarily compute perfect plan costs and goal distributions
to get good plans.
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2.4 Conflict Minimization
The planning problem of the robot - given by Π = 〈DR, πR,

Λ, {Gλ| ∀λ ∈ Λ}, {Gf
λ

| ∀f ∈ Γ(λ), ∀λ ∈ Λ}〉 - consists of
the domain modelDR and the problem instance πR = 〈OR,
IR,GR〉 similar to that described in section 2.3, and also
the constrained resources and all the profiles corresponding
to them. This is because the planning process must take
into account both goals of achievement as also conflict of re-
source usages as described by the profiles. Traditional plan-
ners provide no direct way to handle such profiles within the
planning process. Note here that since the execution of the
plans of the agents is occurring in parallel, the uncertainty is
evolving at the time of execution, and hence the uncertainty
cannot be captured from the goal states of the recognized
plans alone, and consequently cannot be simply compiled
away to the initial state uncertainty for the robot and solved
as a conformant plan. Similarly, the problem does not di-
rectly compile into action costs in a metric planning instance
because the profiles themselves are varying with time. Thus
we need a planner that can handle these resource constraints
that are both stochastic and non-stationary due to the un-
certainty in the environment. To this end we introduce the
following IP-based planner (partly following the technique
for IP encoding for state space planning outlined in [16])
as an elegant way to sum over and minimize overlaps in
profiles during the plan generation process. The following
formulation finds such T-step plans in case of non-durative
or instantaneous actions.

For action a ∈ AR at step t we have an action variable:

xa,t =

{
1, if action a is executed in step t

0, otherwise; ∀a ∈ AR, t ∈ {1, 2, . . . , T}
Also, for every proposition f at step t a binary state variable
is introduced as follows:

yf,t =

{
1, if proposition is true in plan step t

0, otherwise; ∀f ∈ SR, t ∈ {0, 1, . . . , T}
Note here that the plan computed by the robot introduces a
resource consumption profile itself, and thus one optimizing
criterion would be to minimize the overlap between the usage
profile due to the computed plan with those established by
the predicted plans of the other agents in the environment.
Let us introduce a new variable to model the resource usage
graph imposed by the robot as follows:

gf,t =

{
1, if f ∈ ξ is locked at plan step t

0, otherwise; ∀f ∈ ξ, t ∈ {0, 1, . . . , T}
Further, for every resource λ ∈ Λ, we divide the actions in
the domain of the robot into three disjoint sets -

Ω+
f = {a ∈ AR such that xa,t = 1 =⇒ yf,t = 1},

Ω−f = {a ∈ AR such that xa,t = 1 =⇒ yf,t = 0}, and

Ωof = AR \ (Ω+
f ∪ Ω−f ), ∀f ∈ ξ.

These then specify respectively those actions in the domain
that lock, free up, or do not affect the use of a particular
resource, and are used to calculate gf,t in the IP. Further, we
introduce a variable hf,t to track preconditions required by
actions in the generated plan whose success is conditioned
on the influence of the plans of the other agents on the world
(e.g. position of the medkits are changing, and the action
pickup is conditioned on it) as follows:

hf,t =

{
1, if f ∈ Pa and xa,t+1 = 1

0, otherwise; ∀f ∈ ξ, t ∈ {0, 1, . . . , T − 1}

Then the solution to the IP should ensure that the robot only
uses these resources when they are in fact most expected to
be available (as obtained by maximizing the overlap between

hf,t and Gf
λ

). These act like demand profiles from the per-
spective of the robot. We also add a “no-operation” action
AR ← AR ∪ aφ so that aφ = 〈N,C,P,E〉 where N = NOOP,
C = 0, P = {} and E = {}.

