
Integrating Run-Time Incidents
in a Large-Scale Simulated Urban Environment

(Extended Abstract)
Steven de Jong*, Alex Klein, Ruben Smelik, and Freek van Wermeskerken

Department of Modeling, Simulation and Gaming, TNO, The Netherlands

ABSTRACT
Motivated by many potential applications within the domain of
Defense, Safety & Security, we present an approach for the injection
of incidents (e.g., an arrest following a shoplifting) in a running,
large-scale urban simulation. Incidents are generated within desired
user constraints such as what should happen, where, and when. We
believe that this approach offers an intuitive and extendable way to
create scenario-specific exceptions to daily behavior patterns.

Keywords
Run-Time Incidents, Scenario Generation, Urban Simulation

1. INTRODUCTION
Within the domain of Defense, Safety & Security, state-of-the-art
simulation environments can help reduce the time and costs needed
to organize large-scale training events or rehearsals. Moreover, they
can provide scenarios and situations that are not easily experienced
in a real-world setting. However, instructors often experience a lack
of control over the flow of scenarios, especially since the behavior
of both virtual and real humans involved in these scenarios can
be highly unpredictable [3]. For example, a trainee may choose a
different route than the one the instructor prepared for.
We present an approach that allows instructors to more directly

control and adjust the flowof a running scenario by injecting incidents
at run-time, to facilitate learning moments or cope with unforeseen
behavior. Incidents in our approach specify the instructor’s intent,
i.e. what should happen, where, and when [2]. An efficient planning
and sampling algorithm translates the intent to one or more parallel
sequences of actions, to be performed by virtual humans (agents)
at specific locations and moments in time. Actions, relations and
constraints are represented in a modular library, allowing incidents
to be automatically composed of building blocks.
To demonstrate our approach, we developed a prototype, which

simulates the inhabitants and daily behavior in theDutchmunicipality
of Rijswijk, driven by GIS and census data. Daily behavior is
simulated by relatively simple models, adapting to environmental
conditions such as time of day or season. Within this urban setting,
we are able to seamlessly inject elaborate incidents at run-time.

2. INJECTING INCIDENTS
To introduce a new incident in the simulation, users specify a small
number of high-level parameter settings. Some of these are defined
explicitly, e.g., an incident is to take place at a certain location and

* Corresponding author: steven.dejong@tno.nl.

Appears in: Proceedings of the 15th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2016), J. Thangarajah, K.
Tuyls, S. Marsella, C. Jonker (eds.), May 9–13, 2016, Singapore.
Copyright © 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

time. Others are automatically derived based on incidents’ definitions,
e.g., which types of agents are required to participate in the incident.
Based on these settings, we derive what is needed to make the

given incident happen at the desired time, in several phases, detailed
below. Instead of directly generating a plan that includes actions,
agents and locations, we restrict the size of the planning problem to
the number of actions, by creating an abstract plan with a number of
unassigned variables, instead of concrete agents and locations. Then,
we instantiate the abstract plan by assigning agents and locations to
the variables. We adopted a phased approach to overcome the issue
that planning problems are pspace-complete in the size of the input.
As a running example in the text below, we will use an incident

“Arrest an Offender”, in which one or more offenders are arrested by
one or more police officers at a specified location and time.

Roles and actions. In the first phase, we create an action plan to
cause the incident. We prepare agents involved for their roles in the
incident by giving them a suitable sequence of actions. Actions and
associated concepts, detailed below, are all defined in a modular
library. In this way, quite elaborate incidents can be automatically
composed by the planner, without the need for extensive scripting.

Actions are placeholders with a number of variables, i.e. an actor
variable, an optional target variable, and a location/time variable,
each with possible constraints. In the planning phase, these variables
are not given a concrete value yet; instead, the planner makes a plan
where the variables are correctly linked. In addition to variables, any
action may define preconditions concerning roles that are required
for actor or target agents, and postconditions specifying the roles the
actor or target agents will have after the action is performed. Finally,
any action has an underlying model, which controls the behavior of
the agents involved while the action is performed. We note that such
a model may affect agents that are nearby via area triggers.

Initially, the planner investigates the enabling action of the incident.
In the running example, the enabling action is Arrest, which shows
one or more police officers arresting one or more offenders. The
planner resolves any role preconditions that need to be satisfied to
allow the enabling action. For the action Arrest, the actor must have
the role Police Officer, while the target must have the role Offender.
In case of a generic role, such as Offender, the planner also considers
its specializations, such as Shoplifter. Searching for actions that
give an actor or target the role Shoplifter, the action Shoplift might
be found and added to the plan before the action Arrest; in this
case, the actor variable of Shoplift is linked to the target variable of
Arrest. Similarly, when resolving the role precondition concerning
the Police Officer role, the planner may insert an action Activate
Police before the action Arrest to create the required police officers.
In this case, the actor variables of the two actions are linked.
Whenever new actions are added to the plan, the planner recur-

sively resolves any role preconditions for these actions in the manner
described above. This results in a plan in which all role preconditions
for the enabling action of the desired incident are resolved.

