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ABSTRACT
When the members of a group have to make a decision, they
can use a voting rule to aggregate their preferences. But
which rule to use is a difficult question. Different rules have
different properties, and social choice theorists have found
arguments for and against most of them. These arguments
are aimed at the expert reader, used to mathematical for-
malism. We propose a logic-based language to instantiate
such arguments in concrete terms in order to help people
understand the strengths and weaknesses of different voting
rules. Our approach allows us to automatically derive a jus-
tification for a given election outcome or to support a group
in arguing over which voting rule to use. We exemplify our
approach with an in-depth study of the Borda rule.
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1. INTRODUCTION
When the members of a committee need to make a deci-

sion, they can use a voting rule to aggregate their individ-
ual preferences over the available alternatives to arrive at a
suitable collective choice. The normative and mathematical
analysis of such voting rules is part of social choice the-
ory [1], and their algorithmic properties are studied in com-
putational social choice [6]. The significant interest amongst
AI researchers in social choice theory in recent years, initially
sparked by the relevance of the theory to AI applications
in areas such as recommender systems, multiagent systems,
and search technologies, has opened up several entirely new
perspectives on the old problem of voting and has led to
novel synergies with a variety of fields in AI and computer
science, such as algorithms, knowledge representation, and
machine learning. In this paper, we propose to explore a
new such synergy and show how to fruitfully apply ideas
from automated reasoning and principles of argumentation
as studied in AI to a new kind of problem in voting.

There are many different voting rules: Plurality, Veto,
Borda, Copeland, Approval, and so forth [18]. Each of them
satisfies certain appealing properties, but none is perfect.
Multiple arguments in favour and against different rules
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have been put forward in the literature, starting with the
famous dispute between Condorcet and Borda in the 18th
century [13]. However, these arguments are dispersed in the
specialised literature and are often developed in a highly
formal and abstract manner. It therefore is difficult, if not
impossible, for an untrained individual to understand them.
This means that the members of our committee can hardly
have an informed discussion about which voting rule to use.
We would like to enable such discussions, by making argu-
ments regarding voting rules understandable to non-experts
and by providing tools for generating and applying those
arguments in concrete situations.

In this paper, we make two contributions towards this
long-term goal of enabling informed argumentation about
voting rules between non-expert users. First, we develop a
general framework for modelling arguments for and against
specific outcomes of a voting rule, given a concrete elec-
tion instance. This framework allows us to represent many
important arguments, either new or taken from the litera-
ture, and either highly specific or in the general and abstract
form of axioms encoding high-level properties. Because the
framework instantiates these arguments on concrete exam-
ples, it does not require the audience to understand the ax-
ioms in their full generality. Nevertheless, an argument in
our framework can still be general in the sense of being ap-
plicable to any concrete election instance. Importantly, our
framework is not tailored to defend a specific rule: it per-
mits the use of arguments in favour of different voting rules.
As a second contribution, we instantiate our framework by
providing an algorithm for generating arguments justifying
the outcome recommended by the Borda rule for any given
election. The technique we use builds on the axiomatisation
of that rule developed by Young [21].

Example 1. To illustrate what we ultimately aim for, con-
sider an election with three alternatives, { 𝑎, 𝑏, 𝑐 }, and three
voters. Voters 𝑣1 and 𝑣2 both prefer 𝑎 to 𝑏 to 𝑐, while voter 𝑣3
preferes 𝑐 to 𝑏 to 𝑎. The situation is summarised in Figure 1
in the form of preference profile 𝑹. Which alternative wins
this election depends on the voting rule used. The Veto
rule, for instance, recommends electing the alternative that
is ranked at the bottom least often, i.e., it would elect al-
ternative 𝑏. The Borda rule, on the other hand, awards 2
points every time an alternative is ranked first, 1 point every
time it is ranked second, and 0 points every time it is ranked
last, i.e., under the Borda rule alternative 𝑎 would win (with
2+2+0 points against 1+1+1 for 𝑏 and 0+0+2 for 𝑐). So
which alternative is the “right” winner? What we envision
is a system that would be able to automatically generate an
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𝑹 =
𝑣1 𝑣2 𝑣3
𝑎 𝑎 𝑐
𝑏 𝑏 𝑏
𝑐 𝑐 𝑎

, 𝑹1 =
𝑣1
𝑎
𝑏
𝑐

, 𝑹2 =
𝑣2 𝑣3
𝑎 𝑐
𝑏 𝑏
𝑐 𝑎

.

Figure 1: The profiles used in the introductory ex-
ample. Each column represents the preference or-
dering of one voter.

easy-to-understand sequence of arguments for justifying, for
instance, that alternative 𝑎 is the deserving winner. Such a
system might initiate the following dialogue.

System: Consider election 𝑹1, involving only voter 𝑣1 (see
also Figure 1). Do you agree that 𝑎, enjoying
unanimous support, should win this election?

User: Yes, of course.
System: Now consider election 𝑹2, involving only voters

𝑣2 and 𝑣3. Do you agree that, for symmetry rea-
sons, the outcome should be a three-way tie?

User: Yes, that sounds reasonable.
System: Observe that when we combine 𝑹1 and 𝑹2, we

obtain our election of interest, namely 𝑹. Do
you agree that in this combined election, as there
was a three-way tie in 𝑹2, 𝑹1 should be used to
decide the winner?

User: Yes, I do.
System: To summarise, you agree that 𝑎 should win for 𝑹.

The reader familiar with the axiomatic method in social
choice theory may recognise some of the standard axioms
satisfied by the Borda rule at the core of two of these argu-
ments (namely Pareto dominance and reinforcement). We
will formally introduce these axioms in Section 2. If the user
disagrees with one of the steps, the system might try another
strategy of arguing in favour of 𝑎. Alternatively, we might
also ask our system to generate a sequence of arguments to
justify that 𝑏 should win. △

In this paper, we do not address the rendering of such ar-
guments in natural language. Rather, we address the chal-
lenge of automatically generating the arguments themselves,
expressed in a simple logic-based language. Our framework
offers a general solution to the problem of representing such
arguments to justify any given outcome for any given elec-
tion. Of course, a given user will only find some of the
arguments that can be represented in principle convincing
in practice. For any “natural” voting rule, one should expect
that there will be (by virtue of its naturalness) a convincing
set of arguments that can be used to justify the outcomes
recommend by that rule. The challenge then is to automat-
ically generate a concrete sequence of such arguments for a
given outcome to be justified. We provide a solution to this
algorithmic problem for the case of the Borda rule.

