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ABSTRACT
Belief-Desire-Intention agents typically pursue multiple goals in
parallel. However the interleaving of steps in different intentions
may result in conflicts, e.g., where the execution of a step in one
plan makes the execution of a step in another concurrently execut-
ing plan impossible. Previous approaches to avoiding conflicts be-
tween concurrently executing intentions treat plans as atomic units,
and attempt to interleave plans in different intentions so as to min-
imise conflicts. However some conflicts cannot be resolved by ap-
propriate ordering of plans and can only be resolved by appropriate
interleaving of steps within plans. In this paper, we present SA, an
approach to intention selection based on Single-Player Monte Carlo
Tree Search that selects which intention to progress at the current
cycle at the level of individual plan steps. We evaluate the perfor-
mance of our approach in a range of scenarios of increasing diffi-
culty in both static and dynamic environments. The results suggest
SA out-performs existing approaches to intention selection both in
terms of goals achieved and the variance in goal achievement time.

1. INTRODUCTION
In Belief-Desire-Intention-based (BDI) agent programming lan-

guages, e.g., [4, 9], the behaviour of an agent is specified in terms
of beliefs, goals, and plans. Beliefs represent the agent’s informa-
tion about the environment (and itself). Goals represent desired
states of the environment the agent is trying to bring about. Plans
are the means by which the agent can modify the environment in
order to achieve its goals. Plans are composed of steps which are
either primitive actions that directly change the agent’s environ-
ment or subgoals which are in turn achieved by other plans. For
each top-level goal, the agent selects a plan which forms the root
of an intention, and commences executing the steps in the plan. If
the next step in an intention is a subgoal, a (sub)plan is selected to
achieve the subgoal and added to the intention, and the steps in the
(sub)plan are then executed and so on. This process of repeatedly
choosing and executing plans is referred to as the agent’s delibera-
tion cycle.

In many BDI agent architectures, the plans comprising the agent’s
intentions are executed in parallel, e.g., by executing one step of an
intention at each cycle in round robin fashion [4, 30]. Interactions
between interleaved steps in different intentions may result in con-
flicts, i.e., the execution of a step makes it impossible to execute a
step in another concurrently executing intention. For example, con-
sider a Mars Rover which has a goal to perform a rock experiment,
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r, and a goal to upload some image data, u. The plan to perform
a rock experiment consists of two actions: collecting a sample, a1,
and analysing the sample, a2. a1 has precondition p (being at the
appropriate location) and a2 has the postcondition ¬q (overwriting
the current contents of the rover’s data buffer). The plan to upload
image data also consists of two steps: compressing the image, b1,
and transmitting the compressed data, b2. b1 has precondition q
(the image currently in the data buffer), and b2 has postcondition
¬p (the rover must be reoriented for transmission). Even if p and
q have been established by previous steps in the intentions for r
and u, it is clear that r and u cannot both be achieved without an
appropriate interleaving of plan steps.

A number of approaches to reasoning about possible interactions
between intentions have been proposed in the literature. Thangara-
jah et al. [22, 21] describe an approach based on summary in-
formation that avoids conflicts by reasoning about necessary and
possible pre- and post-conditions of different ways of achieving a
goal. They give algorithms for computing summary information at
compile time, and for dynamically updating it at run-time. They
also present mechanisms to determine whether a newly adopted
(sub)goal will definitely be safe to execute without conflicts, or will
definitely result in conflicts, or may result in conflicts. If the goal
cannot be executed safely, execution of the intention is deferred.
Yao et al. [31] present a stochastic approach based on Single-Player
Monte-Carlo Tree Search (SP-MCTS) in which pseudorandom sim-
ulations of different interleavings of the plans in each intention are
used to determine which intention to progress. However these ap-
proaches are limited to interleaving intentions at the plan level, i.e.,
execution of another intention is only possible when a subgoal is
posted and steps in different plans are not interleaved, and they
have only been evaluated in a static environment. Waters et al. [27,
28] present a coverage-based approach to intention selection pro-
posed by [23], in which the intention with the lowest coverage, i.e.,
the highest probability of becoming non-executable due to changes
in the environment, is selected for execution. Unlike Thangarajah
et al. and Yao et al. [23, 31], they evaluate their approach in a dy-
namic environment; however intention selection is again limited to
the plan level, and their experimental evaluation assumes that there
are no conflicts between intentions.

In this paper, we introduce SA, a new approach to avoiding con-
flicts between intentions. SA extends the stochastic scheduling ap-
proach of Yao et al. [31] in two ways. First, we allow the interleav-
ing of primitive actions in different intentions. Second, we change
the function used to select the ‘best’ intention to progress at this cy-
cle to take both the dynamism of the environment and the fairness
of the interleaving into account. We evaluate the performance of SA
and compare it to that of round robin (RR), first in first out (FIFO),
summary information-based (SI) and coverage-based (C) intention
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selection in static and dynamic environments, both in synthetic do-
mains and a more realistic scenario based on the Miconic-10 ele-
vator domain [14]. Our results suggest SA out-performs RR, FIFO,
SI, and C both in terms of goals achieved and/or the variance in goal
achievement time, and is capable of successfully interleaving inten-
tions so as to achieve their top-level goals even when the number
of potential conflicts between intentions is high. Moreover, in the
scenarios considered, the computational overhead of SA is modest.

2. GOAL-PLAN TREES
We use the notion of goal-plan trees [22, 21] to represent the

relations between goals, plans and actions, and to reason about the
interactions between intentions. The root of a goal-plan tree is a
top-level goal (goal-node), and its children are the plans that can
be used to achieve the goal (plan-nodes). Plans may in turn contain
subgoals (goal nodes), giving rise to a tree structure representing
all possible ways an agent can achieve the top-level goal. In [22,
21] goal-plan trees contain only goals and plans. To support action-
level intention selection, we extend the definition of goal-plan trees
to allow primitive actions in plans in addition to subgoals as in [32].