The IP formulation is given by:

min k1

∑
a∈AR

∑
t∈{1,2,...,T} Ca × xa,t

+k2

∑
λ∈Λ

∑
f∈Γ(λ)

∑
t∈{1,2,...,T} gf,t ×G

λ(t)

−k3

∑
λ∈Λ

∑
f∈Γ(λ)

∑
t∈{0,1,...,T−1} hf,t ×G

fλ(t)

yf,0 = 1 ∀f ∈ IR \ ξ (1)

yf,0 = 0 ∀f /∈ IR or f ∈ ξ (2)

yf,T = 1 ∀f ∈ GR (3)

xa,t ≤ yf,t−1 ∀a s.t. f ∈ Pa, ∀f /∈ ξ, t ∈ {1, . . . , T} (4)

hf,t−1 = xa,t ∀a s.t. f ∈ Pa, ∀f ∈ ξ, t ∈ {1, . . . , T} (5)

yf,t ≤ yf,t−1 +
∑
a∈add(f) xa,t

s.t. add(f) = {a|f ∈ eff+(a)},∀f, t ∈ {1, . . . , T} (6)

yf,t ≤ 1−
∑
a∈del(f) xa,t

s.t. del(f) = {a|f ∈ eff−(a)},∀f, t ∈ {1, . . . , T} (7)∑
a∈AR

xa,t = 1, t ∈ {1, 2, . . . , T} (8)∑
a∈Ω+

f

∑
t xa,t ≤ 1 ∀f ∈ ξ, t ∈ {1, 2, . . . , T} (9)

gf,t =
∑
a∈Ω+

f
xa,t+(1−

∑
a∈Ω+

f
xa,t−

∑
a∈Ω−

f
xa,t)×gf,t−1

∀f ∈ ξ, t ∈ {1, . . . , T} (10)

hf,t ×Gf
λ

(t) ≥ ε ∀f ∈ ξ, t ∈ {0, 1, . . . , T − 1} (11)

yf,t ∈ {0, 1} ∀f ∈ SR, t ∈ {0, 1, . . . , T} (12)

xa,t ∈ {0, 1} ∀a ∈ AR, t ∈ {1, 2, . . . , T} (13)

gf,t ∈ {0, 1} ∀f ∈ SR, t ∈ {0, 1, . . . , T} (14)

hf,t ∈ {0, 1} ∀f ∈ SR, t ∈ {0, 1, . . . , T − 1} (15)

where k1, k2, k3 are constants determining the relative im-
portance of the optimization criteria and ε is a constant.

Here, the objective function minimizes the sum of the cost
of the plan and the overlap between the cumulative resource
usage profiles of the predicted plans and that imposed by the
current plan of the robot itself while maximizing the validity
of the demand profiles. Constraints (1) through (3) model
the initial and goal conditions, while the value of the con-
strained variables are kept uninitialized (and are determined
by their profiles). Constraints (4) and (5), depending on the
particular predicate, enforces the preconditions, or produces
the demand profiles respectively, while (6) and (7) enforces
the state equations that maintain the add and delete effects
of the actions. Constraint (8) imposes non concurrency on
the actions, and (9) ensures that the robot does not repeat
the same action indefinitely to increase its utility. Constraint
(10) generates the resource profile of the current plan, while
(11) maintains that actions are only executed if there is at
least a small probability ε of success. Finally (12) to (15)
provide the binary ranges of the variables.

Note on Temporal Expressivity
At this point it is worth acknowledging the implications
of having durative actions in our formulation. Note that
our approach does not discretize time, but rather uses time
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points as steps in the plan - that can be easily augmented
with their own durations. So in order to handle durative
actions, the only (somewhat minor) change required in the
formulation is in the way the conflicts are integrated (instead
of summed) over in the objective function. Further, uncer-
tainty in action durations is always a big issue in human
interactions; though resource profiles cannot directly handle
uncertain durations, it only affects the way the profiles are
calculated, and the way in which information is expressed
in it remains unchanged (i.e. expectations over action dura-
tions add an extra expectation to the already probabilistic
profile computation). As noted before in Section 2.3, the
ability of profiles to form regions of interest is crucial in
handling such scenarios implicitly.

3. MODULATING BEHAVIOR
OF THE ROBOT

The planner is implemented on the IP-solver gurobi and
integrates [7] and [8] respectively for goal recognition and
plan prediction for the recognized goals. We will now illus-
trate how the formulation can produce different behaviors
of the robot by appropriately configuring the parameters of
the planner. For this discussion we will limit ourselves to a
singleton hypothesis goal set in order to observe the robot’s
response more clearly.