The remainder of this paper is organised as follows. Sec-
tion 2 introduces a logic for specifying reasonableness cri-
teria (i.e., axioms) for voting rules. We prove the logic to
be complete and demonstrate how it can be used to justify
an election outcome. In Section 3 we provide an algorithm
for justifying outcomes returned by the Borda rule for ar-
bitrary elections. While our main technical contributions
concern the challenge of justifying a given election outcome,
in Section 4 we briefly explore other further applications of

our approach to richer forms of argumentation about voting
rules. Section 5 concludes with a discussion of related work.

2. GENERAL FRAMEWORK
In this section we introduce a formal model of voting rules

for variable electorates, we show how to describe such rules
and their properties in a simple logical language, and we
then use this language to develop a framework for reasoning
and arguing about voting rules.

2.1 Voting Rules
We begin by introducing what is essentially the standard

formal model of voting familiar from social choice theory [9,
18], with varying sets of voters.

Let 𝒜, with 𝑚 = |𝒜|, be the finite set of alternatives.
Let 𝒫∅(𝒜) denote the powerset of 𝒜, excluding the empty
set. We use the letters 𝐴 ⊆ 𝒜 and 𝛼 ⊆ 𝒫∅(𝒜) to designate
subsets of alternatives and sets of subsets of alternatives,
respectively. We model preferences as (strict) linear orders
(transitive, irreflexive, and connected binary relations) over
𝒜. Let 𝒩 be the infinite universe of potential voters. A
profile 𝑹 is a mapping from a finite subset of voters 𝑁𝑹 ⊆ 𝒩
to linear orders over 𝒜. For technical reasons, we allow 𝑁𝑹
to be empty, in which case we call 𝑹 the null profile. Let 𝓡
denote the set of all non-null profiles. A voting rule 𝑓 maps
each non-null profile 𝑹 to a non-empty subset of 𝒜, the set
of (tied) election winners for the profile in question.

Given a profile 𝑹, let 𝑹 be the profile consisting of the
reverses of the linear orders found in 𝑹. For two profiles
𝑹1 and 𝑹2 defined over disjoint sets of voters, we define
their sum 𝑹1 ⊕ 𝑹2 as the profile 𝑹1 ∪ 𝑹2. (Note that the
union of two functions, considered as sets of input-output
pairs, defined over disjoint domains, is itself a well-defined
function.) In this paper, we will only use addition of profiles
in contexts where the identities of the voters do not mat-
ter. Therefore, we also define addition over profiles that are
not defined over disjoint sets of voters, the addition then
being preceded by an arbitrary renaming of the voters of
the second profile. Formally, given two profiles 𝑹1, 𝑹2 with
𝑁𝑹1

∩ 𝑁𝑹2
≠ ∅, define 𝑠 as an arbitrary injection map-

ping every voter 𝑖 ∈ 𝑁𝑹2
to a voter 𝑠(𝑖) ∈ 𝒩 ∖ 𝑁𝑹1

; de-
fine 𝑡(𝑹) as the profile { (𝑠(𝑖), 𝑃 ) ∣ (𝑖, 𝑃 ) ∈ 𝑹 }; and define
𝑹1 ⊕ 𝑹2 = 𝑹1 ∪ 𝑡(𝑹2). E.g., for 𝑹 = { (𝑖, (𝑎, 𝑏)) }, 𝑹 ⊕ 𝑹 is
{ (𝑖, (𝑎, 𝑏)), (𝑖′, (𝑎, 𝑏)) }, with 𝑖′ ≠ 𝑖 an arbitrary voter. A pro-
file 𝑹 may be multiplied by a natural number 𝑘 ∈ ℕ, defined
in the natural way as repeated addition with copies of itself
and denoted by 𝑘𝑹. Multiplying a profile by zero yields the
null profile. Throughout this paper, natural numbers are
taken to include zero.

2.2 Logical Language and Axioms
To formally describe voting rules we will make use of the

language of propositional logic over the set of atomic propo-
sitions { 𝑝𝑹,𝐴 ∣ 𝑹 ∈ 𝓡, ∅ ⊂ 𝐴 ⊆ 𝒜 }. This set includes one
atom for every possible non-null profile 𝑹 and every possi-
ble non-empty subset 𝐴 of alternatives. The language ℒ is
the set of all formulæ that can be formed using these atoms
and the propositional connectives ¬, ∧, ∨, and → as well as
the special propositions ⊤ and ⊥, in the usual manner [19].
A literal is an atom or its negation; a clause is a disjunction
of literals.

The semantics of ℒ is defined as follows. Given a voting
rule 𝑓 , the model 𝑣𝑓 assigns the value T (true) to the atom
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𝑝𝑹,𝐴 if 𝑓(𝑹) = 𝐴 and the value F (false) otherwise. That is,
𝑝𝑹,𝐴 is true if 𝑓 chooses 𝐴 as the set of winners whenever
the voters vote as in profile 𝑹. The definition of 𝑣𝑓 extends
to the whole set of formulæ using the usual semantics of
propositional logic. We say that 𝑣𝑓 satisfies a set of formulæ
iff it assigns the value T to every formula in the set.

To make the semantics of the atoms explicit in the lan-
guage, we from now on write [𝑹 ↦ 𝐴] instead of 𝑝𝑹,𝐴. We
also write [𝑹 ∈⟼ 𝛼], for any non-empty 𝛼 ⊆ 𝒫∅(𝒜), as a
shorthand for ⋁𝐴∈𝛼[𝑹 ↦ 𝐴]. We will refer to such clauses
involving only one profile, i.e., formulæ specifying the possi-
ble sets of winners for a given profile, as uni-profile clauses.