To allow reasoning about interactions between intentions, each
goal plan tree records information about the conditions necessary
to achieve a (sub)goal or successfully execute a plan or an action in
the form of pre-, in- and post-conditions associated with goal, plan
and action nodes. Preconditions are conditions that must be true in
order to execute a plan or an action. In-conditions are conditions
that must hold during the pursuit of a goal or plan; if an in-condition
becomes false during the execution of a goal or plan, the goal or
plan is dropped with failure. Postconditions are conditions that are
made true by executing a plan or an action or by achieving a goal
(in addition to achieving the goal itself).
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Figure 1: A goal-plan tree for the elevator domain

Figure 1 shows a simple goal-plan tree for the elevator domain
[14]. The top level goal, G0, is to deliver passengers p to floor
f1. There is a single plan, P0, to achieve G0. P0 consists of two
subgoals, G1 and G2 and two actions, A0 and A1. Each subgoal
may be achieved by two subplans (P1 and P2 for G1 and P3 and
P4 for G2). The pre- and postconditions of plans and actions are
shown in the figure; for example, the action A0:Board(p, f0), has
precondition that both the lift and passengers p are at floor f0, and
postcondition that the passengers are in the lift.

In addition to defining the relationships between goals, plans and
actions, goal-plan trees can be used to define several notions that
characterise the robustness of an agent program in a given environ-
ment (and hence the likelihood that a particular interleaving of two
goal plan trees will result in conflicts). The coverage of a goal-plan

tree is the percentage of world states for which there is some ap-
plicable plan for any subgoal within an intention. The overlap of
a goal-plan tree is the percentage of world states in which two or
more plans for a goal are applicable [23]. A preparatory-effect or
p-effect occurs when a plan or action establishes the precondition
of a later step (subplan or action) in the same goal-plan tree [22].
(Note that we extend the notion of p-effect in [22] to include the es-
tablishment of the precondition of an action by a previous action in
the same plan.) For example, in Figure 1, a precondition of action
A0, At(lift, f0), is established by executing plans P1 or P2. At(lift,
f0) is therefore a p-effect which needs to be protected until action
A0 is executed. We define the size of a p-effect as the number of
possible interleaving points between the plan or action that estab-
lishes a precondition and the later step which requires the p-effect
as its precondition. For example, the size of the p-effect At(lift, f0)
is 1, as there is only one point at which a step from another inten-
tion can be interleaved. Like coverage and overlap, p-effect size
is a measure of an intention’s robustness: the greater size of the p-
effects, the more likely interleaving steps from other intentions will
destroy (clobber) the established precondition.

In a dynamic environment, SA takes the coverage of each goal-
plan tree into account when choosing which intention to progress.
We also use coverage, overlap and p-effect size to characterise the
difficulty of the evaluation scenarios in Section 6.

3. SELECTING INTENTIONS
We represent the agent’s intentions as a set of goal-plan trees

T = {t1, . . . , tn} corresponding to the agent’s top-level goals. The
progression of an intention to achieve a top-level goal amounts to
choosing a path through the corresponding goal-plan tree. Each
path corresponds to a different way of achieving the top level goal
forming the root of the tree. The path specifies a sequence of plans,
actions, subgoals and sub-plans that, if executed successfully, will
achieve the top-level goal. The execution of an agent program thus
corresponds to an interleaving of paths through each of the goal-
plan trees corresponding to the agent’s current intentions.

An inappropriate interleaving of plans or primitive actions in dif-
ferent goal-plan trees can give rise to conflicts. We say the pro-
gression of a set of intentions is conflict free, if the choice of path
through each goal-plan tree, and the interleaving of the steps in
these paths, ensure that the preconditions of each plan and action
on a path are true when the plan or action are executed, and that
any in-conditions required by a goal or plan are true during the
achievement of the goal or execution of the plan.

To minimise conflicts (and hence maximise the number of goals
achieved),1 an intention selection mechanism must be able to ap-
propriately interleave the execution of steps in an agent’s inten-
tions. In many cases, the interleaving of intentions is also desirable
in its own right, e.g., to ensure more predictable response times for
users or other agents. We therefore prefer interleavings that max-
imise fairness. We say an interleaving is more fair if it minimises
the variance in the elapsed time of each successful intention (sub-
ject to achieving as many goals as possible). The elapsed time, r,
of an intention is defined as r = df − da, where da is the cy-
cle at which the top-level goal of the intention is adopted by the
agent, and df is the cycle at which the goal is achieved. The vari-
ance in elapsed time, v, of a set of n intentions with elapsed times
r1, . . . , rn is given by v =

∑n
i=1(ri − r)

2/n, where r is the aver-
age elapsed time. Fairness is then defined as 1/v.

1We implicitly assume that goals are of equal importance; it is
straightforward to modify our approach to handle cases where some
goals are more important than others.
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The intention selection problem is the problem of choosing an
intention to progress at the current deliberation cycle, such that the
progression of the set of intentions is conflict free. To make the
problem precise, we introduce the notion of the current step, si,
and next step, succ(si), of a goal-plan tree ti representing an in-
tention. si is a pointer to the current step in ti, which may be a
primitive action or a subgoal. The path from the root of the goal-
plan tree to the current step represents the choices made (and steps
executed) so far in achieving the top-level goal. When an agent
adopts an intention for a new top-level goal gi, the current step of
the goal-plan tree rooted at gi is initially set to gi itself. The next
step succ(si) specifies how ti is to be progressed following si. If
the current step is a primitive action, the next step is the primitive
action or subgoal following that action in the same plan. If the cur-
rent step is a subgoal, advancing the current step involves choosing
a plan for the subgoal, and setting the next step to be the first action
or subgoal of the selected plan. The intention selection problem
can now be stated as: given a set of goal plan trees and their cur-
rent step pointers I = {(t1, s1), . . . , (tn, sn)} corresponding to
the agent’s current intentions, and a set of condition variables E
representing the current state of the agent’s environment, return a
next step succ(si) of an intention (ti, si) ∈ I to be executed at the
current deliberation cycle. We further require that succ(si) max-
imises the number of goals achieved and fairness of the interleav-
ing, subject to achieving as many goals as possible. That is, there
is no (tj , sj) ∈ I, j 6= i such that progressing tj would achieve
more goals than progressing ti, or if progressing tj and ti achieve
the same number of goals, progressing tj results in an interleaving
that is at least as fair.

