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ABSTRACT
Informative and scalable trust mechanisms that are robust to manip-
ulation by strategic agents are a critical component of multi-agent
systems. While the global hitting time mechanism (GHT) intro-
duced by Hopcroft and Sheldon [9] is more robust to manipula-
tion than PageRank, strategic agents can still benefit significantly
under GHT by performing sybil attacks. In this paper, we intro-
duce the personalized hitting time mechanism (PHT), which we
show to be significantly more robust to sybil attacks than GHT.
Specifically, if an agent has already cut all of its outlinks under
PHT (which only leads to a negligible benefit), then adding sybils
leads to no additional benefit. We provide an experimental anal-
ysis which demonstrates that, in the presence of strategic agents
that create sybils, PHT dominates GHT (as well as PageRank and
personalized PageRank) in terms of informativeness. We find the
large dominance of PHT over GHT particularly surprising given the
small difference between the two mechanisms. Finally, we provide
a Monte Carlo algorithm to compute approximate PHT scores at
scale, and we show that PHT retains its robustness to manipulation
when used with approximate scores.

CCS Concepts
•Applied computing → Economics; •Information systems →
Reputation systems;

Keywords
Trust Mechanisms; Reputation Mechanisms; Mechanism Design;
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INTRODUCTION
With the continued emergence of market-based systems (con-

sider Uber and Airbnb) we get closer to the vision of agent-
mediated commerce [15], with automated software agents nego-
tiating and trading on behalf of a network of individuals who know
very little about each other. Problems of trust are of the utmost im-
portance: in identifying trustworthy counter-parties with whom to
transact (who to take a ride with) and with the knock-on effect of
promoting trustworthy behavior (clean cars, direct routes).

A trust mechanism takes reports about the experiences agents
have with others, aggregates this information, and shares it in some
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form with the agents. An effective trust mechanism must be scal-
able and robust against manipulation in the presence of strategic
agents who are willing to misreport trust to improve their own score
or reduce the score of others. Ultimately we care about a mecha-
nism that is informative, able to generate trust scores that discrimi-
nate between low quality and high quality agents. Specifically, we
care about informativeness in the presence of strategic agents.

Some trust mechanisms are global mechanisms, which assign a
single trust score to each agent, reflecting an aggregate view of
the agent’s trustworthiness based on all reports. Other trust mech-
anisms are personalized and may assign the same agent different
trust scores depending on the viewpoint taken; e.g., agent vk’s score
from the perspective of vi may not be the same as vk’s score from
the perspective of vj . We model this as a graph-theoretic problem:
agents are nodes; agents’ reports are weighted directed edges indi-
cating trust; and trust mechanisms are graph-based algorithms.

The PageRank algorithm is a global mechanism originally de-
veloped to identify reputable web pages [14]. PageRank is known
to be easily manipulated by sybil attacks [4], in which an agent in-
troduces and controls the reports of a number of fake agents (the
sybils). PageRank, for example, is vulnerable to a “two-loop at-
tack,” in which an agent indicates trust in its sybils, and its sybils
indicate trust in the agent. Sybil attacks have been a concern in
many multi-agent systems (e.g., in auction-based systems [19]).

In response to this concern, Hopcroft and Sheldon [9] (HS) in-
troduced the global hitting time mechanism (GHT). GHT is closely
related to PageRank. In fact, a transformed GHT score for an agent
vk can be computed via PageRank on a modified graph with all
of vk’s out-edges removed. This difference is crucial. Whereas
a PageRank score for agent vk may depend on its own as well as
others reports, a GHT score is independent of an agent’s own re-
ports. Although this removes the two-loop attack, GHT remains
vulnerable to sybils through a “restart-capture attack.”1 HS point
this out, stating GHT can be “heavily swayed” in the extreme of
a large number of sybils. These authors also suggest the idea of
“limiting the restart probability granted to new nodes” and point to
personalized variations on PageRank [7], as well as variations of
PageRank that use pre-trusted nodes for restart [8] (see also Kam-
var et al. [10]).

HS provide a limiting analysis, pointing out that sybils can boost
a trust score by a large additive amount, reflecting the probability
of restart. But HS leave open the question as to the practical im-
plication of restart recapture in GHT, especially its effectiveness
relative to other manipulations, its consequences for GHT relative

1Restart-capture refers to the role of sybils in capturing probabil-
ity when the random walk used to define GHT scores restarts and
jumps to a new node selected at random.



to other mechanisms, and its effect on the informativeness of GHT.
This paper closes this gap.

We study the personalized hitting time (PHT) mechanism, which
does not appear to have been discussed or studied in the prior liter-
ature. We make the following contributions:
• We prove that the optimal manipulation strategy under PHT

only involves cutting outlinks, but does not involve adding
sybils. In comparison, the optimal manipulation strategies un-
der PageRank, GHT and a personalized variation of PageRank
all require sybils.
• Through a detailed experimental analysis, we quantify the

extent to which PHT, GHT, PageRank, and personalized
PageRank are vulnerable to sybil attacks. We demonstrate
that sybil attacks are especially powerful in global mecha-
nisms (GHT and PageRank) and also effective in personalized
PageRank. We show that PHT is very robust to sybil attacks,
which translates into a large improvement in informativeness
relative to GHT and other mechanisms. The dominance of PHT
over GHT is particularly surprising given the small difference
between the two mechanisms.
• We provide a Monte Carlo algorithm to compute PHT scores

and bound the error as a function of the number of samples.
Furthermore, we show that an approximate version of the PHT
mechanism retains robustness against sybil manipulations by
strategic agents.