We can express familiar as well as new axioms of social
choice theory in our language. We call any such rendering of
an axiom in ℒ an ℒ-axiom. Formally, an ℒ-axiom is simply
a set of formulæ. Here are some examples for ℒ-axioms.
Dom Dominance postulates that a Pareto-dominated alter-

native (i.e., an alternative to which some other alter-
native is preferred by every voter) should not win.
The formulæ are, for each 𝑹 ∈ 𝓡, [𝑹 ∈⟼ 𝒫∅(𝑈𝑹)],
where 𝑈𝑹 is the set of alternatives that are not Pareto-
dominated in 𝑹.

Anon Anonymity asks for symmetry w.r.t. voters: for all
𝑹 ∈ 𝓡, ∅ ⊂ 𝐴 ⊆ 𝒜, 𝑁 ′ ⊆ 𝒩, bijections 𝜎 ∶ 𝑁 ′ → 𝑁𝑹,
anonymity requires [𝑹 ↦𝐴] → [(𝑹 ∘ 𝜎)↦𝐴].

Cond This axiom says that, if there is a Condorcet winner
(an alternative beating all other alternatives in one-
on-one majority contests), then it should be the sole
winner: thus, for each profile 𝑹 with Condorcet win-
ner 𝑎, it requires [𝑹 ↦{ 𝑎 }].

Reinf Reinforcement requires that, when joining two pro-
files for which the winning sets have a non-empty inter-
section, the resulting profile must have that intersec-
tion as the only winners: for each 𝑹1, 𝑹2, 𝑁𝑹1

∩𝑁𝑹2
=

∅, 𝐴1 ∩ 𝐴2 ≠ ∅, reinforcement imposes the formula
([𝑹1 ↦ 𝐴1] ∧ [𝑹2 ↦ 𝐴2]) → [𝑹1 ⊕ 𝑹2 ↦ 𝐴1 ∩ 𝐴2].

SymCanc Symmetric cancellation says that, when a profile
consists of a linear order and its inverse, then the only
reasonable outcome is the full set of alternatives: for
each such profile 𝑹, this axiom thus requires [𝑹 ↦𝒜].

Reinforcement, also known as consistency in the litera-
ture, was introduced by Young [21]. Like dominance and
the Condorcet principle, it is one of the classical axioms
considered in social choice theory [9]. SymCanc is an ad hoc,
but intuitively appealing, axiom we will use in Example 2.

An ℒ-axiom may also be limited to capturing what an
adequate behaviour is on a few specific cases, or even just
a single specific case. As an example, let us inspect the
argument put forward by Fishburn [8, p. 544] against the
Condorcet principle. Consider the profile 𝑹𝐹 shown in Fig-
ure 2, involving 9 alternatives and 101 voters.1 Observe that
𝑤 is the Condorcet winner, as it is preferred to any other
alternative by 51 out of 101 voters. Yet, it is intuitively
appealing to postulate that alternative 𝑎 is in fact a more
deserving winner of this election. This may be seen by look-
ing at the numbers of times alternatives 𝑎 and 𝑤 obtain a
given rank (also displayed in Figure 2).
1Fishburn explains his argument without giving a fully
worked out example. The profile used here is taken from
http://rangevoting.org/FishburnAntiC.html.

number of voters
31 19 10 10 10 21 𝑤 𝑎

1 𝑎 𝑎 𝑓 𝑔 ℎ ℎ 1 0 50
2 𝑏 𝑏 𝑤 𝑤 𝑤 𝑔 2 30 0
3 𝑐 𝑐 𝑎 𝑎 𝑎 𝑓 3 0 30
4 𝑑 𝑑 ℎ ℎ 𝑓 𝑤 4 21 0
5 𝑒 𝑒 𝑔 𝑓 𝑔 𝑎 5 0 21
6 𝑤 𝑓 𝑒 𝑒 𝑒 𝑒 6 31 0
7 𝑔 𝑔 𝑑 𝑑 𝑑 𝑑 7 0 0
8 ℎ ℎ 𝑐 𝑐 𝑐 𝑐 8 0 0
9 𝑓 𝑤 𝑏 𝑏 𝑏 𝑏 9 19 0

Figure 2: The profile Fishburn uses to argue against
the Condorcet property; and the number of voters
placing alternative 𝑤 or 𝑎 at a given rank.

FvsC The Fishburn-versus-Condorcet ℒ-axiom is defined as
the formula [𝑹𝐹 ↦ { 𝑎 }].

2.3 Reasoning about Voting Rules
Now that we have a logical language for describing the

outcomes of a voting rule for different profiles in place, we
want to be able to reason about statements in this language.
To this end, we first fix some additional terminology regard-
ing the relationship between ℒ-axioms and voting rules.

Definition 1. An ℒ-axiomatisation is a set of ℒ-axioms.
A voting rule 𝑓 conforms to the ℒ-axiomatisation 𝐽 iff 𝑣𝑓
satisfies all ℒ-axioms 𝑗 in 𝐽 . An ℒ-axiomatisation 𝐽 is con-
sistent iff some voting rule conforms to it. 𝐽 characterises
𝑓 iff 𝑓 is the only voting rule conforming to it.

Given a set of assumptions of what makes a good voting
rule, expressed in the form of an ℒ-axiomatisation, we want
to be able to decide whether a given claim about a given
set of alternatives being the deserving winners for a given
profile logically follows from those assumptions. In other
words, we want to be able to justify election outcomes in
terms of a given ℒ-axiomatisation. The next definition fixes
the semantics of what it means for such a claim to be valid.

Definition 2. Consider an ℒ-axiomatisation 𝐽 and a for-
mula 𝜑 in our language. We say that 𝜑 is a valid claim given
𝐽 iff 𝑣𝑓(𝜑) = T for all voting rules 𝑓 conforming to 𝐽 .

We use the term ‘claim’ instead of ‘formula’ when we want
to emphasise that a formula is used to make a point about
specific voting rules. As our proposal is aimed at making
arguments as easy to understand as possible, we suggest to
restrict claims to uni-profile clauses, which have an easily in-
terpretable meaning. Our results are general however. Note
that if 𝐽 is inconsistent, then all claims are vacuously valid.