4. SA ALGORITHM
Our approach to intention scheduling is based on Single-Player

Monte-Carlo Tree Search (SP-MCTS) [18]. SP-MCTS is a best-
first search in which pseudorandom simulations are used to guide
expansion of the search tree. It was originally developed to solve
single-player puzzles (games against the environment) [18], how-
ever it has also been used successfully to solve reentrant scheduling
problems [15].

Algorithm 1 Return the action be executed at this cycle
1: I ← {(t1, s1), . . . , (tn, sn)}
2: procedure SA(E, e, δ, α, β)
3: n0 ← node0(I, E)
4: for i← 1, α do
5: ne ← MAX-UCT-LEAF-NODE(n0)
6: children(ne)← EXPAND(ne)
7: ns ← RANDOM-CHILD(children(ne))
8: S ← ∅
9: for j ← 1, β do

10: S ← S ∪ {SIMULATE(ns)}
11: vg(ns), vf (ns)← max<g,f (S)
12: BACKUP(ns)

13: if e > δ then
14: nb ← max<g,c,f children(n0)
15: else
16: nb ← max<g,f children(n0)

17: I ← gpt(nb)
18: return (n0, nb)

The SA algorithm updates the set of goal plan trees and their
current step pointers I = {(t1, s1), . . . , (tn, sn)} corresponding
to the agent’s current intentions. It takes five parameters as input:

the current state of the agent’s environment, E, the average number
of environment changes per deliberation cycle, e, the dynamism
threshold, δ, the number of iterations to be performed, α, and the
number of simulations to be performed at each iteration, β; and
returns a next step of an intention in I for execution at this cycle
(see Algorithm 1). The parameters δ, α and β allow the agent
developer to configure SA for a particular application: δ specifies
the mean number of environment changes per deliberation cycle at
which the agent should favour more robust (higher coverage) plans;
α and β determine the effort expended on intention selection.

Starting from a root node n0 representing the current progression
of the agent’s intentions I and state of the environmentE, the algo-
rithm iteratively builds a search tree. Each node in the search tree
represents an interleaving of steps from the goal-plan trees in I that
is consistent with the order of steps in each tree. The node records
the state of the agent’s environment resulting from the execution of
this interleaving, the current step in each goal-plan tree, the start
time of all top-level goals and the completion time for the goals
achieved by the interleaving. In addition, the node also contains a
record of the number of times it has been visited, the value of the
node, and the best simulation performed from the node (described
below). Edges represent the selection of a plan for a subgoal or the
execution of primitive action in a plan.

Each iteration of the main loop (lines 4–12) consists of 4 phases:
selection, expansion, simulation and back-propagation. In the se-
lection phase, a leaf node, ne, is selected for expansion (line 5).
A node may be expanded if it represents a non-terminal state (a
state in which it is possible to execute the next step of a goal-plan
tree). ne is selected using a modified version of Upper Confidence
bounds applied to Trees (UCT) [18], which models the choice of
node as a k-armed bandit problem. Starting from the root node n0,
we recursively follow child nodes with highest UCT value until a
leaf node ne is reached.

In the expansion phase, nodes representing the environment state
(and the current step of each goal-plan tree) resulting from execut-
ing each next step of a goal-plan tree that is executable the state
represented by ne are added as children of ne (line 6). Each child
node corresponds to a different choice of which intention to exe-
cute at this cycle. One of the newly created child nodes, ns, is then
selected at random for simulation (line 7).

In the simulation phase, the value of ns is estimated by perform-
ing β pseudorandom simulations (lines 8–11). The value of a node
consists of two components: the maximum number of goals that
can be achieved from this node, vg , and the fairness of the inter-
leaving, vf . Each simulation starts in the environment represented
by ns. A next step of a goal-plan tree that is executable in the envi-
ronment state represented by ns is randomly selected and executed,
and the environment and the current step of the selected goal-plan
tree updated. We keep choosing executable next steps and updating
the environment until a terminal state is reached in which no next
steps can be executed or all top-level goals are achieved. The value
of the simulation is taken to be the values of vg and vf in the termi-
nal state. The simulation with the highest value is returned as the
value of ns (<g,f is a lexicographic order on vg and vf , i.e., vf is
used to break ties when child nodes have the same vg value).

Finally, the simulation value is back-propagated from ns to all
nodes on the path to the root node n0 (line 12).

As the search tree is expanded by iteration of the main loop, the
random part of the interleaving represented by leaf nodes becomes
shorter, and we obtain better estimates of vg and vf . After α itera-
tions, the step that leads to the best child nb of the root node n0 is
returned, and the goal-plan trees and their associated current step
pointers (one of which has been updated) are assigned to I for use
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at the next deliberation cycle (lines 13–18). (The function gpt re-
turns the goal-plan trees and their associated current step pointers
represented by the node nb.) Which step is considered best depends
on the degree of dynamism of the environment. If the mean num-
ber of environment changes observed by the agent is less than the
dynamism threshold set by the agent developer, δ, SA selects steps
using <g,f , i.e., first on the number of top-level goals achieved,
and, where two or more steps result in the achievement of the same
number of goals, it prefers steps that also maximise fairness. If
the dynamism exceeds the threshold, SA selects steps using the or-
der <g,c,f , i.e., first on the number of goals achieved, secondly on
coverage (intentions with lower coverage are preferred) and thirdly
which maximise fairness.

SA therefore adopts a similar approach to [23, 27, 28] in dynamic
environments, in prioritising intentions which are more likely to be-
come unexecutable due to changes in the environment. However,
unlike previous coverage-based approaches, it selects the intention
to be progressed at the action, rather than plan level, interleaving
actions in a manner that is most likely to achieve the largest number
of goals, and adaptively prioritises fairness in low dynamism envi-
ronments. Our use of SP-MCTS to sample the space of possible
interleavings is similar to [31], but that work interleaves intentions
at the plan level and does not take the coverage of intentions or
fairness into account.

