
Dynamically Generated Commitment Protocols in Open
Systems

(JAAMAS Extended Abstract)
Akın Günay

School of Computer Eng.
Nanyang Technological

University
Singapore

akingunay@ntu.edu.sg

Michael Winikoff
Department of Information

Science
University of Otago

Dunedin, New Zealand
michael.winikoff@otago.ac.nz

Pınar Yolum
Department of Computer

Engineering
Bogazici University

Istanbul,Turkey
pinar.yolum@boun.edu.tr

ABSTRACT
This extended abstract presents our work “Dynamically Generated
Commitment Protocols in Open Systems” that appeared in the Jour-
nal of Autonomous Agents and Multi-Agent Systems [1].

Keywords
Commitment Protocol; Generation; Ranking

Protocols are used in multiagent systems to regulate interactions
of agents. Typically, protocols are developed at design-time and
embedded into the implementations of the agents. However, there
are three shortcomings of this approach in open systems: (1) New
types of agents, which do not comply with all the requirements of
the design-time protocols, may join to an open system. (2) The
environment of an open systems may evolve, and as a result, the
design-time protocols may become insufficient to allow agents to
achieve their goals in the changing environment. (3) Preferences of
the agents may change over time, and accordingly the design-time
protocols may fail to satisfy the new preferences of the agents.

For these reasons, we argue that agents in an open multiagent
system should be able to derive new protocols at run-time, rather
than completely relying on the design-time protocols. The ability to
derive new protocols at run-time requires a formalism to define pro-
tocols, which can be interpreted by the agents. We define protocols
in terms of social commitments [2], rather than sequences of mes-
sage exchanges that are embedded into the implementations of the
agents. The use of commitment protocols allow agents to reason
about their situation, and carry out their interactions in a flexible
manner while preserving their autonomy [3]. This paper proposes
run-time generation of commitment-based interaction protocols.

Our contribution is not just a mechanism for creating a commit-
ment protocol at run-time, but also a framework for the life-cycle
of such protocols. To this end, we develop a complete agent pro-
cess that defines how an agent can generate a set of candidate com-
mitment protocols that allow the agent to achieve its goals, rank
the candidate protocols according to the agent’s preferences, and
reach agreement with other agents on a suitable candidate proto-
col for enactment. Our main contributions are: (1) We develop
two algorithms for the generation of commitment protocols, which

Appears in: Proceedings of the 15th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

AGENT Goals

Phase-1: GenerationCapabilities

Beliefs &
Domain

Knowledge
Phase-2: Ranking

Phase-3: Agreement

Phase-4: Enactment

AGENTi

. . .

AGENTj

Figure 1: Process of an agent for run-time protocol enactment.

use the agent’s own capabilities, and also its knowledge of other
agents’ services and incentives to generate a set of candidate com-
mitment protocols that support the agent’s goals. (2) We develop a
novel metric, namely risk-discounted utility, that combines utility
and trust concepts for ranking the candidate commitment protocols.
(3) We define a procedure that can be used by the agents to reach
agreement on a suitable candidate protocol for enactment.

We present the four-phase agent process that we propose in Fig-
ure 1. The first phase of the process is the generation of a set of
candidate commitment protocols by an agent that aims to achieve
a certain goal state. All of the candidate protocols ensure that the
agent reaches its goal state. Furthermore, the candidate protocols
also take into account the goals and services of the other agents
to create incentive and ensure their collaboration. In the second
phase, the generating agent evaluates the candidate protocols, and
ranks them according to its preferences. This ranking is subjec-
tive by nature, and different parties may prefer different protocols
over others. After the ranking, in the third phase, the generating
agent engages in negotiation with the other agents in order to reach
agreement on a candidate protocol for enactment. Finally, in the
last phase, the chosen candidate protocol is enacted by the agents.

Generation: We propose the algorithms PROTOCOLBASED and
GOALBASED for generating a set of commitment protocols that
allow the generating agent to achieve its goals. The algorithms use
the generating agent’s capabilities in conjunction with its beliefs
about the other agents, which define the services that they provide,
and also what they may expect for the provision of their services.
The core criterion of our algorithms is to establish the necessary
support for the goals of the generating agent. We say that an agent
supports a goal, if either the goal can be achieved by the agent itself
using its own capabilities, or there are established commitments

1263

 0

 2000

 4000

 6000

 8000

 10000

 2 4 6 8 10

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
ili

s
e
c
o
n
d
s
)

Number of services available for each goal

GoalBased
ProtocolBased

Figure 2: Execution times of PROTOCOLBASED and
GOALBASED according to the number of available services.

from the other agents for the provision of the services that allow
the agent to achieve its goal.