We can now define a formal proof system to allow us to
establish whether a given claim is valid. Let us first define
𝜅, representing our domain knowledge. It is the set of all
formulæ of the form [𝑹 ↦𝐴1]∧[𝑹 ↦ 𝐴2] → ⊥, for all profiles
𝑹 and ∅ ⊂ 𝐴1 ≠ 𝐴2 ⊆ 𝒜 (saying that a voting rule 𝑓 cannot
select more than one set of winners), plus all formulæ of the
form [𝑹 ∈⟼ 𝒫∅(𝒜)] (saying that 𝑓 must select at least one
set of winners). Thus, 𝜅 encodes the requirement of 𝑓 being
a function. We now define a proof of a claim 𝜑 grounded
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𝑹 =
𝑎 𝑏 𝑎 𝑐
𝑏 𝑐 𝑏 𝑏
𝑐 𝑎 𝑐 𝑎

, 𝑹𝐷 =
𝑎 𝑏
𝑏 𝑐
𝑐 𝑎

, 𝑹𝑆 =
𝑎 𝑐
𝑏 𝑏
𝑐 𝑎

.

Figure 3: The profiles used in Example 2. Each col-
umn represents the preference ordering of one voter.

in 𝐽 as a demonstration that 𝜑 can be inferred from 𝐽 and
𝜅, i.e., that (⋃ 𝐽) ∪ 𝜅 ⊢ 𝜑. Natural deduction [19], which
is widely regarded as producing proofs of good readability,
is particularly suited to this purpose, but any other system
that is sound and complete for propositional logic could be
used as well.

Definition 3. A proof of claim 𝜑 grounded in ℒ-axioma-
tisation 𝐽 is a natural deduction proof for (⋃ 𝐽) ∪ 𝜅 ⊢ 𝜑.

For the purposes of presenting examples, in this paper, we
will take certain shortcuts and omit the detailed derivation
of simple facts about propositional logic. We will justify such
steps as being inferred ‘by propositional reasoning’ (PR),
together with a reference to the premises used. What is
important in view of our ultimate goal of justifying election
outcomes to users is that any such propositional reasoning
step can be decomposed into a sequence of basic steps in a
natural deduction proof, which can then be translated into
an argument in natural language that can be explained to a
non-expert user [2, 14, 20].

Example 2. We prove below, on the basis of ℒ-axioms
Dom, SymCanc, and Reinf defined earlier, that the profile 𝑹
of Figure 3 must have as winners either { 𝑎 }, { 𝑏 }, or { 𝑎, 𝑏 },
i.e., that 𝑐 should not win. Each line consists of a formula
we have shown to be true, followed by the justification for
that proof step. The profiles 𝑹𝐷 and 𝑹𝑆 are also defined in
Figure 3. Note that 𝑹 = 𝑹𝐷 ⊕ 𝑹𝑆.

1. [𝑹𝐷 ∈⟼ { { 𝑎 } , { 𝑏 } , { 𝑎, 𝑏 } }] (Dom)
2. [𝑹𝑆 ↦ { 𝑎, 𝑏, 𝑐 }] (SymCanc)
3. ([𝑹𝐷 ↦ { 𝑎 }] ∧ [𝑹𝑆 ↦ { 𝑎, 𝑏, 𝑐 }]) → [𝑹 ↦{ 𝑎 }] (Reinf)
4. ([𝑹𝐷 ↦ { 𝑏 }] ∧ [𝑹𝑆 ↦ { 𝑎, 𝑏, 𝑐 }]) → [𝑹 ↦{ 𝑏 }] (Reinf)
5. ([𝑹𝐷 ↦ { 𝑎, 𝑏 }] ∧ [𝑹𝑆 ↦ { 𝑎, 𝑏, 𝑐 }]) → [𝑹 ↦{ 𝑎, 𝑏 }] (Reinf)
6. [𝑹𝐷 ↦ { 𝑎 }] → [𝑹 ↦{ 𝑎 }] (PR from 2 & 3)
7. [𝑹𝐷 ↦ { 𝑏 }] → [𝑹 ↦{ 𝑏 }] (PR from 2 & 4)
8. [𝑹𝐷 ↦ { 𝑎, 𝑏 }] → [𝑹 ↦{ 𝑎, 𝑏 }] (PR from 2 & 5)
9. [𝑹𝐷 ↦ { 𝑎 }] ∨ [𝑹𝐷 ↦ { 𝑏 }] ∨ [𝑹𝐷 ↦ { 𝑎, 𝑏 }] (rewrite 1)

10. [𝑹 ↦{ 𝑎 }] ∨ [𝑹 ↦{ 𝑏 }] ∨ [𝑹 ↦{ 𝑎, 𝑏 }] (PR from 6–9)
11. [𝑹 ∈⟼ { { 𝑎 } , { 𝑏 } , { 𝑎, 𝑏 } }] (rewrite 10)
Each of these steps is simple enough to be rendered in

natural language, so as to be presented to a non-expert user,
just as in Example 1. For instance, steps 2 and 3 directly
correspond to steps also present in Example 1, while step 6
might be explained by pointing out that when two premises
imply a conclusion, then that conclusion is implied by the
first premise alone once we have established that the second
premise is in fact true. △

Remark 1. It is important to understand that two ℒ-ax-
ioms may be equivalent, logically speaking, while leading to
proofs that differ in terms of how easy or difficult they are
to understand for a human reader. In our proposal, it is im-
portant to choose ℒ-axioms not only according to what they

entail (their logical power), but also according to the ease
of understanding them. This is similar to the general goal
of axiomatising a function: we search for axioms that have,
as much as possible, an intuitive content. In our case, how-
ever, an ℒ-axiomatisation is good if it strikes an appropriate
balance between the lengths of proofs it produces and the
intuitiveness of the concrete instantiations of the ℒ-axioms
it contains. As an illustration, Reinf could be changed in
order to shorten the proof of Example 2. A modified Reinf
would say, for example, that a profile associated with a set of
possible sets of winners, when added to a profile that has the
full set 𝒜 as the winners, must still be associated with the
same set of possible sets of winners. This axiom would yield,
in a single step, that [𝑹𝐷

∈⟼ { { 𝑎 } , { 𝑏 } , { 𝑎, 𝑏 } }] ∧ [𝑹𝑆 ↦
{ 𝑎, 𝑏, 𝑐 }]) → [𝑹 ∈⟼ { { 𝑎 } , { 𝑏 } , { 𝑎, 𝑏 } }].