5. SA AND THE DELIBERATION CYCLE
SA implies some modifications to the standard BDI deliberation

cycle. In this section we briefly sketch these changes and some
obvious optimisations of our approach.

The standard BDI deliberation cycle consists of three phases [5,
16]:

1. select one or more events to process at this cycle;
2. for each selected goal event, select a relevant applicable plan

to achieve the goal;
3. finally, select one or more intentions, and execute one or

more steps of each selected intention.

Particular BDI languages may subdivide one or more of these phases.
However some instantiation of this basic deliberation cycle is found
in most BDI agent languages and platforms.

SA effectively merges elements of phase 1 and phases 2 and 3
of the standard deliberation cycle into a single process which is re-
sponsible for determining both which plan to adopt for a particular
(sub)goal, and which step of which intention to execute at this cy-
cle. Only the choice of which top-level goals to adopt falls outside
the scope of SA: once a top-level goal is adopted, SA determines
which plans to execute and how these plans should be interleaved
so as to maximise the number of goals achieved and minimise the
variance in elapsed time. If the intention selected for execution at
the previous cycle posted a subgoal, SA explores, through sampled
pseudorandom simulation, the implications of intending all rele-
vant applicable plans for the subgoal (and the possible subplans of
those plans) and their possible interleavings with all possible ways
of achieving the agent’s other intentions, for the number of goals
achieved and the elapsed time.

As such it assumes responsibility for decisions that some agent
platforms traditionally leave to the developer, e.g., the SO and SI

selection functions of Jason [4] allow a developer to customise Ja-
son’s plan and intention selection for a particular application do-
main. While such customisation may be necessary or desirable for
some problems, it requires specialist expertise on part of the devel-
oper to program at the level of the interpreter rather than writing

BDI agent code.2 In addition, the developer no longer has to an-
ticipate and control possible interactions between intentions using
atomic constructs. On the other hand, SA does entail additional
developer effort in defining the pre- and postconditions of actions.
However alternative approaches to avoiding conflicts between in-
tentions, e.g., SI, require similar information in the form of pre- and
postconditions of plans and goals. (Note that in SA, pre- and post-
conditions of plans are derived from the pre- and postconditions
of the actions comprising the plan.) Some BDI programming lan-
guages already require the developer to specify the pre- and post-
conditions of actions, e.g., actions in GOAL [13], belief-update ac-
tions in 2APL [9]. For languages such as Jason, our experimental
results indicate the kinds of scenarios where the additional effort of
specifying the pre- and postconditions of actions would be worth-
while in terms of increased agent performance.

We conclude this section by briefly outlining some simple opti-
misations of our current implementation. As described in Section
4, SA builds a search tree at each deliberation cycle. As we show
below, in many cases SA is able to find an interleaving that achieves
all the agent’s goals. If the environment does not change, the next
step in this interleaving can simply be returned at subsequent delib-
eration cycles without further computation. It is only necessary to
build a new search tree when the environment changes or the agent
adopts a new top-level goal. In low dynamism environments, this
means the already small overhead of SA (see Section 6.3) can be
amortised over multiple execution steps.

6. EVALUATING SA
In this section we compare the performance of SA with exist-

ing approaches to intention selection used in practical implemen-
tations of agent programming languages (first in first out, round
robin), and from the theoretical literature (summary information,
coverage-based). We consider both static and dynamic environ-
ments in synthetic domains, and a more realistic scenario based on
the Miconic-10 elevator domain [14].

First in first out (FIFO) executes each of the agent’s intentions
to completion (the goal is achieved or the next step in the intention
cannot be executed) before starting to execute the next intention
(this is termed a non-interleaved execution strategy in [2]). FIFO
minimises interactions between intentions, however it has the dis-
advantage that the achievement of some goals may be significantly
delayed compared to other goals.

Round robin (RR) attempts to ensure ‘fairness’ between inten-
tions by executing a fixed number of steps of each intention in turn.
A disadvantage of round robin is that it increases the number of
possible conflicts between intentions: the interleaving of steps in
different intentions may destroy a precondition established by a
step in another intention before the action that requires the precon-
dition is executed.3 Round robin is the default intention selection
function used by Jason [4]; some platforms, such as JACK [30] al-
low the developer to choose between round robin and first in first
out.

In Summary Information-based intention selection (SI), summary
information about pre-, in- and postconditions is propagated up
each goal-plan tree to allow reasoning about interactions between
trees. For example, if there are two possible plans for a goal g
which both have p as a postcondition, then it is possible to infer

2SA could be extended to allow customisation of the value func-
tion(s) that determine which interleavings are preferred; however
our current implementation does not support this.
3The same problems occur if the agent executes a step of each in-
tention in parallel at each cycle as in, e.g., 2APL [9].
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that p will definitely occur as a result of achieving g, and that any
other goal that brings about ¬p may cause a conflict. SI uses this
information to protect active p-effects and in-conditions. If adopt-
ing a new goal will result in a conflict, i.e., a postcondition of the
new goal destroys an active p-effect or in-condition, then progres-
sion of the intention containing the new goal is delayed until the
p-effect or in-condition is no longer active.

Coverage-based intention selection (C) is based on the notions
of coverage and overlap defined in Section 2. It prioritises the pro-
gression of intentions with lowest coverage, as they are more likely
to fail due to changes in the environment. Waters et al. [27, 28]
implemented and evaluated the approach proposed in [23] (which
they call c0), and a preemptive variant of c0 which they call c1. c0
executes the progressable intention with lowest coverage and main-
tains focus as long as possible. Only when the current intention is
finished or blocked will c0 recalculate coverage for all intentions
and change focus to the progressable intention with lowest cover-
age. In c1, whenever a sub-goal is posted, the coverage of each
intention is recalculated and its progressibility determined. As a
result, c1 will change focus to a lower coverage progressable inten-
tion, even if the current intention is progressable.

FIFO does not interleave the execution of intentions. SI and C
interleave intentions at the plan level. RR and SA interleave inten-
tions at the action level.