3.1 Compromise
Let us now look back at the environment we introduced

in Figure 1. Consider that the goal of the commander is to
perform triage in room1. The robot computes the human’s
optimal plan (which ends up using medkit1 at time steps 7
through 12) and updates the resource profiles accordingly. If
it has its own goal to perform triage in hall3, the plan that
it comes up with given a 12 step lookahead is shown below.
Notice that the robot opts for the other medkit (medkit2
in room3) even though its plan now incurs a higher cost in
terms of execution. The robot thus can adopt a policy of
compromise if it is possible for it to preserve the comman-
der’s (expected) plan.

01 MOVE_ROBOT_ROOM1_HALL1
02 MOVE_ROBOT_HALL1_HALL2
03 MOVE_ROBOT_HALL2_HALL3
04 MOVE_ROBOT_HALL3_HALL4
05 MOVE_REVERSE_ROBOT_HALL4_ROOM4
06 MOVE_REVERSE_ROBOT_ROOM4_ROOM3
07 PICK_UP_MEDKIT_ROBOT_MK2_ROOM3
08 MOVE_ROBOT_ROOM3_ROOM4
09 MOVE_ROBOT_ROOM4_HALL4
10 MOVE_REVERSE_ROBOT_HALL4_HALL3
11 CONDUCT_TRIAGE_ROBOT_HALL3
12 DROP_OFF_ROBOT_MK2_HALL3

3.2 Opportunism
Notice, however, that the commander is actually bringing

the medkit to room1 as predicted by the robot, and this is
a favorable change in the world, because robot can use this
medkit once the commander is done and achieve its goal at
a much lower cost. The robot, indeed, realizes this once we
give it a bigger time horizon to plan with, as shown above (on
the right). Thus, in this case, the robot shows opportunism
based on how it believes the world state will change.

01 NOOP
02 NOOP

...

13 NOOP
14 PICK_UP_MEDKIT_ROBOT_MK1_ROOM1
15 MOVE_ROBOT_ROOM1_HALL1
16 MOVE_ROBOT_HALL1_HALL2
17 MOVE_ROBOT_HALL2_HALL3
18 CONDUCT_TRIAGE_ROBOT_HALL3
19 DROP_OFF_ROBOT_MK1_HALL3

3.3 Negotiation
In many cases, the robot will have to eventually produce

plans that will have potential points of conflict with the ex-
pected plans of the commander. This occurs when there is
no feasible plan with zero overlap between profiles (specifi-
cally

∑
gf,t × Gλ(t) = 0) or if the alternative plans for the

robot are too costly (as determined by the objective func-
tion). If, however, the robot is equipped with the ability to
communicate with the human, then it can negotiate a plan
that suits both. To this end, we introduce a new variable
Hλ(t) and update the IP as follows:

min k1

∑
a∈AR

∑
t∈{1,2,...,T} Ca × xa,t

+k2

∑
λ∈λ

∑
f∈Γ−1(λ)

∑
t∈{1,2,...,T} gf,t ×H

λ(t)

−k3

∑
λ∈Λ

∑
f∈Γ−1(λ)

∑
t∈{0,1,...,T−1} hf,t ×G

fλ(t)

+k4

∑
λ∈Λ

∑
t∈{0,1,...,T} ||G

λ(t)−Hλ(t)||

yf,T ≥ hf,t−1 ∀ a s.t. f ∈ Pa, ∀f ∈ ξ, t ∈ {1, . . . , T} (5a)

Hλ(t) ∈ [0, 1] ∀λ ∈ Λ, t ∈ {0, 1, . . . , T} (16)

Hλ(t) ≤ Gλ(t) ∀λ ∈ Λ, t ∈ {0, 1, . . . , T} (17)

Constraint (5a) now complements constraint (5) from the
existing formulation, by promising to restore the world state
every time a demand is made on a variable. The variable
Hλ(t), maintained by constraints (16) and (17), determine
the desired deviation from the given profiles. The objective
function has been updated to reflect that overlaps are now
measured with the desired profile of usage, and there is a
cost associated with the deviation from the real one. The
revised plan now produced by the robot is shown below.