Our first algorithm PROTOCOLBASED is a direct recursive im-
plementation of the support definition using depth-first search. The
algorithm starts from an empty protocol. At each step it considers
one goal from the generating agent’s goal set, and tries to establish
support for it either by using the agent’s own capabilities, or by cre-
ating a new commitment to utilize a service of another agent. As a
result of this step, new goals may be generated, which represent the
intermediary conditions that should be achieved by the generating
agent to use her own capabilities (e.g., preconditions of the capabil-
ities), and also to create incentive on other agents to provide their
services (e.g., the expectations of the other agents in return for the
provision of their services). The base case is reached if the agent
can support a goal using her own capabilities in an unconditional
manner. This procedure generates a tree structure, where each path
from the root to a leaf node, in which the base case is supported,
corresponds to a candidate commitment protocol.

PROTOCOLBASED provides us a baseline algorithm. However,
it is inefficient and suffers from lack of scalability, mainly because
it finds support for a goal multiple times, if the goal is involved
in the context of different candidate protocols. To overcome this
drawback, we develop an efficient algorithm using the divide-and-
conquer strategy, which we call GOALBASED. This algorithm con-
siders goals independently from the candidate protocols. Accord-
ingly, for each individual goal of the agent the algorithm generates
a set of sub-protocols that support only that goal. Then these sub-
protocol are merged to build a complete protocol to support all the
goals of the agent. This modular approach allows us to reuse the
sub-protocols that are generated in the context of different candi-
date protocols. Hence, the algorithm generates sub-protocols for
each goal only once and avoids redundant computation.

We conducted experiments to evaluate efficiency and scalability
of our proposed algorithm. In the experiments, we used a data set
that we generated systematically according to several parameters,
such as the number of available services to support a goal, and the
number of preconditions required for using the agent’s capabilities.
We show the execution times of our algorithms with respect to the
number of available services to support a goal in Figure 2, which
shows the efficiency and scalability of GOALBASED.

Ranking: After the generation of the candidate protocols, the
next phase is to evaluate and rank the candidate protocols to reflect
the generating agent’s preferences. To this end, we develop a metric
for ranking commitment protocols, namely risk-discounted utility,

that combines utility and trust concepts. The utility of a protocol
for an agent reflects how much an agent would gain by enacting
the protocol. The utility is basically the difference between the
benefit of the protocol and its cost (utility = benefit − cost).
Intuitively, each agent would want to maximize its utility, given
that two protocols achieve the same goals. There may also be some
protocols that are not acceptable to a given agent, i.e., protocols
with negative utility. The risk-discounted utility extends utility by
also considering risk. Some of the agents that enact a protocol
may fail to fulfill their commitments, and accordingly the expected
benefit of the protocol may not be realized. We therefore extend the
definition of utility by discounting the benefits of a protocol based
on the risk of the protocol due to other agents failures. The risk
of a protocol is based on how trustworthy the agents enacting the
protocol are for the various services that they provide in the context
of the protocol. If all the agents are completely trustworthy, then
there is no risk associated with a protocol. However, if any agent in
the protocol is somewhat untrustworthy, then the protocol would be
in risk, and the expected utility of the protocol may be jeopardized.

Agreement & Enactment: After the ranking of the candidate
protocols, the next phase is to reach agreement between the agents
on the enactment of one of the candidate protocols. To achieve this
we develop a procedure that is led by the generating agent using
the monotonic concession concept as follows. First, the generat-
ing agent selects the candidate protocol that it prefers most (e.g.,
the protocol that has the best risk-discounted utility). Then, it pro-
poses creation of the candidate protocol’s commitments to the cor-
responding debtors. If all the debtors accept to create the proposed
commitments, an agreement is established over the protocol. Oth-
erwise, the generating agent selects another candidate protocol that
it prefers less (e.g., the protocol that is ranked next to the last of-
fered protocol in terms of risk-discounted utility), and repeats the
procedure. Note that in this phase, the debtors only accept to cre-
ate the commitments, but they do not actually create the commit-
ments. Actual creation of the commitments happens in the enact-
ment phase, which follows the agreement phase. Enactment of a
commitment protocol is system specific, hence we do not consider
the details of this phase, and assume that enactment can be done
in the targeted system. Note that our agreement procedure is inde-
pendent from the ranking of protocols. Hence, alternative ranking
metrics to risk-discounted utility can also be used for agreement.

In conclusion, in this paper we develop an agent process that
defines how an agent can generate a set of candidate commitment
protocols to support its goals, rank the candidate protocols accord-
ing to its preferences, and reach agreement with other agents on
a candidate protocol for enactment. This process allows agents of
an open multiagent system to create and enact new protocols at
run-time according to their changing needs and preferences, and
reduces their dependency on the design-time protocols.

REFERENCES
[1] A. Günay, M. Winikoff, and P. Yolum. Dynamically generated

commitment protocols in open systems. Autonomous Agents
and Multi-Agent Systems, 29(2):192–229, 2015.

[2] M. P. Singh. An ontology for commitments in multiagent
systems: Toward a unification of normative concepts.
Artificial Intelligence and Law, 7(1):97–113, 1999.

[3] P. Yolum and M. P. Singh. Flexible protocol specification and
execution: Applying event calculus planning using
commitments. In Proceedings of the First International Joint
Conference on Autonomous Agents and Multiagent Systems,
pages 527–534, 2002.

1264