FIFO, RR, SI and C implicitly prioritise different criteria. FIFO
prioritises minimisation of conflicts at the expense of ‘fairness’.
Round robin introduces more potential for conflicts, but is more
fair. Summary information based and coverage-based intention se-
lection lie somewhere in between. We therefore evaluate the per-
formance of each approach on two criteria: the number of goals
achieved, and the variance in elapsed time (see Section 4).4 In
Sections 6.1.1 and 6.1.2, we only report variance results where the
number goals achieved is > 8; as the number of intentions which
complete successfully decreases, the variance value conflates the
ability to achieve goals with the fairness of intention selection. For
example, intentions that fail increase the variance of RR and de-
crease the variance of FIFO.

6.1 Synthetic Domains
In the interests of generality, our first evaluation is based on sets

of randomly-generated, synthetic goal-plan trees representing the
current intentions of an agent in a simple environment. By con-
trolling the characteristics of the trees, and the dynamism of the
environment, we can evaluate the performance of each scheduling
algorithm under different conditions.

The environment is defined by a set of propositions that may
appear as pre-, in- or postconditions of a goal-plan tree. Each en-
vironment variable is modelled as a Poisson process with specified
mean, allowing the frequency with which the environment changes
the value of the variable to be controlled. For a static environment,
the means of all Poisson processes are set to 0. For the experiments
reported below, the environment consists of 20 propositions.

Each synthetic goal-plan tree is specified by five parameters: the
depth of the goal-plan tree, the plan branching factor (the maxi-
mum number of plans that can be used to achieve a goal), the goal
branching factor (the maximum number of sub-goals a plan may
have), the maximum number of actions in a plan and the number of
environment variables that may appear in the tree.

For the experiments reported below, we assume there are at most
two plans for each goal, and that each plan has a single environment
variable as its precondition. The precondition may either depend on
4An alternative definition of fairness is used as an evaluation crite-
rion in [28].

the current state of the environment or be established by the post-
condition of a previous step in the goal-plan tree, i.e., by a p-effect.
Where the preconditions of the plans for a goal g are not estab-
lished by p-effects (e.g., top-level goals), a proposition p is chosen
randomly from the set of environment variables, and one plan for
g has the precondition p and the other plan has precondition ¬p.
Each plan consists of a number of actions followed by a single sub-
goal. The first action in the plan has the plan’s precondition as
its own precondition. The remaining actions either have the plan
precondition as their own precondition or their precondition is es-
tablished by a previous action in the plan. The postcondition of an
action is selected randomly from the set of environment variables.
The constraints ensure that: (a) each plan is well formed (the plan
can be successfully executed in some environment), and (b) taken
individually, each goal-plan tree is executable (there is at least one
way to achieve the top-level goal in all (static) environments).

These parameters generate trees similar to those used in previous
evaluations of SI [21] and C [27, 28]. The main differences are that:
unlike [21] goals do not have postconditions and plans and goals
do not have in-conditions (for compatibility with [27, 28]); and,
unlike [27, 28], environment variables are shared by all goal-plan
trees (for compatibility with [21]).

6.1.1 Static Environment
Our first set of experiments evaluated the performance of FIFO,

RR, SI and SA in a static environment. (C is designed primarily
for dynamic environments and is considered in Section 6.1.2.) For
each experiment, we generated 50 sets of 10 goal-plan trees using
the parameters specified above (depth 5, plan branching factor of
at most 2, goal branching factor 1). Other parameters of the trees
were varied in each experiment as detailed below. The environment
consisted of 20 variables, all of which can be chosen for pre- and
postconditions in each tree. SA was configured with a dynamism
threshold δ = 0.1, and to perform 100 iterations (α = 100) and 10
random simulations at each iteration (β = 10).

We first consider two parameters which influence the number of
potential conflicts between intentions: the number of plan precon-
ditions established by p-effects and the coverage of the goal plan
trees. These parameters were varied to create intention selection
scenarios of increasing difficulty.

Experiment 1 In the first experiment we varied the percentage
of plan preconditions established by p-effects from 33% to 100%.
Goal-plan trees with lower % p-effects have higher coverage (plans
whose precondition is not established by a p-effect have have pre-
conditions p and ¬p, and hence no overlap), and therefore less po-
tential for conflicts (whatever the value of p the agent has an ap-
plicable plan). We set the average p-effect size at level 5 to be 3
(i.e., on average, the precondition of a plan is established by an ac-
tion executed three steps earlier, in the parent plan), and each plan
contained three actions.

% p-effects FIFO RR SI SA
33% 10 (1856) 3.04 10 (291) 10 (17)
66% 10 (1856) 3.02 9.88 (320) 10 (20)
100% 10 (1856) 2.82 9.72 (373) 10 (19)

Table 1: Goals & variance with increasing % p-effects

Table 1 shows the average number of goals achieved and variance in
goal achievement time (in brackets, smaller numbers are better) for
each scheduling algorithm for each percentage of p-effects consid-
ered. (Recall that we only report variance results where the number
goals achieved is > 8.) As can be seen, RR is able to achieve only
3.04 goals on average when 33% of plan preconditions are estab-
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lished by p-effects. This is because, even though 67% of subgoals
have 100% coverage, there are still many points at which an action
from another intention can destroy the precondition of a plan or an
action. With 33% p-effects SI is able to achieve all 10 goals, how-
ever as the percentage of p-effects increases, the number of goals
achieved decreases slightly. FIFO and SA are able to achieve all 10
goals even with 100% p-effects. However the variance in comple-
tion time is much higher with FIFO (1856) than with SA (20).

Experiment 2 We investigated the effect of reducing coverage.
When generating the goal-plan trees, we varied the probability of a
goal having only a single plan. 25% 1-plan means that with prob-
ability 0.25 only one plan is generated for a goal, and so on. In-
creasing the probability that a goal has only one plan reduces cov-
erage, and increases the likelihood of conflicts between intentions.
The percentage of plan preconditions established by p-effects was
100% (i.e., all plans to achieve subgoals have their preconditions
established by preceding actions); other parameters were as in Ex-
periment 1.