1401



(a)

(b)

Figure 1: Examples of run-time injected incidents: (a) an ar-
rest of two shoplifters (red routes) by a police officer (blue
route) occurs at the specified location, (b) an improvised protest
march (green circles represent participants), which attracts
some passers-by (gray circles) using an area trigger.

Movement between actions. Once a plan has been created that
resolves all role preconditions, the planner enables agents to travel
between locations. For this, the planner introduces movement actions,
inserted before each action in the plan. The algorithm for inserting
suitable moves takes into account two aspects. First, agents may have
acquired a certain role as a result of actions they performed earlier
(e.g., Police Officer or Shoplifter). Therefore, we need to select a
type of movement that fits this role. The second aspect considered
when inserting suitable move actions is the target of the action we
move towards, e.g. a police officer should choose Pursuit over Flee
or Walk for movement towards an offender. Once the most fitting
move action is chosen, it is inserted in the plan.

Assigning agents and locations. The result of the planning algo-
rithm described above is a sequence of actions (i.e., a plan), with
correctly linked variables that can be instantiated by assigning agents
and locations that are present in the environment. An algorithm
based on sampling and iterative improvement now finds such agents
and locations, and ensures that the plan can be executed within
the requested time constraints (i.e., the enabling action of the plan
happens exactly when the user wants it to).

Intuitively, the algorithm works by first sampling a random valid
assignment for the locations and agent variables in the plan. A valid
assignment takes into account any constraints on the variables. For
example, a shoplifting needs to take place in a shop, as represented
in a constraint on the location/time variable of the Shoplift action.
Then, while the plan still takes too long to execute, a number of

improvement steps are performed, in which (1) the critical path in
the plan is found, i.e. the sequence of actions that takes most time,
and (2) one variable for a chosen action on the critical path will
be assigned differently, in such a way that the plan is expected to
take less time. Whenever there is an action preceding the chosen
action on the critical path, the current location of this preceding
action is apparently too far away from the location of the chosen
action. Therefore, the value of the location/time variable of this
preceding action needs to be adjusted such that it refers to a valid
location closer to the chosen action. If there is no preceding action,
the chosen action involves one or more agents that are too far away
from the location the chosen action will take place at, and we need
to find valid agents that are closer to this location.

If a fixed number of improvement iterations does not yield a plan
that fits the time constraints, the algorithm is restarted with a new
random valid assignment of the variables in the plan. After a number
of failed restarts, the algorithm concludes that planning the incident
within the required time is not feasible. The user is then presented
with the best plan found so far, and can choose whether s/he wants
to have the incident happen at the corresponding time instead.

3. DISCUSSION AND FUTURE WORK
Our contribution.We present an approach for injecting incidents
into an urban scenario at run-time, interrupting daily activities
and temporarily promoting selected background agents to play a
specific role in the sequence of events. Examples are shown in
Figure 1. Because incidents are planned on-the-fly based on a library
of available actions and associated pre- and postconditions, new
incidents can build upon content that is already present.
In addition to run-time incidents, the prototype system also im-

plements a simulation of daily patterns-of-life, based on real-world
census data. Individuals in the simulation are given daily activities
(such as work, leisure, shopping, having dinner) that match their
properties (such as age, gender, and household). We designed the
prototype system such that it can be easily extended to include more
daily activities, behavior models and different modalities.

Future work. At the moment, the prototype system supports popu-
lation models at a fixed level of detail. When, for example, trainee
interaction with an individual population member is a scenario
requirement, more detailed models are needed. Due to the computa-
tional complexity of such models, it is not feasible to have this level
of detail for the entire population all the time. Instead, the system
must be able to dynamically adapt to the level of detail required.

Other work could focus e.g. on including other traffic modalities
than pedestrians, or on allowing users to specify population behavior
on the level of intent as well, e.g. by drawing a morning rush hour
on a specific street, which influences population attributes such as
residence and place of work to create the desired dense traffic.

Online repository. The current prototype system is available as open
source [1].We encourage others to experiment with the framework
and to extend it with novel models and algorithms.

References
1. Population Modelling with Run-Time Incidents. URL
https://github.com/TNOCS/idsa.

2. M. O. Riedl and R. M. Young. An intent-driven planner for multi-agent story
generation. In AAMAS 2004: The Third International Joint Conference on
Autonomous Agents and Multi Agent Systems, 2004.

3. G. Zacharias, J. MacMillan, and S. Van Hemel, editors. Behavioral modeling and
simulation: from individuals to societies. National Academies Press, 2008.

1402