Related Work
Trust mechanisms have been proposed for various applications,

including the efficient identification of web spam [8], searching
for trusted web pages on the Internet [14], and identifying good
peers [10, 12]. Yu et al. [22] give an extensive survey of the wide
range of trust mechanisms and trust management systems in the
literature.

Although Cheng and Friedman’s [3] conception of a successful
sybil manipulation differs slightly from our own (since they allow
an agent to transact as a sybil), and although they only consider
sybil attacks in isolation from other manipulations, their main re-
sult is relevant here— non-trivial global trust mechanisms are sus-
ceptible to sybil attacks while personalized trust mechanisms can
be robust against sybils.

Hopcroft and Sheldon [9] introduce GHT and provide a theoret-
ical treatment of its manipulation-resistance in regard to both drop-
ping trust reports and using sybils. But as discussed above, they
do not explore in simulation the remaining vulnerability of GHT to
sybil attacks, study a personalized variation, or consider informa-
tiveness.

Tang et al. [18] show that max-flow and a shortest-path based
mechanism are less informative than PageRank and GHT in the
absence of strategic agents. Based on this, we restrict our attention
to mechanisms based on random-walks in the style of PageRank
and GHT.

Seuken et al. [17] have studied trust-based mechanisms for work
accounting systems, where the goal is to incentivize users to con-
tribute as much as they consume over time. Recently, Seuken and
Parkes [16] have proven that it is impossible to design account-
ing mechanisms that use transitive trust (like PageRank and hitting
time) and are are also sybil-proof. While their framework is slightly
different from ours, their results demonstrate the challenges that
using a notion of transitive trust imply for achieving robustness to-
wards sybil attacks.

One way to achieve certain robustness against sybil attacks is to
leverage external trust information. Unlike methods such as Sybil-

Guard [21] and SybilLimit [20] that assume access to additional
information such as pre-existing social links on social networks,
we limit inputs to voluntary reports from agents.

PRELIMINARIES
Let V denote a set of agents, with cardinality |V | = n, and let

vi, vj ∈ V denote individual agents. In our model, agents engage
in transactions with each other. One agent is the initiator and one is
the provider. Transactions are risky and may succeed or fail. Each
agent vi has a (latent) type θi ∈ [0, 1]. This defines how trustworthy
the agent is. A transaction initiated by vj with provider vi succeeds
with probability θi, depending on the type of the provider.

At any point in time, let Vi denote the set of agents with whom
agent vi has initiated a transaction. Following a transaction, we as-
sume that an agent updates its belief about the type of the provider,
e.g., by considering its prior and the success or failure of the trans-
action. We do not model this update explicitly for our theoretical
model, but rather use βij ∈ [0, 1] to denote agent vi’s belief about
an agent vj ∈ Vi with which it has transacted.

A trust mechanism takes a report from each agent. The report
from agent vi is a claim (perhaps untruthful) about the trustwor-
thiness of each agent vj ∈ V̂i ⊆ Vi, where V̂i is the set of other
agents about which it makes reports. Let ŵij ∈ [0, 1] denote its
report about agent vj , and let ŵi denote the complete set of reports
from vi. We assume that an agent can only make reports about
agents with which it has initiated one or more transactions.

A trust graph G = (V,E, β) is a weighted directed graph (di-
graph) with a set V of vertices, a set E of directed edges, and edge
weights β : E 7→ R≥0. We slightly abuse notation, using V for
both the set of agents and the set of vertices. A trust graph is con-
structed from a set of reports in the natural way, with agents corre-
sponding to vertices, and a weighted directed edge from (the vertex
corresponding to) agent vi to agent vj with weight ŵij , for report
ŵij from vi about vj .

A trust mechanism takes a set of reports and returns a trust score
xij ∈ R≥0 for every pair of agents vi, vj ∈ V with vi 6= vj ;
this is the trust for vj from the viewpoint of vi. In a global trust
mechanism, we have xij = xkj for all agents vj , and all vi, vk. In
this case, we let xj denote the score of agent vj . In a personalized
trust mechanism, we may have xij 6= xkj , with the score of agent
vj depending on whether the viewpoint is that of vi or vk.

The hitting time mechanisms are defined in terms of a random
walk on a trust graph. This is a sequence of random variables
(X0, X1, . . . ), where each Xi ∈ V , and

P(Xt+1 = vj |Xt = vi) =
βij∑

(i,j′)∈E βij′
. (1)

In defining this walk, a self-loop is added to any vertex that has
no out-edges. Depending on the context, vertex X0 may be fixed,
or sampled according to some restart distribution Fq . The hitting
time of vertex vj is H(vj) = min{t : Xt = vi | X0 ∼ Fq}.
An α-terminating random walk, for some α ∈ [0, 1], is a finite
random walk (X0, X1, . . . , Xτ ) where the walk length is a random
variable, τ ∼ Geom(1−α). In effect, the random walk terminates
with probability α in each step. Let (Xt)τt=0 denote the sequence
of vertices visited by an α-terminating random walk.