% 1-plan FIFO RR SI SA
0% 10 (1856) 2.82 9.72 (373) 10 (19)
25% 8.92 (1603) 2.76 9.24 (455) 10 (22)
50% 7.92 2.44 8.88 (475) 10 (27)
75% 7.36 2.12 8.52 (489) 10 (28)

Table 2: Goals & variance with increasing % 1-plan (100% p-
effects)
The results are shown in Table 2. As can be seen, for FIFO, RR and
SI, as coverage decreases, the average number of goals achieved
also decreases. This effect is particularly marked in the case of
FIFO (if a top-level goal has only one plan, the postcondition of an
action in a previously executed intention which destroys the pre-
condition of the plan will make the intention unexecutable). SA is
able to achieve 10 goals at all coverage levels. For SA and SI vari-
ance increases as coverage decreases. However SA has significantly
lower variance than SI for all coverage levels, as SI approximates
FIFO when protecting p-effects.

Next we investigated the performance of each approach when
intentions are more complex and hence the likelihood of negative
interactions is greater. In these experiments, we varied the p-effect
size, and the number of actions in each plan.

Experiment 3 We investigated the effect of increasing p-effect
size. We generated trees in which the precondition of each plan is
chosen from environment variables appearing in the postcondition
of any preceding action in the tree. For trees of depth 5, this gives
an average p-effect size of 5 at level 5 (i.e., on average, the pre-
condition of a plan is established by an action executed five steps
earlier, in the parent of the parent of the plan). As in Experiment 2,
we varied the probability of a goal having only a single plan from
0% to 75%; all other parameters are the same as in Experiment 2.

% 1-plan FIFO RR SI SA
0% 10 (1856) 2.68 9.32 (374) 10 (19)
25% 9.08 (1617) 2.64 9.04 (460) 10 (22)
50% 7.94 2.2 8.6 (471) 10 (25)
75% 6.94 2 8.34 (490) 10 (27)

Table 3: Goals & variance with increasing % 1-plan (100% p-
effects, average p-effect size 5)

The results are shown in Table 3. With a larger p-effect size, FIFO,
RR and SI perform slightly worse in terms of goals achieved than
in Experiment 2, while SA is still able to achieve 10 goals in all
cases. The variance for all approaches is essentially the same as in
Experiment 2.

Experiment 4 We increased the number of actions in each plan
to 5. As in Experiment 2, we varied the probability of a goal having
only a single plan from 0% to 75%; all other parameters are the
same as in Experiment 2.

% 1-plan FIFO RR SI SA
0% 10 (5156) 1.64 9.28 (544) 10 (40)
25% 8.92 (4564) 1.56 9 (755) 10 (58)
50% 7.36 1.36 8.52 (843) 10 (63)
75% 6.52 1.32 8.3 (874) 10 (66)

Table 4: Goals & variance with increasing % 1-plan (100% p-
effects, each plan contains 5 actions)

The results are shown in Table 4. As can be seen, the performance
of FIFO, RR and SI decrease when plans have 5 actions, with a
more marked decline in the case of RR. SI shows a significant in-
crease in variance. However, SA still achieves all 10 goals, and
while the variance is increased, it is much smaller than that for the
other approaches.

6.1.2 Dynamic Environment
Our second set of experiments evaluated the performance of FIFO,

RR, SA, and two variants of C from [27, 28], c0 and c1, in a
dynamic environment. In the dynamic case, all the Poisson pro-
cesses controlling the environment variables have the same non-
zero mean. (In reality, different environment variables will change
value at different rates, however for random trees we believe this is
a reasonable approximation.) The larger the mean, the greater the
probability an environment variable will change value (from p to
¬p or vice versa). We used three values for the mean: 0.01, which
results in an average of 0.2 events (changes in the value of an en-
vironment variable) per deliberation cycle, 0.05 (which gives an
average of 0.97 events per cycle), and 0.1 (which gives 1.91 events
per cycle). In the dynamic case, the environment is first updated
to reflect the execution of the next step of the selected intention (as
in the static case). The Poisson processes controlling the environ-
ment variables are then evaluated, possibly resulting in additional
changes to the environment. The resulting environment state is then
‘sensed’ by the agent at the beginning of the next deliberation cy-
cle. For each experiment, we generated 50 sets of 10 goal plan trees
using the same parameters as in the static experiments. As before,
δ = 0.1, α = 100 and β = 10.

We first consider the effect of increasing dynamism and reduced
coverage.

Experiment 5 In the fifth experiment, we used the same param-
eters as in first row in Table 2, i.e., all plans have two goals (0%
1-plan), %p-effects was 100%, each plan has 3 actions and the p-
effect size at level 5 was 3. The means of Poisson process was
varied from 0.01 to 0.1.

Dyn FIFO RR c0 c1 SA
0.01 8.92 (1625) 2.24 9.52 (1849) 8.88 (96) 9.82 (95)
0.05 5.40 1.06 8.62 (1830) 8.64 (94) 9.40 (95)
0.10 3.28 1 8.16 (1962) 8.56 (97) 9.08 (95)

Table 5: Goals & variance with increasing dynamism (100%
p-effects, 0% 1-plan)

The results are shown in Table 5. As can be seen, for all approaches,
as the means of Poisson processes increase, the average number of
goals achieved decreases. This effect is particularly marked in the
case of FIFO. c0 performs better than c1 when the Poisson mean
is small, and c1 has a better performance than c0 when Poisson
means are larger. SA outperforms the other approaches in terms of
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the number of goals achieved. The variance in goal achievement
time of SA is similar to c1 and significantly lower than c0.

Experiment 6 We set the probability of a goal having only a
single plan to be 0.25 (i.e., the second row in Table 2); the means of
the Poisson processes varied from 0.01 to 0.1; all other parameters
are the same as in Experiment 2.