We now want to show that, with our definition of proofs,
we can prove only and all claims that indeed are valid.

Theorem 1 (Completeness). For any ℒ-axiomatisa-
tion 𝐽 and any claim 𝜑, there exists a proof of 𝜑 grounded
in 𝐽 iff 𝜑 is valid given 𝐽 .

Proof. The theorem follows from the (soundness and)
completeness of natural deduction for classical propositional
logic [19], together with the fact that there exists a bijection
between voting rules conforming to 𝐽 and models satisfying
𝐽 and 𝜅. Indeed, for each 𝑓 conforming to 𝐽 , the correspond-
ing model 𝑣𝑓 satisfies 𝐽 and 𝜅. Now take any 𝑣 satisfying 𝐽
and 𝜅. As the model satisfies 𝜅, we can define a rule 𝑓 from
that model, taking 𝑓(𝑹) = 𝐴 when the model says [𝑹 ↦𝐴]
is true. Because 𝑣 = 𝑣𝑓 , 𝑓 conforms to 𝐽 .

Thus, while our logical language permits us to speak about
voting rules by making arbitrary claims about the possible
sets of winners for a given profile, we now have a proof sys-
tem in place for deriving any valid such claim from a given
axiomatisation provided in the same language. The render-
ings of the axioms themselves may be long and unwieldy
(e.g., Dom explicitly lists all undominated alternatives for
every profile), but the concrete proofs produced nevertheless
can be expected to be relatively simple and human-readable
(as seen in Example 2). Finding the right concrete profiles
(e.g., 𝑹𝐷 and 𝑹𝑆 in Example 2) to use in a proof may be
hard, but reading an existing proof is easy. In Section 3 we
will address this challenge of actually producing proofs.

3. JUSTIFYING BORDA OUTCOMES
The Borda rule is one of the most important voting rules

in the literature [18]. Under this rule, an alternative 𝑎 earns
as many points from a given voter as that voter ranks other
alternatives below 𝑎. The Borda score of an alternative is
the sum of points it earns in this manner; the alternatives
with the highest Borda score win. For our purposes, it will
be convenient to use the following alternative definition.

Definition 4. Given a profile, the beta score of an alter-
native is the sum of the numbers of alternatives it beats in
each linear order, minus the sum of the numbers of alterna-
tives it is beaten by in each linear order. Under the Borda
rule 𝑓𝐵 the alternatives with the highest beta score win.

Remark 2. Observe that Borda scores and beta scores de-
fine the same rule. Indeed, let 𝑛 be the number of voters and
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recall that 𝑚 is the number of alternatives. The beta score,
for a given voter, is 𝑏 − (𝑚 − 1 − 𝑏) = 2𝑏 − (𝑚 − 1), where 𝑏
is the Borda score of that same voter. Thus, the total beta
score of an alternative is twice its total Borda score minus
𝑛(𝑚 − 1).

In this section we want to use our logic to justify a given
outcome of Borda. That is, starting from any profile 𝑹∗,
we want to be able to give a proof, grounded in ℒ-axioms
that are as appealing as possible, for the claim that the only
“reasonable” winners must be the ones Borda picks (pro-
vided the reader of the argument finds these instantiations
of axioms indeed reasonable). We will thus, first, present
an ℒ-axiomatisation of Borda and, second, provide an algo-
rithm that, given any 𝑹∗, builds a proof for [𝑹∗ ↦ 𝑓𝐵(𝑹∗)].

3.1 Borda ℒ-Axiomatisation
To present the ℒ-axiomatisation that we will use to argue

in favour of Borda, we require a few definitions. Fix an
arbitrary linear order ≻ on 𝒜. (We will use the alphabetic
ordering in our illustrative examples.)

Definition 5. The elementary profile 𝑹𝐴
𝑒 , ∅ ⊂ 𝐴 ⊆ 𝒜, has

two voters and is defined as follows. Let 𝑘 = ≻|𝐴 be the
restriction of ≻ on 𝐴 and let ℓ = ≻|𝒜∖𝐴. The first voter has
the linear order defined by 𝑘 then ℓ; the second has 𝑘 then ℓ.

Example 3. The elementary profile 𝑹{ 𝑎,𝑏 }
𝑒 corresponding

to 𝐴 = { 𝑎, 𝑏 }, with 𝒜 = { 𝑎, 𝑏, 𝑐, 𝑑 }, is composed of the
linear orders (𝑎, 𝑏, 𝑐, 𝑑) and (𝑏, 𝑎, 𝑑, 𝑐). △

Let us call a bijection 𝑆 on 𝒜 an 𝑚-cycle if (𝒜, 𝑆) is
a strongly connected graph, thus, if 𝑆 represents a cycle
that visits each alternative in 𝒜 exactly once. It is formally
defined as a set of pairs of alternatives, but we will denote
such a cycle using a tuple of alternatives, where the first
and last alternatives are equal, and all other alternatives
appear exactly once. For example, ⟨𝑎, 𝑐, 𝑏, 𝑑, 𝑎⟩ denotes the
𝑚-cycle { (𝑎, 𝑐), (𝑐, 𝑏), (𝑏, 𝑑), (𝑑, 𝑎) } in { 𝑎, 𝑏, 𝑐, 𝑑 }. This cycle
can also be represented as ⟨𝑏, 𝑑, 𝑎, 𝑐, 𝑏⟩. We say that a cycle
in 𝒜 generates 𝑚 = |𝒜| linear orders on 𝒜, in the natural
way. For example, ⟨𝑎, 𝑐, 𝑏, 𝑎⟩ generates (𝑎, 𝑐, 𝑏), (𝑐, 𝑏, 𝑎), and
(𝑏, 𝑎, 𝑐). We write linear orders with regular parentheses (⋯)
to distinguish them from cycles ⟨⋯⟩. Conversely, observe
that a linear order involving all alternatives in 𝒜 is generated
by exactly one 𝑚-cycle.