DEFINITION 1 (GLOBAL HITTING TIME MECH. (GHT)).
Given a reported trust graph, parameter α ∈ [0, 1], and restart
distribution Fq , the global hitting-time score xGHT,j of agent vj
is the probability that an α-terminating random walk initiated
at a vertex sampled from Fq visits vj before it restarts, i.e.,
xGHT,j = P(vj ∈ (Xt)

τ
t=0 |X0 ∼ Fq).



This is equivalent to defining the GHT score as P(H(vj) ≤ τ),
where τ is the distribution on path length before restart.

We assume that distribution Fq puts some probability on sybils
in our theoretical analysis, and take it to be uniform in our sim-
ulations. Given access to a fixed set of pre-trusted vertices, then
restart can be limited to these vertices. Personalized hitting time is
a special case, where the pre-trusted set is simply the agent itself.

DEFINITION 2 (PERSON. HITTING TIME MECH. (PHT)).
Given a reported trust graph and parameter α ∈ [0, 1], the
personalized hitting time score xPHT,ij of agent vj as viewed
from agent vi is the probability that an α-terminating ran-
dom walk that starts from vi visits vj before it restarts, i.e.,
xPHT,ij = P(vj ∈ (Xt)

τ
t=0 |X0 = vi).

This is equivalent to defining the PHT score for vj as viewed by
vi as P(H(vj) ≤ τ |X0 = vi), which denotes the probability that
a random walk initiated at vi will visit vj before terminating.

DEFINITION 3 (PAGERANK MECHANISM). Given a re-
ported trust graph, parameter α ∈ [0, 1], and restart redistribution
Fq , the global PageRank score xPR,j of agent vj is the steady-state
probability that an α-terminating random walk initiated at a vertex
sampled from Fq spends at vj .

DEFINITION 4 (PERSONALIZED PAGERANK MECH. (PPR)).
Given a reported trust graph and parameter α ∈ [0, 1], the person-
alized PageRank score xPPR,ij of agent vj as viewed from agent
vi is the steady-state probability that an α-terminating random
walk that starts (and restarts) from vi spends at vj .

Collectively, we call these the random-walk family of trust mech-
anisms.

Motivated by the ubiquity of related schemes in social and eco-
nomic platforms, we also adopt the average-score mechanism (AS)
as a simple baseline. This computes xAS,j as the average of reports
about vj by others. As we will show, AS turns out to have in-
teresting properties. In particular, it is less manipulable than GHT
and PageRank, and is relatively informative for scenarios where the
agents are collectively well-informed about each other.

THEORETICAL ANALYSIS
In this section, we analyze the robustness of PHT to manipula-

tion and compare this with the other mechanisms.
A strategic agent is interested in increasing its own score and de-

creasing the scores of others (because such manipulations may lead
to other agents initiating more transactions with this agent). One
strategy is to misreport other agents as untrustworthy, which in the
random-walk family of mechanisms is equivalent to dropping re-
ports (and hence also known as cutting outlinks). A strategic agent
vj can also execute a sybil attack by creating one or more sybils and
arbitrary trust reports among itself and its sybils. Following previ-
ous research (e.g., Tang et al. [18]), we assume no trust reports from
other agents to vj’s sybils.2

We characterize the optimal combination of misreports and sybil
attacks for each of our mechanisms.3

2In practice, obtaining a positive trust report for a sybil should be
similarly costly as obtaining a trust report for oneself, but the latter
should be at least as beneficial for one’s reputation.
3The results for PageRank and PPR follow from Bianchini et al. [2]
and Cheng and Friedman [4]. The results for GHT follow from
Hopcroft and Sheldon [9]. The analysis for PHT is new. We pro-
vide a self-contained proof of the theorem for completeness.

THEOREM 1. The optimal manipulations for a strategic agent
vj with access to one or more sybils are:

• GHT: Drop all trust reports about other agents. Add as many
sybils as possible and have each sybil report trust 1 for vj .

• PHT: Drop all trust reports about other agents. Do not add any
sybils.

• PageRank: Drop all trust reports about other agents. Add as
many sybils as possible with “two-loops” such that vj reports
trust 1 for each sybil, and each sybil reports trust 1 for vj .

• PPR: Drop all trust reports about other agents. Add one sybil
and one two-loop with this sybil.

• AS: Report zero trust for every agent in set Vj .4 Add as many
sybils as possible and have each sybil report trust 1 for vj .

PROOF. • GHT: Dropping all trust reports to others is strictly
dominant because a random walk (r.w.) at vj has already hit vj and
an out-edge from vj can make it possible for the r.w. to also hit
another agent. Thus, an out-edge leaves vj’s own score unchanged
while increasing the score of others. Consider adding a sybil s. A
r.w. at vj has already hit vj and thus adding an edge to s does not
change the score of vj . But sybil s is useful for capturing a restarted
r.w. and sending it in a single hop (the shortest possible) to vj , thus
improving the score of vj . For this, s has an out-edge (with weight
1) to vj and no other edges.5

• PHT: Consider vj and the viewpoint from some other agent
vi. The analysis in regard to dropping reports of other agents is the
same as for GHT. In regard to a sybil s, it remains irrelevant to add
an edge to s. In addition, s no longer captures restart probability
(except for trust scores as viewed from s), since all restart for the
trust scores from the viewpoint of vi occurs at vi.6