Dyn FIFO RR c0 c1 SA
0.01 7.90 1.82 9.12 (1877) 8.40 (116) 9.74 (114)
0.05 4.74 1.14 7.98 8.26 (118) 9.28 (120)
0.10 2.54 0.72 7.64 8.22 (124) 8.94 (123)

Table 6: Goals & variance with increasing dynamism (100%
p-effects, 25% 1-plan)

The results are shown in Table 6. As can be seen, for all approaches
and levels of dynamism, with reduced coverage (25% 1-plan) the
average number of goals achieved decreases and the variance in
completion time increases. However, SA still achieves the highest
number of goals of any of any approach (between 8%–16% better
than c1), and its variance in goal achievement time is comparable
to c1.

We then investigated the effect of increasing dynamism when
intentions are more complex.

Experiment 7 We increased the p-effect size to 5 at level 5. All
other parameters were as in the first row in Table 2, and we again
varied the means of Poisson process from 0.01 to 0.1.

Dyn FIFO RR c0 c1 SA
0.01 8.88 (1641) 2 9.42 (1863) 8.6 (100) 9.8 (96)
0.05 5.34 1.02 8.48 (1876) 8.54 (108) 9.32(97)
0.10 3.12 0.94 8.02(1978) 8.48 (110) 8.98 (96)

Table 7: Goals & variance with increasing dynamism (100%
p-effects, p-effect size 5)

The results are shown in Table 7. Compared to Experiment 5, the
performance of c0, c1 decreases as we increase the p-effect size.
However, SA still outperforms other approaches on the number of
goals achieved and its variance in completion time is slightly lower
than that of c1.

Experiment 8 We increased the number of actions in each plan
to 5; other parameters were same as the first row in Table 2, and the
means of the Poisson process were varied from 0.01 to 0.1.

Dyn FIFO RR c0 c1 SA
0.01 8.4 (4664) 1.08 9.22 (4605) 8.32 (360) 9.52 (346)
0.05 3.76 0.62 8.18 (4765) 8.26 (387) 9.08(367)
0.10 1.84 0.42 7.88 8.18 (382) 8.72 (386)

Table 8: Goals & variance with increasing dynamism (100%
p-effects, each plan contains 5 actions)

The results are shown in Table 8. As can be seen, compared to Ex-
periment 5, the performance of FIFO, RR, c0, c1 and SA decreases
as we increase the number of actions in each plan. However, SA
still outperforms other approaches on the number of goals achieved
and has a similar variance to c1.

Overall, SA outperforms FIFO, RR and SI on the number of
goals achieved in static environments. In simpler scenarios, FIFO
and SI are able to achieve all 10 goals. However, as the scenar-
ios become more challenging, their performance declines (FIFO
more markedly than SI). SA also has a significantly lower variance
in elapsed time (particularly compared to FIFO), as it allows in-
terleaving at the action level. In dynamic environments, SA out-
performs FIFO, RR, c0 and c1 in terms of the number of goals

achieved. The variance in elapsed time time of SA is comparable to
that of c1, and significantly lower than that of c0. While the relative
performance advantage of SA in a dynamic environment is smaller
than in a static environment, it consistently outperforms c1 in terms
of number of goals achieved by between 5% and 10%.

6.2 Miconic-10 Elevator Domain
In this section we evaluate the performance of SA in a more real-

istic scenario based on the Miconic-10 elevator domain [14].5 Un-
like traditional elevators, the Miconic-10 elevator allows passen-
gers to enter their destination floor when calling the elevator using a
10-digit keypad installed in each elevator lobby. In the scenario, the
Miconic-10 elevator is controlled by a BDI agent program. Using
standard techniques for translating HTN planning problems into
BDI agent programs, e.g., [10], we translated the methods and op-
erators in the Miconic-10 Elevator HTN planning domain given in
[14], to goals, plans and actions in a BDI agent program. The goal-
plan tree for the resulting BDI program is shown in Figure 1.

In our experiments, there is a single Miconic-10 elevator in-
stalled in a 10 floor building. Passengers may move from floor to
floor using the elevator. Requests to travel to a particular floor give
rise to top-level goals (one for each request) which are achieved by
the BDI agent program. For simplicity, we assume there is no lim-
itation on the number of passengers that can be in the elevator at
any one time.

We evaluated the performance of SA in two scenarios. In the first
experiment, all goals (elevator requests) are given at deliberation
cycle 0 (corresponding to the static environment in the synthetic
domains). We generated 50 sets of 10 goals to travel between two
randomly chosen distinct floors. SA was configured as in Section
6.1.1, i.e., δ = 0.1, α = 100 and β = 10.

FIFO RR SI SA
10 (123) 1.10 10 (33) 10 (28)

Table 9: Goals & variance for 10 goals

The number of goals achieved and variance in elapsed time (in
parentheses) for FIFO, RR, SI and SA are shown in Table 9. As
can be seen, with the exception of RR, all approaches achieve 10
goals. However FIFO has significantly higher variance than SI and
SA, as FIFO executes the intentions sequentially.

In our second experiment, we use a more realistic model in which
elevator requests arrive over time. As before, a total of 10 top-
level goals must be achieved. However, in this scenario two goals
are given at deliberation cycle 0, and the remaining top-level goals
are posted during the progression of the agent’s current intentions.
We varied #g, the number of new top-level goals generated after
executing each primitive action, from 0.33 to 3. When #g = 0.33,
a new top-level goal is posted after every 3 primitive actions; when
#g = 3, 3 new top-level goals are posted after executing each
primitive action. The SA search configuration was the same as in
the first scenario.

#g FIFO RR c0 & c1 SA
0.33 10 (14) 2.16 10 (14) 10 (1)
0.50 10 (36) 1.56 10 (36) 10 (1)
1 10 (71) 1.20 10 (71) 10 (9)
2 10 (95) 1.10 10 (95) 10 (18)
3 10 (102) 1.10 10 (102) 10 (21)

Table 10: Goals & variance with decreasing time between goals

5An elevator controller written in GOAL is evaluated in [1].
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The results are shown in Table 10. As in the first scenario, with the
exception of RR, all approaches achieve 10 goals. However in the
dynamic setting, c0 and c1 have the same variance as FIFO (as the
MoveTo subgoal has 100% coverage, achieving a MoveTo subgoal
does not change the coverage of the current intention and so both
c0 and c1 behave like FIFO). In contrast SA has significantly lower
variance (i.e., the waiting times for passengers is ‘fairer’), as it is
able to interleave actions in different intentions without destroying
preconditions.