Definition 6. The cyclic profile 𝑹𝑆
𝑐 , with 𝑆 an 𝑚-cycle, is

the profile composed of all 𝑚 linear orders generated by 𝑆.

Example 4. The cyclic profile 𝑹⟨𝑎,𝑏,𝑐,𝑑,𝑎⟩
𝑐 corresponding to

𝑆 = ⟨𝑎, 𝑏, 𝑐, 𝑑, 𝑎⟩ with 𝒜 = { 𝑎, 𝑏, 𝑐, 𝑑 } has the preference
orders (𝑎, 𝑏, 𝑐, 𝑑), (𝑏, 𝑐, 𝑑, 𝑎), (𝑐, 𝑑, 𝑎, 𝑏) and (𝑑, 𝑎, 𝑏, 𝑐). △

A delta vector 𝛿 is a mapping from ≻ to the rationals: such
a vector has (𝑚2 ) coordinates, each mapping a pair of alter-
natives to a rational number. For every pair of alternatives
(𝑎, 𝑏) ∈ ≻, define 𝛿𝑏𝑎 = −𝛿𝑎𝑏 (slightly abusing notation).
The set of delta vectors, denoted by 𝛿 , together with addi-
tion and multiplication by a rational defined in the natural
way, is a vector space.

Definition 7. For any profile 𝑹, the delta vector 𝛿𝑹 maps
every (𝑎, 𝑏) ∈ ≻ to the signed number of victories of 𝑎 against
𝑏, i.e., 𝛿𝑹

𝑎𝑏 is the number of voters who prefer 𝑎 to 𝑏 minus
the number of voters who prefer 𝑏 to 𝑎.

Thus, 𝛿𝑹 represents the weighted majority graph of 𝑹.
We say that two profiles 𝑹 and 𝑹′ cancel when 𝛿𝑹 = 𝛿𝑹′ ,

thus when 𝑹 and 𝑹′ have the same weighted majority graph,
or equivalently, observing that 𝛿𝑹 = −𝛿𝑹, when 𝛿𝑹⊕𝑹′ = 𝟎,
where 𝟎 is the zero vector.

Below is the ℒ-axiomatisation that we use for the Borda
rule. The fact that it is a correct axiomatisation of the Borda
rule will follow from Theorem 2 below. As discussed below,
in Section 3.4, our axiomatisation is very similar but not
identical to the axiomatisation given by Young [21].

Elem For any elementary profile 𝑹𝐴
𝑒 , the only reasonable

set of winners is 𝐴: for all ∅ ⊂ 𝐴 ⊆ 𝒜, [𝑹𝐴
𝑒 ↦ 𝐴].

Cycl For any cyclic profile 𝑹𝑆
𝑐 , the only reasonable set of

winners is 𝒜: for all 𝑚-cycles 𝑆, [𝑹𝑆
𝑐 ↦ 𝒜].

Canc If all pairs of alternatives (𝑎, 𝑏) are such that 𝑎 is pre-
ferred to 𝑏 as many times as 𝑏 is to 𝑎, then the set of
winners must be 𝒜: for all 𝑹 such that 𝛿𝑹

𝑎𝑏 = 0 for all
(𝑎, 𝑏) ∈ ≻, [𝑹 ↦𝒜].

Reinf Reinforcement, as defined earlier (cf. Section 2.2).

Reinf-sub Subtracting a profile with a full winner-set does
not change the outcome. For all 𝑹, 𝑹′, ∅ ⊂ 𝐴 ⊆ 𝒜:
([𝑹 ⊕ 𝑹′ ↦ 𝐴] ∧ [𝑹′ ↦ 𝒜]) → [𝑹 ↦ 𝐴].

Simp If a profile consists of a repetition of the same sub-
profile, then the sub-profile must have the same win-
ners (i.e., we can simplify): for all 𝑹, 2 ≤ 𝑘 ∈ ℕ,
∅ ⊂ 𝐴 ⊆ 𝒜, [𝑘𝑹 ↦𝐴] → [𝑹 ↦𝐴].

We denote our ℒ-axiomatisation by 𝐽𝐵, the set of all six sets
of formulæ just defined.

Remark 3. Observe that Simp and Reinf-sub logically fol-
low from Reinf, i.e., they are in fact not required for the
characterisation itself. We introduce them nevertheless, as
explained in Remark 1, because they can shorten proofs, and
because we assume they will appear sufficiently intuitive to
the reader of such proofs to be used without requiring sep-
arate justification themselves.

3.2 An Example
Consider the set of alternatives 𝒜 = { 𝑎, 𝑏, 𝑐, 𝑑 } and a

profile 𝑹∗ composed of the two preference orders (𝑎, 𝑏, 𝑑, 𝑐)
and (𝑐, 𝑏, 𝑎, 𝑑). Observe that Borda selects { 𝑎, 𝑏 } as winners
for this profile. We will now build a proof grounded in 𝐽𝐵
of the claim [𝑹∗ ↦ { 𝑎, 𝑏 }].

The proof consists of two parts. First (steps 1–8 in this
example), we define a profile 𝑹′ that is the sum of several
profiles for which the winners are uncontroversial, either be-
cause of Elem or because of Cycl, and use this to argue that
our Borda winners should win for 𝑹′. For our example, let
𝑹𝐸 = 𝑹{ 𝑎,𝑏 }

𝑒 ⊕2𝑹{ 𝑎,𝑏,𝑐 }
𝑒 , 𝑹𝐶 = 𝑹⟨𝑎,𝑑,𝑐,𝑏,𝑎⟩

𝑐 ⊕𝑹⟨𝑎,𝑏,𝑑,𝑐,𝑎⟩
𝑐 , and

𝑹′ = 𝑹𝐸 ⊕𝑹𝐶 . Second (steps 9–16 in this example), we ar-
gue that 𝑹′ must have the same winners as 𝑹∗. This works,
because we also chose 𝑹′ in such a way that it has the same
weighted majority graph as some multiple of 𝑹∗. Indeed,
step 12 uses the fact that 4𝑹∗ and 𝑹′ cancel (this can be
verified manually by counting the number of wins for each
pair of alternatives). Step 9 is valid, as any profile cancels
with its inverse.
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1. [𝑹{ 𝑎,𝑏 }
𝑒 ↦ { 𝑎, 𝑏 }] (Elem)