• PageRank: Adding a sybil s with a two-loop from vj to s and
back to vj sends a r.w. at vj back to vj as quickly as possible (at
least as effectively as if the r.w. visits some other vertex), increasing
the visit probability at vj . A sybil also captures restart probability,
and a two-loop sends a r.w. that starts at s to vj as quickly as
possible. To maximize both effects it is optimal to have as many
sybils as possible, each with two-loops to provide the shortest path
possible back to vj . Given one or more two-looped sybils, it is
optimal for vj to drop all trust reports to other agents. An out-edge
from vj to vi allows a r.w. at vj to also visit vi, increasing the
score of vi. With one or more two-loops, there is no need to use vi
to allow the r.w. to return to vj because vj’s sybils already provide
the shortest-possible return path.7

4Reporting zero is different from dropping a report in AS because
reports are averaged, and the absence of information is different
from a report of zero.
5If it wasn’t already optimal for vj to drop trust reports about oth-
ers, there is an additional role for sybils in GHT. Beyond capturing
restart probability, a sybil can divert a r.w. at vj away from other
agents and reduce the score of these other agents. For this, vj would
want to introduce a large number of sybils s′ with an edge from vj
to s′, along with sybils s that have an edge from s to vj . A simi-
lar observation can be made for PHT, where without dropping trust
reports about others then it would be useful to introduce sybils s′

with an edge from vj to each s′.
6Similar to the analysis for GHT, if vj cannot drop reports, there is
a role to play for sybils. However, a sybil attack without dropping
reports is strictly less effective than dropping all reports. Consider
an agent vk with outlinks to some sybils and without dropping any
reports. A r.w. at vk has a non-zero probability of taking an outlink
to another agent, whereas a r.w. at vj has a zero probability of doing
so.
7Without sybils, it can sometimes be beneficial to keep an out-edge
with an agent who reports trust in vj . This depends on a balance



• PPR: The analysis is similar, but reveals that only one sybil is
required. A single sybil s with a two-loop from vj to s and back to
vj sends a r.w. at vj back to vj as quickly as possible (at least as ef-
fectively as if the r.w. visits some other vertex), increasing the visit
probability at vj . But now a sybil does not capture restart proba-
bility, and thus the second effect in PageRank is not present, and
only one sybil is required. The rest of the analysis is unchanged,
and dropping reports of other agents is optimal together with a two-
loop with a sybil.
• AS: A trust report of 0 about another agent vi maximally de-

creases the trust score of vi. Having a sybil s report high trust for
vj increases vj’s score. A trust report by vj about s has no effect
on the score of vj .

Theorem 1 tells us that sybils do not bring new manipulation
ability to a strategic agent in PHT who is already able to misreport
trust about others. This property is unique to PHT amongst these
mechanisms.

Sybils are useful for restart-capture in the global mechanisms,
even when an agent is already dropping reports about others. Sybils
with two-loops are useful in PageRank and PPR, and even when an
agent is already dropping reports about others. Sybils are useful in
AS.

Following Hopcroft and Sheldon [9], we can also quantify the
effect of manipulation in PHT and compare this with GHT. Let
ρ =

∑
s∈S q(s), where S is the set of sybils introduced by agent

vj and q(s) the restart probability (given by distribution Fq). This
is the total probability captured by vj’s sybils. Let infl(j, k) =
P[H(vj) < H(vk) ≤ τ ] denote the influence of vj on vk (where
H(vj) and H(vk) may be correlated). Without sybils, the impact
of strategic behavior on vk is equal to the change in influence of
vj on vk. For PHT, let infl(j, k | i) = P[H(vj) < H(vk) ≤
τ | X0 = vi] denote the influence of vj on vk’s trust score, as
determined from the viewpoint of vi. We have

infl(j, k | i) = P[H(vj) ≤ τ |X0 = vi]

· P[H(vj) < H(vk) ≤ τ |X0 = vi, H(vj) ≤ τ ]
= xPHT,ij · P[H(vk) ≤ τ ′ |X0 = vj ]

= xPHT,ij · xPHT,jk, (2)

where τ ′ ∼ Geom(1− α). The influence of vj on the score of vk
in PHT, viewed from vi, depends on the score vj gives to vk, but
dampened through the score vi gives to vj . Let x and x′ denote
trust scores computed on the basis of true inputs and following ma-
nipulation by vj , respectively.

THEOREM 2 (FOLLOWING HOPCROFT & SHELDON (2007)).
The effect on trust scores of manipulation by a strategic agent vj
with access to sybils is:

• In GHT:

(i) x′GHT,j ≤ (1− ρ)xGHT,j + ρ, and

(ii) x′GHT,k ≥ (1− ρ)(xGHT,k − infl(j, k)), ∀vk 6= vj .

• In PHT: for any observer vi 6= vj ,

(i) x′PHT,ij = xPHT,ij , and

(ii) x′PHT,ik ≥ xPHT,ik − infl(j, k | i), ∀vk /∈ {vi, vj}.

The properties for GHT are stated as Theorem 4.10 (i) and (ii)
in Hopcroft and Sheldon [9]. The properties for PHT follow from

between allowing a r.w. to visit this other agent, thus increasing
the other agent’s score, while also bringing the r.w. back to vj ,
increasing vj’s own score. A similar observation can be made for
PPR.