01 MOVE_ROBOT_ROOM1_HALL1
02 MOVE_ROBOT_HALL1_HALL2
03 MOVE_REVERSE_ROBOT_HALL2_ROOM2
04 PICK_UP_MEDKIT_ROBOT_MK1_ROOM2
05 MOVE_ROBOT_ROOM2_HALL2
06 MOVE_ROBOT_HALL2_HALL3
07 CONDUCT_TRIAGE_ROBOT_HALL3
08 MOVE_REVERSE_ROBOT_HALL3_HALL2
09 MOVE_REVERSE_ROBOT_HALL2_ROOM2
10 DROP_OFF_ROBOT_MK1_ROOM2

Notice that the robot restores the world state that the hu-
man is believed to expect, and can now communicate to him
“Can you please not use medkit1 from time 7 to 9?” based
on how the real and the ideal profiles diverge, i.e. t such
that Hλ(t) < Gλ(t) for each resource λ.

Notes on Adaptive Behavior Modeling
One might note here that people are often adaptive and it is
very much possible that they may be willing to change their
goals based on observing the robot or are even unwilling to
negotiate if their plans conflict. Hence the policies of com-
promise and opportunism for the robot are complementary
to negotiation in the event the latter fails. Thus, for exam-
ple, the robot might choose to communicate a negotiation
strategy to the human, but fall back on a compromise if that
fails. It is a merit of such a simple formulation to be able to
handle such interesting adaptive behaviors.
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4. EVALUATION
The power of the proposed approach lies in the modular

nature in which it tackles several complicated problems that
are separate research areas in their own rights. As we saw
throughout the course of the discussion, approaches used
in the individual modules may be varied with little to no
change in the rest of the architecture. For example the ex-
pressivity of the belief modeling or goal recognition compo-
nent is handled separately as the planner used information
from a generic plan set. Again the representation technique
introduced in terms of resource profiles provide properties in
terms of computational independence with respect to size of
the hypothesis set and number of agents (which gets man-
ifested in complexity in number of resources) that general
planners do not have. So it becomes a design choice de-
pending on which metric needs to be optimized.

For empirical evaluations, we simulated the USAR sce-
nario on 360 different problem instances, randomly gener-
ated by varying the specific (as well as the number of prob-
able) goals of the human, and evaluated how the planner
behaved with the number of observations it can start with
to build its profiles. We fix the domain description, location
and goal of the agents, and the position of the resources, and
consider randomly generated hypothesis goal sets of size 2-
11. The goals of the commander were assumed to be known
to be triage related, but the location of the triage was allo-
cated randomly (one of which was again picked at random
as the real goal). Finally for each of these problems, we
generate 1-5 observations by simulating the commander’s
plan over the real goal, and use these observations known
a priori the robot’s plan generation process. The experi-
ments were conducted on an Intel Xeon(R) CPU E5-1620
v2 3.70GHz×8 processor with a 62.9GiB memory.

4.1 Scaling Up
Our primary contribution is the formulation for planning

with resource profiles, while the goal recognition component
can be any off-the-shelf algorithm, and as such we compare
scalability with respect to the planning component only.

- w.r.t. Length of the Planning Horizon
The performance of the planner with respect to the planning
horizon is shown in Figure 4a. This is, as expected, the
bottleneck in computation due to exponential growth of the
size of the IP. It is however not prohibitively expensive, and
the planner is still able to produce plans of length 20 (steps,
not durations) for our domain in a matter of seconds.

- w.r.t. Number of Resources
The performance of the planner with respect to the num-
ber of constrained resources (medkits, in the context of the
current discussion) is shown in Figure 4b. Evidently, the
computational effort is dominated by that due to the plan-
ning horizon. This reiterates the usefulness of abstracting
the information in predicted plans in the form of resource
profiles, thus isolating the complexities of the domain with
that of the underlying planning algorithm.

- w.r.t. the Number of Agents and Goals
The planning module (i.e. the IP formulation) is by itself
independent of the number of agents being modeled. In
fact, this is one of the major advantages of using abstrac-
tions like resource profiles in lieu of actual plans of each of

(a) w.r.t. T (|Λ| = 2)

(b) w.r.t. #medkits (T = 10)

Figure 4: Performance of the planner w.r.t. planning hori-
zon T and number of constrained resources (medkits).

the agents. On the other hand, the time spent on recogni-
tion, and on calculating the profiles, is significantly affected.
However, observations on multiple agents are asynchronous,
and goal recognition can operate in parallel, so that this is
not a huge concern beyond the complexity of a single in-
stance. Similarly the performance is also unaffected by the
size of the hypothesis set Ψα, as shown in Figure 5, which
shows increase in the number of the possible goals does not
complicate the profiles to an extent to affect the complexity.

