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ABSTRACT
Efficient tracking of class performance across topics is an
important aspect of classroom teaching; this is especially
true for psychometric general intelligence exams, which test
a varied range of abilities. We develop a framework that un-
covers a hidden thematic structure underlying student re-
sponses to a large pool of questions, using a probabilistic
graphical model.
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1. INTRODUCTION
When teaching a class, students often exhibit varied abil-

ities across topics; this is especially evident when a cur-
riculum is diverse. Preparatory courses for psychometric
entrance exams such as the SAT or GMAT tutor students
on various topics including mathematics, writing skills, and
logical puzzles. Naturally, student proficiency across topics
is not uniform: a student may be a math whiz, but have
poor writing skills. Prep courses try to ensure that stu-
dents perform well on all topics. This requires the teachers
to shift focus based on class performance: if students are
doing poorly in logical puzzles, additional practice on this
sub-topic is required.
Our Contribution: We develop a framework for course
personalization that uncovers a hidden thematic structure
underlying students’ responses to a large pool of questions.
Our framework identifies abstract skills required to correctly
answer the different questions in the pool.

Further, our model provides educators a way to keep track
of students’ overall course performance and offer personal-
ized assistance on the course and individual student level.
Using a form of Bayesian Principal Component Analysis,
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akin to other Bayesian matrix factorization methods [4], we
recover latent abilities that explain student performance.
We show that these latent abilities offer a meaningful in-
terpretation of the data, as they match the actual sub-topic
divisions in the case of the verbal and English sub-topics.

A key application of our framework is a method for divid-
ing students into study groups, consisting of students with
similar difficulties in the different skills tested in the exam.
Our system automatically identifies the different skills tested
in the exam, and the students’ proficiency levels in these ar-
eas. We use this information to partition the students into
student sets with homogeneous proficiencies in topics. We
show that our latent ability-based clustering method has
better performance than a baseline clustering method based
directly on the observed responses. Our method for cluster-
ing students results in study groups that are more homo-
geneous, the student in every group have roughly the same
skill level in each topic, and share the same difficulties.

2. SLAB MODEL
We are interested in identifying an underlying reason for

students’ performance; to do so, we introduce a model of
Student Latent ABilities (SLAB, for short). For a fixed
dimension K, the model assumes there are K latent abilities
tested by a topic (K is assumed to be much smaller than the
number of students and questions). Therefore every student
s and question q are represented by a K-dimensional latent
vector ~xs ∈ RK and ~yq ∈ RK , respectively, where (~xs)i is
student s’s proficiency in ability i and (~yq)i is the level that
q requires in ability i.

For every student s and question q we denote by Xs,q

the random variable that represents the performance of s
on question q; Cs,q is the Boolean random variable that
equals “True” if the student s gave the correct answer to the
question q, and “False” otherwise. We assume Xs,q is nor-
mally distributed with mean ~xTs ~yq + b and standard devia-
tion β, where b is the student and question bias. We assume
that Pr [Cs,q = True] = Pr [Xs,q > 0]. This model resembles
other Bayesian models for matrix factorization (e.g., [1, 4]).

SLAB’s input is a set of student responses to questions
(correct\incorrect). Based on the observed data, and using
the Infer.NET [2] framework for graphical models and the
Expectation Propagation algorithm [3], the model infers the
values of the vector of each student and question.
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st1 st2 st3
st1 59 (20) 3 (36) 33 (39)
st2 4 (14) 76 (47) 41 (60)
st3 1 (2) 18 (14) 29 (32)

(a) English

st1 st2 st3 st4
st1 48 (34) 1 (7) 8 (18) 11 (8)
st2 0 (24) 20(0) 13 (7) 0 (2)
st3 26 32 10 6 51 (35) 1 (15)
st4 15 23 0 2 2 23 47 (16)