Corollary 4.7 (i) and (ii) in Hopcroft and Sheldon [9], using our
Theorem 1 to reduce the properties of PHT with strategic behavior
in the presence of sybils to the properties of GHT with strategic
behavior in the absence of sybils.

PHT with sybils enjoys the same analytic results in regard to
strategic behavior as those for GHT in a system where sybils are
precluded by assumption. From properties (i), whereas an agent in
GHT may be able to increase its own score by as much as ρ, it can-
not change its own score in PHT. From properties (ii), whereas an
agent in GHT may be able to both remove the effect of its influence
on the score of another agent and further dampen this by a factor
(1− ρ), the second factor goes away in PHT.

COMPUTING PHT TRUST SCORES
Large-scale applications of trust mechanisms require algorithms

that can quickly compute trust scores. We will now first present
an exact method for computing PHT, which is based on solving a
system of linear equations that relate hitting time values to each
other, but that runs in in O(n4). In a second step we will then
present a Monte Carlo approximation method.

An Exact Algorithm for Computing PHT

ALGORITHM 1 (EXACT). Given a weighted digraph G, let
~x(j) be the vector of PHT scores from every vertex to vj , i.e.,
~xi(j) = xPHT,ij . Set parameter α. Let P denote the transition
matrix of G. Solving the system of linear equations defined by

~x(j) = (1− α)P (j)~x(j) + ~ej (3)

yields the values for ~x(j), where P (j) is a modified transition ma-
trix of G where Pjk(j) = 0 for all k, and ~ej is the standard basis
vector.

THEOREM 3. The exact algorithm correctly computes the PHT
scores in O(n4) time.

PROOF. Let (Xt)
τ
t=0 be a finite sequence of random vari-

ables representing the sequence of states that are visited by an α-
terminating random walk on a weighted digraph G. Then the PHT
score xPHT,ij is

xPHT,ij = P(vj ∈ (Xt)
τ
t=0 |X0 = vi).

Conditioning on X1 and expanding by the law of total probability
yields∑
k

P(vj ∈ (Xt)
τ
t=0|X0 = vi, X1 = vk) · P(X1 = vk|X0 = vi).

When i 6= j, we can simplify the first term to xPHT,kj by the
Markov property. The second term simplifies to the product of the
survival probability 1−α and the transition probability Pik, where
P is the transition matrix of G. This yields

xPHT,ij = (1− α)
∑
k

Pik · xPHT,kj .

Let P (j) be a modified transition matrix with the same entries
as P but with Pjk(j) = 0 for all k. We can now vectorize this
expression for xPHT,ij with j fixed, taking care to ensure that
xPHT,jj = 1. We make use of P (j) and the standard basis vector
~ej to produce the vectorization

~x(j) = (1− α)P (j)~x(j) + ~ej .

To find all n2 PHT scores, we must solve n systems of these lin-
ear equations. As solving a system of n linear equations in n vari-
ables takes time O(n3), the total algorithm takes O(n4) time.



Although each system of equations can be solved in parallel, and
computation can be accelerated further by methods in parallel nu-
merical linear algebra [6], the O(n4) time complexity is likely to
remain prohibitive in practical applications. For this reason, we
will next present a significantly faster, albeit approximate approach
for computing PHT.

A Monte Carlo Method for Computing PHT
A simple Monte Carlo approximation would simulate α-

terminating random walks between every pair of vertices, and esti-
mate xPHT,ij as the proportion of walks starting at vi that reach vj
before terminating. We improve on this, by introducing the follow-
ing multi-walk algorithm.

ALGORITHM 2 (MULTI-WALK). Given a trust graph G =
(V,E, β) (and |V | = n), initiate a total of m α-terminating ran-
dom walks, with mi = m/n walks initiated at each vertex vi. Let
Zij be the number of walks that include a subsequence that visits
vi and subsequently vj . Let Yi be the number of walks for which vi
is visited (including those started at vi). Estimate PHT scores by
x̂PHT,ij = Zij/Yi.

The multi-walk algorithm improves on the simple approach by
(1) using a random walk (r.w.) from vi to estimate the trust score
from vi to multiple other vertices; and (2) using a subsequence of
a r.w. started at some vertex v′i, to estimate the trust score from v′i
to multiple other vertices. In order to avoid bias and keep samples
independent, we must take care not to use a subwalk from a vertex
that has already been visited on the current r.w.

THEOREM 4. The estimate computed by the multi-walk algo-
rithm is unbiased and consistent.

PROOF. Consider all r.w.s that visit vertex vi (there are Yi of
these). For such a random walk (Xt)

τ
t=0, let Hi denote the step

(or hitting time) at which this first occurs. The estimator x̂PHT,ij

is given by the proportion of these walks that subsequently visit vj .
The probability that the r.w. visits vj is P(vj ∈ (Xt)

τ
t=Hi
|vi ∈

(Xt)
τ
t=0). Using the time-homogeneous and Markovian property

of the random walk, this is just P(vj ∈ (Wt)
τ ′
t=0|W0 = vi),

where (Wt)
τ ′
t=0 = (Xt)

τ
t=Hi

and τ ′ = τ − Hi. Due to the
memoryless property of the geometric distribution, it also holds
that τ ′ ∼ Geom(1 − α). This is exactly the quantity xPHT,ij .
Thus the proportion of random walks that succeed can be mod-
eled as the average of Yi Bernoulli trials, each of which suc-
ceeds independently with probability xPHT,ij . Hence, x̂PHT,ij ∼
1
Yi

Binom(Yi, xPHT,ij), and is an unbiased and consistent estima-
tor for xPHT,ij .