4.2 Quality of the Plans Produced
We define U as the average conflicts per plan step when

a demand is placed on a resource by the robot, and S as
the success probability per plan step that the demand is
met. C is the cost of a plan. F is the percentage of times
there was an actual conflict during execution (distinct from
U which estimates the possible conflict that may occur per
plan step). We observe the quality of the plans produced
by the planner by varying the ratio of parameters k1 and k3

from the objective function and the length of the planning
horizon T . Similar results can be produced by varying k1/k2.

From Table 1, as k1/k3 decreases, the planner becomes
more conservative (to maximize success probability) and
thus plans become costlier. At the same time the expected
success rate of actions are also increased (with simultaneous
increase in usage conflict), as reflected by a higher failure
rate due to actual execution time conflicts.
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Figure 5: Performance of the planner w.r.t. size of the goal
set. As expected, computational complexity is not affected.

k1/k3 0.05 0.5 5.0

C 9.47 6.37 6.31
U 0.18 0.17 0.17
S 0.85 0.579 0.578
F 27.5 23.0 21.3

Table 1: Quality of plans produced w.r.t. k1/k3. Conserva-
tive plans result in lowered utility.

Also note, from Table 2 the impact of the planning hori-
zon T on the types of behaviors we discussed in the previ-
ous section. As we increase T , the plan cost falls below the
optimal, indicating opportunities for opportunistic behavior
on the part of the robot. The expected conflict also falls
to almost 0. However the expected success rate of actions
also decreases, the ratio k1/k2 determines how daring the
robot is, in choosing between cheap versus possibly invalid
plans. Note, however, the actual execution time conflict is
extremely low with increasing T , for even sufficiently con-
servative estimates of S.

Thus we see that the robot is successfully able to nav-
igate conflicts and find in many cases plans even cheaper
than the original optimal plan, thus highlighting the useful-
ness of the approach. Finally, we look at the impact of the
parameters in the plan recognition module in Figure 6. As
expected, with bigger hypothesis sets, the success rate goes
down. Interestingly, the plan cost also shows a downward
trend which might be because the bigger variety in possible
goals give a better idea of which medkits are generally more
useful for that instance at what points of time. With more
observations, as expected, the success rate goes up and the
expected conflict goes down. The cost, however, increases a
little as the planner opts for more conservative options.

5. CONCLUSIONS
In this paper we investigate how plans may be affected by

conflicts on shared resources in an environment cohabited by
humans and robots, and introduce the concept of resource
profiles as a means of representation for concisely modeling
the information pertaining to the usage of such resources,
contained in predicted behavior of the agents. We propose
a general formulation of a planner for such scenarios and
show how the planner can be used to model different types
of behavior of the robot by appropriately configuring the

(a) w.r.t. |Ψα|

(b) w.r.t. #obs

Figure 6: Performance of the planner w.r.t. size of goal set
and number of observations (k1/k3 = 0.5, T = 16).

T 10 13 16 Optimal

C 9.0 5.6 4.53 9.0
U 0.46 0.04 ≈0 n/a
S 1.0 0.48 0.25 n/a
F 53.3 11.9 6.6 53.3

Table 2: Quality of plans produced w.r.t. T . Opportunities
for opportunism explored, conflicts minimized.

objective function and optimization parameters. Finally, we
provide an end-to-end framework that integrates belief mod-
eling, goal recognition and an IP-solver that can enforce the
desired interaction constraints. One interesting research di-
rection would be to consider nested beliefs on the agents; af-
ter all, humans are rarely completely aloof of other agents in
its environment. Such interactions should have to consider
evolution of beliefs with continued interactions and moti-
vate further exploration of the belief modeling component.
The modularity of the proposed approach allows for focused
research on each (individually challenging) subtask without
significantly affecting the others.
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