(b) Verbal

st1 st2 st3 st4
st1 15 (21) 7 (5) 29 (4) 39 (24)
st2 14 18 10 (7) 32 (41) 27 (17)
st3 7 (22) 10 (4) 47 (48) 28 (18)
st4 6 (13) 13 (4) 12 (34) 44 (24)

(c) Quantitative

Table 1: Confusion matrices of subtopic (st) labels for all topics, based on the latent-abilities vectors (response vectors)
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Figure 1: The average cluster variance for answers and latent
abilities clustering

3. RESULTS
The Data: Our dataset consists of student responses to
mock Israeli Psychometric Entrance Tests (PET), provided
by a private company that administers PET prep courses.
Questions are labeled according to topic (English, Verbal
and Quantitative) and subtopic, as well as the correct an-
swers to the questions. The database had 345 Verbal ques-
tions, 340 Quantitative questions, and 352 English ques-
tions. A total of 5874 students took the exam.
Eliciting Latent Problem-Solving Abilities: Using the
SLAB model, we are able to use the latent ability vectors to
recover the sub-topic divisions with relatively high accuracy.
To demonstrate this, we do the following: each question q
is associated with a vector of latent abilities ~yq. We cluster
the questions to a number of clusters equal to the number of
subtopics using k-means; now, each question has a label. To
assess how well these labels match the actual divisions of the
questions into sub-topics, we produce a confusion matrix for
each subtopic. A confusion matrix C is a k×k matrix, where
the Cij are the number of times that a question of type j was
labeled as a question of type i. A confusion matrix with a
high trace is one which indicates that the prediction was ac-
curate. Using k means clustering puts us at a disadvantage;
performing k-means clustering may output a labeling that
will perfectly match the original labels up to a permutation.
In other words, it may assign the label 3 to all questions from
topic 1, the label 2 to all questions from topic 3 and the label
1 to all questions from topic 2. To overcome this difficulty,
once a latent-ability based labeling is produced, we permute
the labels until we find a permutation that offers the high-
est trace for the confusion matrix. To benchmark our clus-
tering method, we compare it to response-based clustering.
The resulting confusion matrices are presented in Tables 1a,
1b and 1c. The tables show that clustering by latent abili-
ties recovers questions well in the English and Verbal topics,
but does not do well for the quantitative section. Neverthe-
less, in every topic latent-abilities clustering outperformed
response-based clustering.
Focus Groups via Latent Abilities: The latent abili-
ties elicited by our model can be effectively used in order
to group students into focus groups. Grouping similar stu-

dents is important: one would want to have students facing
similar difficulties working together, in order to make effec-
tive use of time. In our dataset, we know the type of each
question — the questions in each section have a distinct,
known type — thus we can cluster students based on their
competence in each sub-topic. However, this is not always
the case; questions do not always belong to a specific type,
which would pose a challenge for educators who wish to offer
personalized tutoring to their students.

Our approach is simple: for each student s, we infer a vec-
tor of latent abilities, ~xs; next, we cluster the student body
based on the student ability vectors. To assess the effec-
tiveness of our latent ability based clustering, we measure
the mean-squared variance in student subtopic proficiency
within each cluster. If our methodology works, then all stu-
dents from the same cluster should have similar capabilities
in terms of their abilities to correctly answer questions from
various sub-topics. We benchmark our latent ability clus-
tering method by comparing it to response-based clustering.
Our results are summarized in Figure 1. This is an encour-
aging finding; it further establishes that different latent abil-
ities are needed to answer questions in each sub-topic; fur-
thermore, ability-based clustering presents educators with
an effective method of grouping students when there is no
clear sub-topic division.

4. CONCLUSIONS AND FUTURE WORK
We have utilized probabilistic graphical models to elicit

course metrics. Our framework can be extended to settings
where there are no preset correct answers; an immediate
use is in guiding experts towards tasks they do better, by
assigning them problems at which they show higher profi-
ciency. By eliciting latent abilities required by the tasks and
those of the workers, we can better match tasks to experts.
Our framework can also be used to make predictions about
future student success.
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