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ABSTRACT
Most multi-robot systems assume all robots are programmed
to cooperate and complete tasks without consideration of
dishonest robots seeking to maximize their own benefit. The
work presented here develops and analyzes a distributed
trust estimation framework that allows robots to estimate
the trustworthiness of other robots in the community, and
share these estimates to enable cooperative trust estima-
tion. Our previous work has shown that when observation
errors were ignored, the trust-estimation error converges to
a steady state value over time. We extend this previous
work, by now considering the effects of observation error
and proving that trust-estimation error converges.
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1. INTRODUCTION & RELATED WORK
In Multi-Robot Systems (MRS), it is common for robots

to communicate and share information. However, it is not
always clear if robots can trust the information being shared
by another robot, especially if that robot was deployed by
a different and possibly competing organization. To model
and establish the trust between robots in this context, a
framework was presented in [4], (see Fig. 1). Building on
this previous work, proposed here is the addition of obser-
vation error. With this new addition comes the following
contributions of this work: 1) introduction of observation
error into the trust framework, and 2) analysis of the effects
of observation error on trust estimation error convergence.

MRS have been developed for a wide variety of applica-
tions, often involving cooperative search and mapping [1,
2]. These systems typically use wireless communication and
information sharing to minimize the individual robot path
lengths required to complete the exploration of a workspace
[2]. Lacking has been the ability to determine if the infor-
mation shared between robots can be trusted.

Within the field of multi-agent systems, as opposed to
MRS, reputation and trust models have become an integral
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Figure 1: Illustration of the trust framework. Each
robot ri estimates the likelihood βi,j that robot rj
broadcasts the true value of its observations Oj,k,t of
cell k at time t.

part of the systems [6, 5]. Previous works range from simple
online reputation models [6] which simply classify positive,
neutral and negative to a sophisticated model such as FIRE
[3] and TRAVOS [9] which computes a trust value for each
agent and a reliability measure taking into account both
direct experience, witness information and third party cer-
tification. Recently, the work in [8, 7] used an observation
based trust model for detecting unreliable team members
in a multi-robot patrolling task. While our work is similar
to [8] in that we consider a binary observation model, our
model does not require a dedicated observer to detect false
observations. Our work also differs in that it considers cases
in which some robots attempt to provide false information.

2. PROBLEM DEFINITION
Given: There exists a set R = {r1, r2, ..., rn} of n robots

sharing a common workspace. Each robot’s goal is to esti-
mate a set of K binary variables of interest pk ∈ {0, 1}, k =
1..K. Each variable has an associated workspace position
Xk. Each robot ri is equipped with the neccessary sensors
to take observationsOi,k,t ∈ [0, 1] of pk at time t when within
distance d of Xk.

Using inter-robot communication, robots can share obser-
vations, and reduce the number of locations to visit in the
workspace. However, each robot ri may not always send
truthful information, i.e. it only broadcasts the actual set of
mean measurements Ōi,k,t with probability βi. Otherwise, it
broadcasts 1-Ōi,k,t with probability 1-βi. To accommodate
this, each robot must determine how much they trust shared
observations by estimating the likelihood βj that each robot
j sends its actual set of mean observations. Specifically, we
say that robot ri’s estimate of βj at time t is β̂i,j,t.

If robots also share estimates of β̂i,j,t through wireless
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communication, they can more quickly estimate βj values.

We must introduce β̂′
i,j,t as the value robot ri broadcasts

to other robots as its estimate of βj . Note that, β̂′
i,j,t =

β̂i,j,t only if robot ri is truthful. Deceiving robots inflate (or

deflate) β̂′
i,j,t by εβ,i. That is β̂′

i,j,t = β̂i,j,t + εβ,i.
Given this scenario, each robot ri in R must calculate an

estimate β̂i,j,t of the likelihood that each of the other robot
rj is broadcasting truthful obervations at every time step t.

3. TRUST FRAMEWORK
In this framework, trust values are estimated by using

two pieces of information - 1) trust values β̂′
k,j,t broadcasted

by other robots and 2) individual robot measurements of
truthfulness of broadcasted messages zi,j,t. This information
is incorporated into the proposed discrete time update rule:

β̂i,j,t+1 =
1

n

n∑
k=1

β̂′
k,j,t +Kβ(zi,j,t −

1

n

n∑
k=1

β̂′
k,j,t) (1)

In (1), n is the number of robots in R, Kβ is a constant
proportional gain hereafter referred as the trust constant.
The variable zi,j,t is robot ri’s measurement of the fraction of
robot rj ’s statements that are true. The first term averages
the trust estimates shared by all robots in R and is used
as a predictive element. The second term uses the robot’s
individual observations as a corrective element.

A binary measurement system is assumed in which the ith

robot makes an observation Oi,k,t ∈ {0, 1} of some variable
pk ∈ {0, 1}. The observation is subject to sensing errors
εs01,i and εs10,i. The framework incorporates the possibil-
ity of robots misinforming one another. Specifically, a robot
rj broadcasts to all other robots its mean estimated obser-
vation value Ōj,k,t with a likelihood of βj , and conversely
1− Ōj,k,t with a likelihood of 1− βj .

It can be shown that for constant βj values, mean inflation
error ε̄β , and sensing errors εs10i, εs01i, the steady state error
in robot ri’s trust estimation of robot rj using the proposed
framework converges over time and is equal to:

β̂i,j,t→∞ = βj +
1−Kβ

Kβ
ε̄β + εs10,i + εs10,j(1− 2βj) (2)

4. VALIDATION VIA SIMULATION
The trust framework was simulated within an exploration

task. A square grid map of K cells was defined where each
cell Ck was assigned a value pk ∈ {0, 1}. The n = 4 robots
in R were tasked with estimating pk for all the map cells.
Each robot was assigned a βi ∈ [0, 1]. At each timestep, each
robot broadcasted a message stating the mean observation
value Ōi,k,t of the cell Ck that it currently occupies. A
robot ri broadcasts its true observation with probability βi.
The robots also broadcasted truth estimates β̂′

i,j,t of all the
robots in R.

Eq. (2) was validated with simulations where a set of
robots were placed in the single cell and shared their observa-
tions of pk where k = 1. Simulations were run for 20000 iter-
ations, (i.e. time steps) with various values of βi, Kβ , es01,i,

es10,i, and εβ,i. Figure 2 shows a plot of β̂i,j,t vs Timestep
for one of the single cell estimation simulations with sensing
error εs01,i = εs10,i = 0.1 and β inflation εβ,i = 0.05 ∀i. As

expected, β̂i,j,t converges to the theoretical prediction.

Figure 2: Trust estimate vs timestep for varying
beta values in a simulation of single cell map. β es-
timates converge to theoretical prediction over time.

5. CONCLUSION
This work proposes a method for robots to identify trust-

worthy robots in a workspace where deceptive robots might
be present. By monitoring the information communicated
by robots, the level of trust in each robot can be estimated.
The estimation of a robot’s truthfulness is shown to converge
to a bounded error, despite errors in sensing.
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