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ABSTRACT
This paper considers the question of whether robots can
be effectively programmed for autonomous social interaction
through learning from demonstrations recorded via Wizard-
of-Oz teleoperation. We present a novel LfW system for
educational play between young children and a robot and
results from a randomized experiment comparing a teleoper-
ated robot and a robot with autonomous behavior derived by
LfW. Across numerous metrics, the teleoperated robot and
the autonomous robot programmed by LfW elicit similar be-
havior from their human interaction partners. Additionally,
when children were asked whether the robot was human-
controlled or autonomous, approximately half in each con-
dition thought it was human-controlled.

1. INTRODUCTION
In human-computer interaction research, a Wizard-of-Oz

scenario involves a human interacting with some machine
interface—such as a socially expressive robot—that is se-
cretly controlled by a human teleoperator. We define learn-
ing from the wizard (LfW) as a subtype of learning from
demonstration in which the training demonstrations are de-
rived from records of Wizard-of-Oz interaction and are used
to learn policies for interacting autonomously with humans.
Previous work on LfW exists but until now has lacked a uni-
fying name and has not been extended learn tasks of social
human-robot interaction.

This paper focuses on validating LfW by answering whether
learning from the wizard can retain the interaction benefits
of a teleoporated robot. To this end, we conducted an eval-
uation of robot LfW in an educational domain with young
children aged 4–8 years.

2. RELATED WORK
There exist related LfW projects that involve human-

interaction tasks, social tasks, or rigorous evaluations of
learned behavior [5, 10, 7, 8, 11, 4, 3], but to our knowl-
edge only Breazeal et al.’s work [1] involves all three on
a robot. However, though their nearly autonomous robot
could effectively complete simple, single-agent tasks, its so-
cial behaviors—communicating and coordinating with the

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Seat+for+child+

Seat+for+
observing+
caregiver+

MS+Kinect+
(face'tracking)+

Webcam+
on+robot+

Microphone+
and+webcam+
on+child+

Educa=onal+app+

Figure 1: Clockwise from left: Interaction setting; experimenter

interface; color-mixing app, from the Tinkrbook e-book.

human—were considered unsuccessful by the authors, leav-
ing open the question of whether LfW can effectively pro-
gram socially interactive robot behavior.

3. LfW FOR AN EDUCATIONAL DOMAIN
To explore the potential of LfW for social tasks, we devel-

oped a robotic learning companion for young children. This
section describes the educational domain and integrated sys-
tem.

Figure 1 shows the interaction setting. Children aged
4–8 sat across from a squash-and-stretch robot that was
designed for social interaction with young children. Be-
tween the robot and child was a tablet with an educational
app designed to teach color-mixing and reading concepts to
young children. Children could tap on leaves to add color to
the birdbath and to wash the bath clean. Adding multiple
pigments to the birdbath can create secondary colors and
brown.

3.1 General system
The system sensors include 2 webcams (one pointed at

the child, another at the robot), a Microsoft Kinect, a mi-
crophone, and the tablet itself. The tablet reports the start
and end of child touches by their locations and times. It also
reports time-stamped app events, such as triggering pigment
to fall. During each interaction, the various system compo-
nents communicated via ROS [6]. Time-stamped logs in the
form of rosbags were recorded that contained video from the
two webcams, app events (human- or robot-triggered), esti-
mates of the child’s face location in 3D space (derived from
the Kinect), microphone audio, and robot actions.

The final system, used during the experiment, has 30
robot actions in its agent framework. 15 are simple emo-
tional utterances paired with expressive motions. 5 actions
cause the robot to lean towards the tablet and trigger app
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events. 9 actions are prompts to the child, requesting one
of eight colors (e.g., “Red?!”) or “Now you go.” The final
action is to not initiate any behavior. Video illustrations
of app events, the robot action space, and child-robot in-
teraction can be seen at https://www.youtube.com/user/

LearningFromWizard.

3.2 Autonomy by learning from the wizard
In this section, we give a brief overview of how we struc-

tured teleoperation, training, and learned autonomous be-
havior. The robot’s actions are exclusively determined ei-
ther by a teleoperator during Wizard-of-Oz interaction or
by a learned policy during autonomous interaction, never
by a mixture of the two. To create the autonomous behav-
ior model, 122 feature values (e.g., describing the current
color of the birdbath, the child’s and robot’s last actions,
time since last child/robot action, etc.) are computed at
100ms time intervals from logs of teleoperated data. Each
set of feature values creates a sample for supervised learn-
ing, labeled by what action the teleoperator specified over
the previous 100ms. Our goal is to learn a model that an-
swers: given a feature vector f drawn from sensory history
at time t, for each action a, what is the probability π(f , a)
that a would have been triggered by a teleoperator within
the previous 100ms? For this 30-class learning problem, we
created a hierarchical model using binary logistic regression
(from Weka [2]) as a base learner, with L2 regularization
applied with a scaling parameter of 10 to account for the
large number of features. During autonomous interaction,
these same features are computed at the start of each 100
ms time step, and a single action is chosen and executed by
sampling from the model’s output probability distribution
over actions, π(f , ·).

4. STUDY DESIGN
Data from 29 participants’ interactions with a teleoper-

ated robot formed the training data. A separate group of
85 participants took part in a subsequent randomized ex-
periment with three conditions, differing in what the child
played with: tablet-only, a control condition without the
robot; WoZ-experiment, with the teleoperated robot; and
autonomy, with the robot acting according to its learned
autonomous model.

5. RESULTS AND DISCUSSION
Subjective observations and quantitative analysis are pre-

sented below.

5.1 Learned behavior
In the authors’ subjective judgement, the robot largely

succeeded in learning to emulate the demonstrated interac-
tion heuristics. For instance, the autonomous robot often
celebrates when the child creates a robot-requested color.
The following section gives objective, quantitative results.

5.2 Behavioral results
Multiple-testing analysis of 11 behavioral metrics—by the

Benjamini and Hochberg procedure, with a false discovery
rate of 0.05—results in numerous significant differences be-
tween tablet-only and either autonomy or WoZ-experiment
and zero significant differences between the two robot con-
ditions. Significant results include children that interacted
with the robots volunteering to play longer, having a higher
proportion of color taps result in creating complex colors,

smiling more, and looking down at the screen less. To-
gether, these results indicate that the learned autonomous
robot preserves the interaction benefits of the teleoperated
robot.

5.3 Participants guess: teleoperated or
autonomous

As a double-blind question, another experimenter asked
participants whether the robot was autonomous or teleop-
erated by a human. Through this question, the experiment
serves as a variant of the Turing test [9], albeit social, em-
bodied, and constrained to 30 possible actions. Counting
answers of “undecided” or “both” as half a vote for each
option, 52.8% of respondents in the autonomy condition
thought the robot was teleoperated. 47.2% in the WoZ-
experiment condition thought it was teleoperated; the au-
tonomous robot was judged as human-teleoperated marginally
more often than the robot that was human-teleoperated.

6. CONCLUSION
From the perspective of how to program autonomous so-

cially interactive robot behavior, learning from the wizard
constitutes a nascent approach that could be instrumental
in the much-needed transition of social robots from Wizard-
of-Oz control towards autonomy. Evaluating LfW within
a playful, educational domain, this paper provides the first
validation of the technique to program socially interactive
robot behavior, showing that LfW generally retained the
statistically significant interaction benefits that a teleoper-
ated robot has over play without the robot.
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