2. [𝑹{ 𝑎,𝑏,𝑐 }
𝑒 ↦ { 𝑎, 𝑏, 𝑐 }] (Elem)

3. [𝑹⟨𝑎,𝑑,𝑐,𝑏,𝑎⟩
𝑐 ↦ 𝒜] (Cycl)

4. [𝑹⟨𝑎,𝑏,𝑑,𝑐,𝑎⟩
𝑐 ↦ 𝒜] (Cycl)

5. ((1) ∧ (2)) → [𝑹𝐸 ↦ { 𝑎, 𝑏 }] (Reinf)
6. ((3) ∧ (4)) → [𝑹𝐶 ↦ 𝒜] (Reinf)
7. ([𝑹𝐸 ↦ { 𝑎, 𝑏 }] ∧ [𝑹𝐶 ↦ 𝒜]) → [𝑹′ ↦ { 𝑎, 𝑏 }] (Reinf)
8. [𝑹′ ↦ { 𝑎, 𝑏 }] (PR from 5–7)
9. [4𝑹∗ ⊕ 4𝑹∗ ↦𝒜] (Canc)

10. ([4𝑹∗ ⊕ 4𝑹∗ ↦ 𝒜] ∧ [𝑹′ ↦ { 𝑎, 𝑏 }]) → [4𝑹∗ ⊕ 4𝑹∗ ⊕ 𝑹′ ↦
{ 𝑎, 𝑏 }] (Reinf)

11. [4𝑹∗ ⊕ 4𝑹∗ ⊕ 𝑹′ ↦ { 𝑎, 𝑏 }] (PR from 8–10)
12. [4𝑹∗ ⊕ 𝑹′ ↦ 𝒜] (Canc)
13. ([4𝑹∗ ⊕ 4𝑹∗ ⊕ 𝑹′ ↦ { 𝑎, 𝑏 }] ∧ [4𝑹∗ ⊕ 𝑹′ ↦ 𝒜]) → [4𝑹∗ ↦

{ 𝑎, 𝑏 }] (Reinf-sub)
14. [4𝑹∗ ↦ { 𝑎, 𝑏 }] (PR from 11–13)
15. [4𝑹∗ ↦ { 𝑎, 𝑏 }] → [𝑹∗ ↦ { 𝑎, 𝑏 }] (Simp)
16. [𝑹∗ ↦ { 𝑎, 𝑏 }] (PR from 14 & 15)

Simplifications are possible. For instance, step 8 could
be presented to a user as following directly from steps 1–4,
together with Reinf and basic propositional reasoning.

3.3 The General Algorithm
We now define an algorithm, Borda-expl, which, given any

profile 𝑹∗, builds a proof grounded in 𝐽𝐵 of the claim [𝑹∗ ↦
𝑓𝐵(𝑹∗)], i.e., a justification for the Borda outcome. Our
proofs all have the same structure as in the example above;
only the concrete profiles used along the way differ. We
show how to compute a natural number 𝑟, a profile 𝑹𝐸
that is the sum of several elementary profiles, and a profile
𝑹𝐶 that is the sum of several cyclic profiles such that, for
𝑹′ = 𝑟𝑹𝐸 ⊕ 𝑹𝐶 , (𝑖) the winners for 𝑹′ are 𝑓𝐵(𝑹∗), and
(𝑖𝑖) 𝑟𝑚𝑹∗ and 𝑹′ have the same weighted majority graph.

First, let us define 𝑹𝐸. Define a beta vector as a vector
mapping alternatives from 𝒜 to rationals, with the condi-
tion that it sums to zero. The set of beta vectors, denoted
by 𝛽 , together with addition and multiplication by a ra-
tional defined in the natural way, is a vector space. We
write 𝛽𝑹 = ⟨𝛽𝑹

𝑎 , 𝑎 ∈ 𝒜⟩ for the beta vector correspond-
ing to a profile 𝑹, where 𝛽𝑹

𝑎 denotes the beta score of 𝑎
in 𝑹. Name alternatives 𝑎1, 𝑎2, … , 𝑎𝑚 by decreasing beta
score in 𝑹∗, thus 𝛽𝑹∗

𝑎1
≥ 𝛽𝑹∗

𝑎2
≥ … ≥ 𝛽𝑹∗

𝑎𝑚
. Define 𝑹𝐸 =

⨁𝑚−1
𝑖=1

𝛽𝑹∗
𝑎𝑖 −𝛽𝑹∗

𝑎𝑖+1
2 𝑹{ 𝑎1,…,𝑎𝑖 }

𝑒 .

Remark 4. This definition of 𝑹𝐸 is legal as the coeffi-
cients are natural numbers: (𝛽𝑹∗

𝑎𝑖
− 𝛽𝑹∗

𝑎𝑖+1
) is even because,

depending on 𝑚, either all beta scores are even, or all are
odd (as may be seen by revisiting Remark 2).

We can now show that 𝑹𝐸 has the same beta scores as
𝑚𝑹∗, which is equivalent to a result due to Young [21].

Lemma 1 (Young, 1974). With the above definitions,
for each 𝑎 ∈ 𝒜: 𝛽𝑹𝐸𝑎 = 𝛽𝑚𝑹∗

𝑎 .