6.3 Computational Overhead of SA
The computational overhead of SA depends on the search config-

uration: how many iterations of the algorithm are performed α and
how many random simulations are performed at each node β. With
the search configuration used for the experiments above (α = 100
and β = 10), SA requires 35 milliseconds to compute a complete
interleaving of actions in 10 synthetic goal-plan trees (150 primi-
tive actions). In a static environment, this interleaving only needs
to be recomputed when the agent adopts a new top-level goal, so
in the best case (no new top-level goals during the execution of the
current intentions) the overhead of SA is effectively amortised over
the execution of all 10 intentions, and the amortised CPU time re-
quired to selection an intention is approximately 0.2 milliseconds
per deliberation cycle. In a dynamic environment, the interleaving
must be recomputed whenever the agent’s beliefs change, so the
cost of intention selection will be correspondingly higher.

7. RELATED WORK
In addition to the work of Thangarajah et al. [22, 21, 23], Waters

et al. [27, 28] and Yao et al. [31] discussed above, a number of
other approaches to scheduling intentions to avoid conflicts have
been proposed in the literature.

Shaw and Bordini have proposed approaches to intention selec-
tion based on Petri nets [19] and constraint logic programming [20].
As in [22, 21, 23, 27, 28, 31]), the plans and sub-goals in a goal-
plan tree are regarded as basic steps, and interleaving is at the level
of sub-plans and subgoals. They do not consider interactions be-
tween actions in plans.

The TÆMS (Task Analysis, Environment Modelling, and Sim-
ulation) framework [11] together with Design-To-Criteria (DTC)
scheduling [26] have been used in agent architectures such the Soft
Real-Time Agent Architecture [25] and AgentSpeak(XL) [3] to
schedule intentions. TÆMS provides a high-level framework for
specifying the expected quality, cost and duration of of methods
(actions) and relationships between tasks (plans). DTC decides
which tasks to perform, how to perform them, and the order in
which they should be performed, so as to satisfy hard constraints
(e.g., deadlines) and maximise the agent’s objective function. DTC
can produce schedules which allow interleaved or parallel execu-
tion of tasks and can be used in an anytime fashion. In the work
closest to that presented here, DTC was used to schedule execu-
tion of AgentSpeak intentions at the level of individual plans [3].
The TÆMS relations between plans required to generate a schedule
(enables, facilitates and hinders) were specified as part of the agent
program. In contrast SA interleaves intentions at the level of ac-
tions, and information about possible conflicts between intentions
is extracted automatically from goal-plan trees generated from the
agent program.

In [17] Sardina et al. show how an HTN planner can be integrated
into a BDI agent architecture. However their focus is on finding a
hierarchical decomposition of a plan that is less likely to fail by
avoiding incorrect decisions at choice points, and they do not take
into account interactions with other concurrent intentions.

In [29], Wilkins et al. present the Cypress architecture which
combines the the PRS-CL reactive executor and the SIPE-2 look-
ahead planner. A Cypress agent uses PRS-CL to pursue its inten-
tions using a library of procedures (plans). If a failure occurs dur-
ing the execution of the plan due to an unanticipated change in the
agent’s environment, the executor calls SIPE-2 to produce a new
plan to achieve the goal, and continues executing those portions of
plans which are not affected. However, their approach focuses on
the generation of new plans to recover from plan failures, rather
than interleaving intentions so as to avoid conflicts.

In [32], Yao et al. present an approach to recovering from execu-
tion failures in BDI agent programs that relies on progressing exe-
cutable intentions so as to (re)establish the precondition of the next
step in an unexecutable intention as a ‘side effect’. As in the work
presented here, they interleave intentions at the action level. How-
ever the focus of their work is on minimising backtracking (try-
ing an alternative plan when an intention becomes unexecutable),
rather than coverage and fairness. Moreover, their approach is
based on MCTS (rather than SP-MCTS), and their evaluation is
limited to static domains.

There has also been work on avoiding conflicts in a multi-agent
setting. For example, Clement and Durfee [6, 7, 8] propose an
approach to coordinating concurrent hierarchical planning agents
using summary information and HTN planning. However in this
work, summary information is used to identify when conflicts may
arise between two or more agents rather than to avoid conflicts be-
tween the intentions of a single agent. Moreover, it is assumed that
the agents plan offline in a static environment. In [12], Ephrahi
et al. present an approach to planning and interleaving the execu-
tion of tasks by multiple agents. The task of each agent is assigned
dynamically, and the execution of all tasks achieves a global goal.
They show how conflicts between intentions can be avoided by ap-
propriate scheduling of the actions of the agents.

8. DISCUSSION & FUTURE WORK
We presented SA, an extension of the stochastic scheduling ap-

proach proposed in [31], that allows the interleaving of primitive
actions in different intentions, and which takes both the dynamism
of the environment and fairness into account when choosing which
intention to progress. Action level intention selection allows con-
flicts that cannot be resolved by scheduling at the plan level to be
avoided. We evaluated the performance of SA in static and dy-
namic environments, both in synthetic domains and a more realis-
tic scenario based on the Miconic-10 elevator domain. Our results
indicate that our approach out-performs RR, FIFO SI, and C, and
is capable of successfully scheduling intentions so as to achieve
their top-level goals even when the number of potential conflicts
between intentions is high. Moreover, in the scenarios considered,
the computational overhead of SA is modest.

Our approach has a number of limitations. When the agent’s
beliefs or goals change, our current implementation simply regen-
erates the SP-MCTS search tree from scratch, rather than merging
belief and goal updates into the search tree from the previous de-
liberation cycle. A direction for future work is therefore to inves-
tigate ways of re-using an existing SP-MCTS search tree when the
interleaving must be recomputed. Another line of future work is
to consider intention selection where top-level goals are associated
with deadlines as in, e.g., [24].
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