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ABSTRACT
We extend the traditional framework of POMDPs to model
resource consumption inducing a hard constraint on the be-
haviour of the model. Resource levels increase and decrease
with transitions, and the hard constraint requires that the
level remains positive in all steps. We present an algorithm
for solving POMDPs with resource levels, developing on ex-
isting POMDP solvers. Our second contribution is related to
policy representation. For larger POMDPs the policies com-
puted by existing solvers are too large to be understandable,
an issue particularly pronounced in POMDPs with resource
levels. We present a procedure based on machine learning
techniques that extracts important decisions of a policy and
outputs its readable representation.
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1. INTRODUCTION
Partially observable Markov decision processes (POMDPs)

are a powerful framework for solving planning problems un-
der uncertainty. Given a POMDP formulation of a problem,
the task is to compute an optimal policy in the POMDP:
there is a reward or a cost associated with each transition,
and the goal is to maximize the aggregated reward (resp.
minimize the aggregated cost) over a finite or an infinite
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horizon. The sequence of rewards (or costs) can be aggre-
gated by considering, e.g. the discounted reward, the av-
erage reward, etc. Particularly relevant from the planning
point of view is the indefinite-horizon (or stochastic shortest
path, SSP) objective [1, 2, 4], where the task is to reach a
state from a given set of target states T and minimize the
expected total cost till T is reached, i.e., the expected sum
of costs of all transitions traversed before reaching T .

Most autonomous robotic devices operate under certain
energy constraints, i.e. they need a steady supply of some
resource (e.g. fuel, electricity, etc.) to operate correctly. We
extend POMDPs so as to capture these constraints. To a
POMDPM with a given objective we assign a positive inte-
ger capacity cap and to each observation-action pair (Z, a)
in M we assign an integer update representing the amount
of a resource consumed or reloaded by a under observation
Z. Such a POMDP starts with some initial resource level
(say cap, i.e. the resource is loaded to a full capacity) which
is then modified as the system evolves: whenever an ac-
tion with some update u is taken, the resource level changes
from ` to min{` + u, cap} (discarding any quantity exceed-
ing cap captures the fact that the robot’s storage capacity
cannot be exceeded). The task is to find a strategy optimiz-
ing the original objective under the constraint that the re-
source level stays positive. Although constrained optimiza-
tion in POMDPs was already studied, e.g. in constrained
POMDPs [7], our approach radically differs from the pre-
vious work, since the constraints in constrained POMDPs
are soft, i.e. they are bounds on the expected value of some
quantity. In contrast, our resource level must be positive on
each individual run, so the constraints we consider are hard.

The concept of resource consumption can be put on top of
any standard POMDP objective. We focus on SSP-POMDPs
with energy constraints, which we call energy-reachability
(ER) POMDPs for short. That is, our aim is to find a pol-
icy ensuring that the resource level is positive till the target
set T is reached and among all such policies minimizes the
expected total cost before reaching T . We present and eval-
uate a framework for solving ER-POMDPs that allows us to
use off-the-shelf tools to obtain an optimal policy.

Solving ER-POMDPs highlights another issue: policies
obtainable from many POMDP solvers are represented as
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tables storing belief-action pairs, where entry (B, a) signals
that an action a should be taken when the agent’s belief
is close to b. These tables can be very large and not easily
readable by humans. But from the engineering point of view
it is vital visualize and understand the policy, as witnessed
by numerous informal rules for safety-critical system design
enforcing ”simplicity” and ”readability” (e.g. [6]).

Readability of policies is relevant for POMDPs in general,
but the issue is especially pronounced in energy-constrained
POMDPs, as the standard representation does not reveal
which decisions depend on states and which depend on cur-
rent resource level, an information useful for identifying bot-
tlenecks caused by insufficient storage capacity or exploiting
the fact that policy’s dependency on resource levels might
not be complex (e.g. ”when low on fuel, go to a gas station”).
We present a general method of obtaining succinct and read-
able policy representations based on decision trees, and we
evaluate this approach in the context of ER-POMDPs.

2. OVERVIEW OF RESULTS
We show how to construct, for any POMDP M with ER

objective (given by a target set T and capacity cap) a new
SSP-POMDP M′ (without energy constraints) such that
finding a policy of value v in M′ yields a policy of value
v in M satisfying the energy constraint. Intuitively, M′ is
formed by augmenting the states ofM with the information
on the current resource level, i.e. its states are pairs (s, e),
where s is a state of M and 0 ≤ e ≤ cap is an integer.

To compute (near-)optimal policies in M′ (and thus also
inM) in practice, any off-the-shelf solver for SSP-POMDPs
can be used. We experimented with the algorithm from [4],
which is a modification of the RTDP-Bel algorithm [2], on
standard benchmarks that were naturally extended with en-
ergy levels. The algorithm solved ER-POMDPs in orders of
tens of seconds in cases whereM′ had ≤ 3000 states and in
orders of hundreds of seconds where M′ had ≤ 8000 states.

The algorithm of [4] outputs a policy in a form of a table-
represented function which assigns actions to vectors (that
represent discretized beliefs). One of the most popular for-
malisms for succinct representation of functions on vectors
are decision trees (DTs, see [9]). We explain DTs on an ex-
ample in Figure 1, which displays a DT representing a policy
in an instance of a Hallway benchmark [8]. Edges in the tree
are labelled by inequalities between numbers and variables
that characterize the input belief vector. In Figure 1 there
are two variables: one representing the current energy level
and one representing the probability (belief) that the cur-
rent y-coordinate of the agent on the 8× 8 grid is 7. Leaves
are labelled by actions. To execute the policy the agent
maintains (an approximation of) its current belief. In every
step it finds the unique path from root to a leaf ` in the tree
such that all inequalities on the path are satisfied by the
current belief, and it then performs the action labelling `.

To obtain a DT from a table-representation of a policy
we can employ off-the-shelf DT-learning tools. We experi-
mented with several such tools [5, 11, 10]. For each bench-
mark we fixed a suitable set V of variables (e.g. for the
Hallway benchmark we had variables Energy, and x0, . . . , xh,
y0, . . . , yw, where h,w are the height and width of the cor-
responding grid, respectively) and used each of the tools to
learn a DT over V . The advantage of this approach is that
the learning tools are often able to identify the crucial de-
cisions made by a policy and encode only these decisions in
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Figure 1: A DT policy for Hallway on an 8x8 grid
with cap = 10.

the DT, which may result in much more succinct representa-
tion without significant loss of the policy’s performance. To
support this claim we simulated the tree policies to compare
them with the original RTDP-Bel policies. In a clear major-
ity of cases at least one tool learned a small DT policy whose
value was close to the value of the corresponding RTDP-Bel
policy. For instance, for Hallway 8 × 8 with cap = 10 the
RTDP-Bel policy had value 21.020 and was represented by a
table with 527 entries. The tree learning package extracted
from this table the 5-node DT in Figure 1, representing a
policy with value 52.689, while the rpart package learned a
21-node DT with value 26.396. A baseline strategy choosing
a random action in each step yielded value 954.160. Simi-
lar pattern, where the performance of a DT strategy is very
close to the RTDP-Bel strategy (when compared to the base-
line strategy), was observed in about 75% of cases. Inter-
estingly, this shows that POMDP policies exhibit a phe-
nomenon known as Pareto’s principle, where a minority of
decisions amount for the majority of optimization effort.

The details of our work are in a technical report [3].
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