THEOREM 5. For δ, ε > 0, obtaining an estimate x̂PHT,ij for
which P(|Yi(x̂PHT,ij − xPHT,ij)| ≥ εYixPHT,ij) ≤ δ requires
Yi ≥ 3 ln(2/δ)

ε2xPHT,ij
, where Yi is the number of random walks that visit

vi.

PROOF. The proof follows from a standard two-sided Cher-
noff bound analysis: Given K independent random variables
X1, . . . , XK with E[Xi] = µ and 0 ≤ Xi ≤ 1 for all i, let X
be their mean. Then for any ε, the Chernoff bound is given by:

P(|X − µ| ≥ εµ) ≤ 2 exp

(
− ε

2

3
Kµ

)
. (4)

Given ε and 0 < δ < 1, call X an (ε, δ)-approximation if
P(|X − µ| ≥ εµ) ≤ δ. For this, the Chernoff bound tells us we
must haveK ≥ 3 ln(2/δ)

ε2µ
. Instantiating to the multi-walk algorithm

(where the mean is xPHT,ij) yields the result.

Figure 1: Run-time of the exact and multi-walk algorithms for
computing PHT scores as a function of graph size n.

We now compare the run-time of the exact and approximate
methods on preferential-attachment graphs [1], which are graphs
that have a power-law degree distribution and replicate some of the
statistical regularities seen in real-world social and economic net-
works [5]. Figure 1 provides the run-time of the exact and multi-
walk algorithms on increasing graph sizes. We vary the number
n of vertices, and set the number of edges so that there are n/10
edges per vertex, with edge weights sampled uniform(0, 1).8 The
multi-walk algorithm is faster for large graphs, with the cross-over
occurring for systems with as few as 100 agents. Moreover, the
multi-walk algorithm can be easily parallelized in a map-reduce
environment.9

PROPOSITION 1. The strategic properties of the approximate-
PHT mechanism are the same as with the PHT mechanism.

PROOF. In regard to the characterization (Theorem 1), the argu-
ment is based on the property of an individual r.w. and its role in de-
termining trust scores, and does not depend on the number of r.w.s
used (and thus the accuracy of the estimate). This also provides
Theorem 2 (i) for approximate PHT. In regard to Theorem 2 (ii)
for approximate PHT, the argument in Hopcroft and Sheldon [9]
generalizes, just replacing infl(i, k | j) = xPHT,ji · xPHT,ik with
infl(i, k | j) = x̂PHT,ji · x̂PHT,ik.

The important consequence of this result is that this random-
sample based approximation approach can be used to scale the
computation while obtaining the same strategic properties of the
mechanism.

EMPIRICAL ANALYSIS
In this section, we present the results of a quantitative study of

the effect of manipulation in each mechanism, both in terms of the
benefit it brings to an agent and the effect it has on informativeness.
8We scale the total number of walks in multi-walk as
20N2, which keeps the Spearman correlation between approx-
imate and exact trust ranks between 0.99 and 0.995. The
Spearman correlation between the rank order induced by ap-
proximate scores (x̂PHT,i1, . . . , x̂PHT,iN ) with exact scores
(xPHT,i1, . . . , xPHT,iN ) is averaged over all agents.
9The exact and Monte Carlo algorithms were both implemented in
Python for a fair comparison; there was no dependency on lower-
level C or FORTRAN libraries. In practice (and in our other exper-
iments), FORTRAN linear algebra routines can be used to substan-
tially speed up the exact algorithm.



(a) with 50 Sybils (b) without Sybils

Figure 2: The effect of strategic behavior by a single agent, with n = 500 non-sybil agents, leading to graphs with up to N = 550
agents in total. (a) New rank vs old rank, with 50 sybils. (b) New rank vs old rank, with 0 sybils.

Experimental Set-up
Throughout, we compute exact trust scores and set α = 0.15

for the random-walk based mechanisms, as is standard in the lit-
erature [9]. We let θi ∼ uniform[0, 1].10 The process of gener-
ating a trust graph captures the idea of transitivity: the higher the
type of an agent vi, the more likely vi has good information about
other agents (i.e., the more likely vi actually trusts other trustwor-
thy agents), and the more likely other agents are to trust vi.

Concretely, this process is parameterized by integers d > 0 (the
“out-neighborhood size”) and t > 0 (the “transaction count”). The
set Vi of agents (size |Vi| = d) with whom agent vi initiates trans-
actions is determined as follows. Until d agents have been se-
lected: with probability θi, select some agent vj ∈ V according
to soft-max probability pj = exp(θj/z)/

∑
j′ exp(θj′/z) (we use

z = 0.05); with probability 1 − θi, select some agent vj ∈ V
uniformly at random.

Eventually, agent vi initiates a transaction with each vj ∈ Vi.
The belief that agent vi forms about the type of agent vj is defined
as the average of t independent Bernoulli trials, each succeeding
with probability θj (we use t = 8, unless otherwise stated). This is
then used as the edge weight βij from vi to vj in the resulting trust
graph.

