
A Systematic Approach for Detecting Defects in Agent
Designs

(Doctoral Consortium)
Yoosef Abushark∗

Supervisors: John Thangarajah, James Harland and Tim Miller†
RMIT University

Melbourne, Australia
yoosef.abushark@rmit.edu.au

ABSTRACT
Multi-agent systems are increasingly being used in complex appli-
cations due to features such as autonomy, proactivity, flexibility,
robustness and social ability. Thus, techniques to detect and avoid
defects in such systems are valuable. In particular, it is desirable
to detect issues as early as possible in the development lifecycle.
This research aims to find ways in which to ensure the correctness
of agent design artefacts against different point-of-reference: re-
quirements and interaction protocols. The proposed approach will
be applicable at design time not requiring source code or a formal
design model.

Keywords
AOSE Methodology, Goal-Oriented Requirements, Interaction Pro-
tocol

1. BROADER RESEARCH CONTEXT
Autonomous agents are widely-used for developing systems that

are highly dynamic in nature in a broad range of domains [6]. Most
existing work on verifying BDI agent systems has focused on for-
mal verification (e.g. [2]), particularly using model checking tech-
niques (e.g. [3]) and theorem proving (e.g. [10]), or on runtime
testing (e.g. [8]). Such work tends to focus on the verification of
complete agent programs, requiring source code or a formal design
model. However, it is long established that early detection and res-
olution of software defects saves time and money [[1], Page 1466].
Our aim therefore is to develop a suite of lightweight techniques,
supported by tools, for detecting defects at the design phase, prior
to implementation. One of the barriers to the widespread adoption
of the agent technology in the industry is its reliability [4]. In order
to increase the trust of such systems, many testing and debugging
techniques have been proposed. Some of these techniques (e.g.
model-based testing) rely on the design artefacts. As a result, it is
vital to check these artefacts and ensure their correctness.

The questions that need to be addressed by this research are as
follows:

∗Acknowledges King Abdulaziz University for Scholarship.
†University of Melbourne, Melbourne, Australia.

Appears in: Proceedings of the 15th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. What is the scope of the static verification in the context of
the BDI-model of agency?
The answer to this question states all possible checkable arte-
facts in the context of BDI agent-based systems. Also, it
identifies the point-of-reference and the design units to be
considered in the proposed approach. This question is part
of the necessary background knowledge, I consider it as a
first step towards the final aim of this research.

2. What is a suitable executable model for agent-based design
artefacts?
This question investigates different formalisms with the aim
to be used as an executable representation for the point-of-
reference artefacts. Since the point-of-reference encompasses
two artefacts: requirements and interaction protocols, this
question has two sub-questions as follows:

(a) What is a suitable executable model to represent re-
quirements?

(b) What is a suitable executable model to represent inter-
action protocol?

3. What is a suitable executable model to represent agents’ de-
tailed models?
It is more likely to have the design of given point-of-reference
(requirements specifications or interaction protocol) scattered
across multiple agents. In this question, I investigate how to
merge all the relevant entities of a given point-of-reference
into one coherent structure.

4. How can an automated checking framework be developed
to effectively detect design defects?
This question is addressed through addressing the following
two questions:

(a) How to extract all possible behavioural runs out of the
agent detailed deigns?

(b) How to check the behavioural runs against the point-of-
reference models?

Evaluation of the proposed approach
The evaluation aims to ensure that the effectiveness of the
framework proposed through answering the following ques-
tions:

(a) Can the framework detect design defects?
(b) What is the level of false positives that are generated by

the proposed approach?
(c) How scalable is the proposed checking framework?

1520



Translate into Petri-Net

Construct 
Plan 

Graph

Construct UML Activity 
Diagram 

Generate 
Report

Check Traces 
Against The 

Reqs' PN

Extract 
Traces

Report

Goal 
Overview 
Diagram

Scenario

Reqs 
Petri-Net

Agents 
Designs

Extracted 
Traces

Role 
Grouping

4. Execute Traces
1. Spec. to Activity Diagram

3. Traces Extractor 

Design File

2.Activity Diagram to Petri net

Figure 1: Proposed Framework.

2. METHOD
This research is intended to find a systematic way (Figure 1),

supported by algorithms, to ensure the correctness of the detailed
design artefacts (events and their associated plans) with respect to
the specified point-of-reference (i.e. requirements or interaction
protocols).

In order to verify the design with respect to a given point-of-
reference, the point-of-reference should be expressed in a formal
notation. Thus, the work of Poutakidis et al. [9] is adopted, as
it proposes a way to translate AUML sequence diagrams into more
formal representation, place/transition Petri-Nets (PN). Then, a plan
graph, as proposed in [5], is constructed from the detailed design
artefacts of the involved agent in the point-of-reference to act as a
coherent structure that merges the designs. The correctness check
is performed through running the extracted behavioural runs out
of the plan graph over the point-of-reference’s PN and logging the
existence of any violations.