Across our experiments, we vary the out-neighborhood size (i.e.,
d), the fraction of strategic agents, and the number of sybils avail-
able to each strategic agent.11 Throughout, we let n denote the
non-sybil agents (strategic and non-strategic), which we vary be-
tween n = 100 and n = 500. We let N denote the total number
of agents in the graph (including the sybil agents created by the
strategic agents), which varies between N = 100 and N = 1100.

Effect of Manipulation
We first investigate the ability for an agent to change its rank in

each mechanism. For this, we fix n = 500 and d = 50, so that each

10We have also experimented with truncated Normal(0.5, 0.5), and
Beta(2, 2), and they provide qualitatively similar results.

11We assume that the majority of the agents are non-strategic. This
recognizes that some participants in real-world systems may be al-
truistic, but more importantly, that strategic behavior may be costly,
and that strategic behavior could be identified and punished.

agent has transacted with 1/10 of the agents, and vary the number
of sybils available to agents.12

For a fixed trust graph, we compute the effect on each agent’s
rank as if it were the only strategic agent and employed the optimal
manipulation in the presence of sybils (following Theorem 1). If a
strategic agent does not have any sybils, then it only drops all trust
reports (or reports zero trust about others, in the case of AS).13 For
a personalized mechanism, we define the rank of an agent to be the
average rank in all of its personalized rankings (excluding its own).

Figures 2(a) and (b) show the effect of manipulation on rank
in each mechanism (500 is best, 1 is worst), where we have sub-
sampled the results for better readability. Strategic agents have ac-
cess to 50 sybils in (a), but we exclude sybils in (b). The results are
averaged over three trials; e.g., the agent with “old rank” 20 has a
rank of 20 without manipulation, and its “new rank” is the average
of the ranks attained through manipulation in each of three trust
graphs. We observe the following:
• From Figure 2(a) we observe that PHT is robust to manipula-

tion, even in the presence of sybils, while the global mecha-
nisms are more vulnerable to sybils. PPR is more robust than
the global mechanisms, but more manipulable than PHT.
• From Figure 2(b) we observe that the mechanisms are all very

robust to manipulation when agents cannot use sybils (i.e.,
when they can only cut outlinks). Note that cutting outlinks
can only harm other agents’ trust scores, and cannot boost one’s
own trust score. In reasonably well-connected graphs (which
characterize our generated graphs), the capacity to harm oth-
ers’ trust scores in random walk-based mechanisms is limited,
because the removal of one agent’s edges has a negligible effect
on the reachability of other agents.

As we can see, the mechanisms differ primarily in their ability to
handle sybils. The restart-capture effect in the global mechanisms
is very powerful. The two-loop effect in PPR is also powerful rela-
tive to just dropping reports (compare Figure 2(a) and Figure 2(b)).

12The results are qualitatively the same for n = 100, d = 5, d =
20, t = 2 and t = 32.

13This is the optimal, no-sybil manipulation for all mechanisms ex-
cept PageRank and PPR, where it may sometimes be useful to re-
tain a single report. Because of this, the analysis of PageRank and
PPR mechanisms in the special case of no sybils provides a lower-
bound on the effect of optimal manipulation.



(a) Dense Graphs (b) Sparse Graphs

Figure 4: The effect of strategic behavior on the informativeness of each mechanism, with n = 100 non-sybil agents, leading to
graphs with up toN = 700 agents in total. (a) Informativeness vs. fraction of strategic agents in dense graphs (d = 30) with 10 sybils
per strategic agent. (b) Informativeness vs. fraction of strategic agents in sparse graphs (d = 5) with 10 sybils per strategic agent.

In Figure 3, we vary the number of sybils available to the strate-
gic agent and plot the increase in rank through strategic behavior,
averaged across five strategic agents evenly distributed in initial
ranking (initial ranks are 0, 100, 200, 300, and 400). Thus, the
best possible average increase in rank is 300, which would occur if
every agent achieved a new rank of 500. We see that sybils already
have a large effect in all mechanisms except PHT even when an
agent can only use a single sybil. The global mechanisms consis-
tently perform worse than the personalized mechanisms because of
restart-capture, and PageRank and PPR perform worse than the cor-
responding hitting time-based mechanisms because of two-loops.
A strategic agent in PPR only requires a single sybil, and hence the
two-loop manipulation explains well the difference between PPR
and PHT, and also between PageRank and GHT (notice the similar
differences between the corresponding curves in Figure 3).14

14This does not imply that restart-capture is “stronger” than two-
loops. The effectiveness of restart-capture depends on the propor-

Figure 3: The effect of strategic behavior with n = 500 non-
sybil agents, leading to graphs with up toN = 750 agents in to-
tal. Shown is the average increase in rank vs. number of sybils
available (averaged across 5 strategic agents).

Effect on Informativeness
Informativeness measures the effectiveness of a mechanism in

allowing an agent to discriminate between high type and low type
agents when initiating transactions. To measure this, we follow ear-
lier work by Tang et al. [18]: We determine the fraction of transac-
tions initiated by non-strategic agents that succeed, assuming that
the counter-party is chosen as the agent with the highest trust score
from a set of candidate agents, where this set comprises 5% of all
agents selected uniformly at random. Our results are robust to the
size of this set of candidate agents with whom the agents transact.

We focus on non-strategic agents because strategic agents re-
ceive no useful information from the personalized mechanisms,
since the random walk initiated at such an agent cannot follow any
edges. Furthermore, we are mainly interested in how cooperative
agents are affected by manipulation by strategic agents.