A plan graph may capture many execution flow fragments in-
cluding: sequential, selection, loop and parallel. Due to the non-
deterministic nature of MAS, plan graphs must be traversed in a
way that guarantees that the behavioural runs generated cover all
possible combinations. The existing graph traversal algorithms do
not fulfil such a purpose. The intention is to transform the plan
graph into place/transition PN, since it can be used to study and
describe systems that have the non-deterministic nature [7]. Then,
a reachability graph (RG) for that PN is calculated, since reacha-
bility is one of the PN’s proprieties that is used for studying its dy-
namic behaviour [7]. Since that RG captures all possible ways of
executing the PN, behavioural runs that cover all possible combina-
tions can be extracted through traversing the RG. The two Petri nets
are then compared for similarity through running the behavioural
runs extracted from the RG over the point-of-reference’s PN. To
maintain the computation complexity of the approach, especially
in situations when the RG includes too many behavioural runs, the
approach considers one run at a time.

3. PROTOTYPE IMPLEMENTATION
I implemented the proposed approach as an eclipse plug-in that

integrates with the Prometheus Design Tool (PDT). The tool takes
the design file in an XML format, and tokenises the point-of-reference
out of the design file. Then it translates them into PNs. Regarding
the agent detailed design notations, the tool extracts the entities that
are related to the specified point-of-reference. Then, it applies a set
of merging rules on the specified point-of-reference to generate the
abstract description of the intended plan graph. Then, it uses the
abstract description to generate a DOT Graph source script for the
plan graph. The tool then extracts all possible behavioural runs and
executes them against the specified point-of-reference’s PN, and
reports any inconsistency.

4. EVALUATION
To the best of my knowledge, there are no existing benchmarks

that can be used in evaluating the proposed approach. Thus, the
plan was to conduct an empirical evaluation through applying the
proposed approach on the artefacts of complete agent-systems (21
cases). Some of these systems were developed as final projects
in the Agent-Oriented Programming and Design course, offered at
RMIT University, whereas others were developed within the agent
group at the university. Also, there are two case studies were in-
cluded in the evaluation: oil production simulation and an air traf-
fic management system. Regarding the scalability of the approach,
a scalability analysis has been conducted on 24 synthesised plan
graphs to measure how scalable the approach is. The generation
of these plan graphs was systematic with varying the size and the
amount of parallelism up until the time taken to extract the traces
are still “reasonable”. I define “reasonable” to be within 24 hours.

Both analysis methodologies were used: quantitative, by mea-
suring the number of errors detected through applying the proposed
framework and qualitative in terms of judging the criticality of the
errors and their categories: false and true positives.

The results of the empirical evaluation conducted showed that
the proposed approach is able to detect defects in agent designs,
with a low number of false positives and generally in a reasonable
amount of time. The scalability analysis performed showed that the
proposed approach can verify large plan graphs in under 24 hours,
despite the exponential explosion in traces as designs get larger.

REFERENCES
[1] B. W. Boehm. Understanding and controlling software costs.

Journal of Parametrics, 8(1):32–68, 1988.
[2] M. Dastani, K. V. Hindriks, and J.-J. Meyer. Specification

and verification of multi-agent systems. Springer Science &
Business Media, 2010.

[3] L. A. Dennis, M. Fisher, M. P. Webster, and R. H. Bordini.
Model checking agent programming languages. Automated
software engineering, 19(1):5–63, 2012.

[4] N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap
of agent research and development. Autonomous agents and
multi-agent systems, 1(1):7–38, 1998.

[5] T. Miller, L. Padgham, and J. Thangarajah. Test coverage
criteria for agent interaction testing. In AOSE, pages 91–105.
Springer, 2010.

[6] S. Munroe, T. Miller, R. A. Belecheanu, M. Pechoucek,
P. McBurney, and M. Luck. Crossing the agent technology
chasm: Lessons, experiences and challenges in commercial
applications of agents. The Knowledge Engineering Review,
21(04):345–392, 2006.

[7] T. Murata. Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77(4):541–580, 1989.

[8] L. Padgham, Z. Zhang, J. Thangarajah, and T. Miller.
Model-based test oracle generation for automated unit
testing of agent systems. Software Engineering, IEEE
Transactions on, 39(9):1230–1244, 2013.

[9] D. Poutakidis, L. Padgham, and M. Winikoff. Debugging
multi-agent systems using design artifacts: The case of
interaction protocols. In Proceedings of the first international
joint conference on Autonomous agents and multiagent
systems: part 2, pages 960–967. ACM, 2002.

[10] J. Sudeikat, L. Braubach, A. Pokahr, W. Lamersdorf, and
W. Renz. Validation of bdi agents. In Programming
Multi-Agent Systems, pages 185–200. Springer, 2006.

1521