For the following experiment, individual agents are designated
to be strategic with probability 1− θi (such that agents with lower
type are more likely to be strategic), capturing the intuition that
lower type agents have more to gain from manipulating. However,
the sampling is repeated until the desired number of strategic agents
is achieved. The reported results are averaged over three trials.

We first consider the effect of varying the number of strategic
agents, each of whom has access to 10 sybils. We use n = 100 non-
sybil agents here, as the presence of the large number of strategic
agents with 10 sybils each will lead to graphs with a maximum
number of N = 700 total agents in Figure 4(a) and (b), and N =
1100 total agents in Figure 5.

We consider dense (d = 30) and sparse (d = 5) trust graphs,
in Figure 4(a) and (b) respectively. The effect of graph density
is to vary the amount of information available. We observe the
following:
• PHT is the most informative mechanism when more than 4%

and 10% of agents are strategic, in sparse and dense trust graphs
respectively. With a very small number of strategic agents we

tion of nodes that are sybils, while the effectiveness of a two-loop
depends on the “original” reputation of the node, since two-loops
have a “multiplicative” effect. Whether one is more effective than
the other depends on the parameters of the particular graph.



Figure 5: The effect of strategic behavior on the informative-
ness of each mechanism, in systems with n = 100 non-sybil
agents, leading to graphs with up to N = 1100 agents in total.
Shown is the informativeness vs. number of sybils per strategic
agent (d = 20 and 20 strategic agents).

see that PageRank and GHT have a slight advantage for sparse
graphs, with AS best-performing for dense graphs.15

• A large gap in performance opens up between the personalized
trust mechanisms and the global mechanisms, even with as few
as 10% of strategic agents.
• PHT is more informative than PPR, with its advantage get-

ting larger as graphs become more dense and as the number
of strategic agents increases.

Figure 5 shows how the informativeness changes when the num-
ber of sybils per strategic agent is varied, here using d = 20
and with 20% of the agents being strategic. PHT is better than
the other random-walk mechanisms for just two sybils per agent.
The AS mechanism’s performance again dominates that of the
global, random-walk based mechanisms for this relatively dense
trust graph. The PHT mechanism has better informativeness than
AS with four or more sybils per strategic agent.

In summary, Figures 4(a), 4(b), and Figure 5 clearly show the
dominance of PHT over the other mechanisms in terms of informa-
tiveness. However, note that a comparison at any fixed percentage
of strategic agents must be considered a lower bound on the dif-
ference we would expect to observe in practice. As the analysis in
the previous section on “manipulation” has shown, under all mech-
anisms except PHT, the agents have a large incentive to become
strategic. Consider again Figure 3, where a single sybil per strate-
gic agent is enough to increase the rank of a strategic agent under
PPR by roughly 70. Thus, in equilibrium, we should expect a large
number of strategic agents when using GHT, PR, PPR, while we
should expect no strategic agents when using PHT. Thus, for the
ultimate comparison of informativeness, we must compare the per-
formance of PHT in Figures 4(a) and (b) with 0% strategic agents
with the performance of the other mechanisms with a larger per-
centage of strategic agents. This elevates the difference in informa-
tiveness between PHT and the other mechanisms even further.

15Two factors are at play. First, the locality of AS (just averaging
local information) means that the effect of strategic behavior is iso-
lated (just dropping reports from strategic agents and adding fake
reports to these same agents). Second, AS is effective in dense
graphs because the average score is accurate, consisting of an aver-
age over 8 × 30 unbiased samples (t = 8 and d = 30).

CONCLUSION
In this paper, we have presented the first study of the person-

alized hitting time (PHT) trust mechanism. We have made three
main contributions. First, we have provided a Monte Carlo approx-
imation algorithm to compute PHT scores efficiently, with good
theoretical bounds on its approximation error. Second, we have
shown formally that PHT is significantly more robust against sybil
attacks than all other mechanisms we have studied. In particular,
we haven proven that the optimal manipulation under PHT only in-
volves dropping outlinks, but does not involve adding sybils. Fur-
thermore, we have shown that PHT retains this robustness to sybil
attacks when PHT scores are approximated. Third, and most im-
portantly, we have provided an empirical evaluation, showing the
impact that strategic agents (that can create sybils) have on PHT,
global PageRank, personalized PageRank, and global hitting time
(GHT). Our experimental results are striking in demonstrating the
devastating effect that sybils have on the manipulability and the in-
formativeness of existing mechanisms, even with just a few sybils
per agent. This is particularly true for the global mechanisms, in-
cluding GHT, whose informativeness rapidly declines as the num-
ber of strategic agents, or the number of sybils per strategic agents
grows. In contrast, because adding sybils is not beneficial un-
der PHT, it remains highly informative, even in the presence of
a large number of strategic agents. We found this large dominance
of PHT over GHT particularly surprising, given the small differ-
ence between the two mechanisms. The high manipulability and
low informativeness of GHT raises doubts about the applicability
of the GHT mechanism in practice, and leads us to suggest PHT as
a building block for multi-agent systems. Future research should
experiment on real-world networks (e.g., leveraging some network
data at KONECT [11] or SNAP [13]), validating the robustness,
informativeness and computational properties of PHT at a larger
scale.
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