Proof. First observe that ∀∅ ⊂ 𝐴 ⊆ 𝒜, 𝛽𝑹𝐴
𝑒𝑎 equals

2(𝑚 − |𝐴|) if 𝑎 ∈ 𝐴 and −2|𝐴| if 𝑎 ∉ 𝐴. Write
𝛽𝑎 instead of 𝛽𝑹∗

𝑎 . Now 𝛽𝑹𝐸𝑎𝑖 = ∑𝑖−1
𝑗=1

𝛽𝑎𝑗 −𝛽𝑎𝑗+1
2 (−2𝑗) +

∑𝑚−1
𝑗=𝑖

𝛽𝑎𝑗 −𝛽𝑎𝑗+1
2 2(𝑚 − 𝑗) = ∑𝑚−1

𝑗=1 (𝛽𝑎𝑗
− 𝛽𝑎𝑗+1

)(−𝑗) +
∑𝑚−1

𝑗=𝑖 (𝛽𝑎𝑗
− 𝛽𝑎𝑗+1

)𝑚 = (∑𝑚−1
𝑗=1 −𝛽𝑎𝑗

) + (𝑚 − 1)𝛽𝑎𝑚
+ 𝑚𝛽𝑎𝑖

−
𝑚𝛽𝑎𝑚

= (∑𝑚
𝑗=1 −𝛽𝑎𝑗

) + 𝑚𝛽𝑎𝑖
. The claim now follows from

∑𝑎∈𝒜 𝛽𝑎 = 0.

Thus, 𝑹𝐸 and 𝑚𝑹∗ have the same Borda winners.2 We
now have to define 𝑹′. Recall that we want 𝑹′ and 𝑟𝑚𝑹∗ to
have equal weighted majority graphs for some 𝑟. Thus, our
objective is to obtain 𝛿𝑹′ = 𝛿𝑟𝑚𝑹∗ . Assume we can find a set
of 𝑚-cycles 𝒮 and rationals ⟨𝑞𝑆, 𝑆 ∈ 𝒮⟩ that solve the linear
system of equations 𝛿𝑚𝑹∗ = 𝛿𝑹𝐸 + ∑𝑆∈𝒮 𝑞𝑆𝛿𝑹𝑆

𝑐 . (We will
shortly define 𝒮 and prove that this system always admits
a solution.) Because 𝛿𝑹𝑆

𝑐 = −𝛿𝑹−𝑆
𝑐 , where −𝑆 denotes the

inverse cycle of 𝑆, we can then choose coefficients 𝑞𝑆 that
are all non-negative. Then, it remains only to define 𝑟 as
the smallest strictly positive integer such that { 𝑟𝑞𝑆, 𝑆 ∈ 𝒮 }
are all natural numbers, and to define 𝑹𝐶 = ⨁𝑆 𝑟𝑞𝑆𝑹𝑆

𝑐 .
Indeed, 𝑹′ = 𝑟𝑹𝐸 ⊕ 𝑹𝐶 then has the same winners as 𝑹𝐸
(hence, the same as 𝑹∗), and 𝛿𝑟𝑚𝑹∗ = 𝛿𝑹′ . (The comment
made in Footnote 2 applies here as well.)

It remains to show that the system above can be solved.
Indeed, even considering all (𝑚 − 1)! 𝑚-cycles as the set 𝒮,
the claim that such a system can always be solved requires a
proof. Furthermore, our proof permits to use a quadratic—
instead of a factorial—number of unknowns, as we define
precisely which cycles 𝒮 must contain.

Lemma 2. There exists a set of 𝑚-cycles 𝒮 such that, for
any two profiles 𝑹∗, 𝑹𝐸 satisfying 𝛽𝑚𝑹∗ = 𝛽𝑹𝐸 , there exist
rationals 𝑞𝑆 with ∑𝑆∈𝒮 𝑞𝑆𝛿𝑹𝑆

𝑐 = 𝛿𝑚𝑹∗ − 𝛿𝑹𝐸 .

In order to prove Lemma 2, we will first define a beta trans-
formation ̂𝛽, a linear transformation from 𝛿 to 𝛽 . We
will then show that 𝛿𝑚𝑹∗ − 𝛿𝑹𝐸 belongs to its kernel 𝒦( ̂𝛽)
(Lemma 3). Next, we will define 𝒮 and show that we can
find rationals 𝑞𝑆 with ∑𝑆∈𝒮 𝑞𝑆𝛿𝑹𝑆

𝑐 = 𝛿, for any delta vector
𝛿 ∈ 𝒦( ̂𝛽). Equivalently, defining 𝜌 = { 𝛿𝑹𝑆

𝑐 , 𝑆 ∈ 𝒮 }, we will
show that 𝜌 spans 𝒦( ̂𝛽) (Lemma 4). In order to do this, ob-
serving that 𝜌 ⊆ 𝒦( ̂𝛽), we will show that dim 𝒦( ̂𝛽) = dim 𝜌,
or equivalently, that 𝜌 has dim 𝒦( ̂𝛽) independent vectors.

Define the beta transformation ̂𝛽(𝛿) of a delta vector 𝛿
as the following beta vector: ̂𝛽(𝛿)𝑎 = ∑𝑏∈𝒜∖{ 𝑎 } 𝛿𝑎𝑏. Let
𝒦( ̂𝛽) denote the kernel of the beta transformation, the vec-
tor space of vectors 𝛿 such that ̂𝛽(𝛿) = 𝟎. Because ̂𝛽 is a
surjective linear transformation from 𝛿 of dimension (𝑚2 ) to
𝛽 of dimension 𝑚 − 1, dim 𝒦( ̂𝛽) = (𝑚2 ) − (𝑚 − 1).

Lemma 3 (Young, 1974). For any two profiles 𝑹∗, 𝑹𝐸
satisfying 𝛽𝑚𝑹∗ = 𝛽𝑹𝐸 , 𝛿𝑚𝑹∗ − 𝛿𝑹𝐸 ∈ 𝒦( ̂𝛽).

Proof. Because ̂𝛽 is linear and for any 𝑹, 𝛽𝑹 = ̂𝛽(𝛿𝑹),
we get ̂𝛽(𝛿𝑚𝑹∗ − 𝛿𝑹𝐸 ) = 𝛽𝑚𝑹∗ − 𝛽𝑹𝐸 . By the hypothesis of
this lemma, this equals zero. Thus, 𝛿𝑚𝑹∗ −𝛿𝑹𝐸 ∈ 𝒦( ̂𝛽).
2If 𝑹𝐸 or 𝑹𝐶 are null profiles, then the Borda winners for
these profiles are undefined. We describe here our algo-
rithm assuming these profiles to be non-null. The reader
will easily find out which modifications are required in those
simpler cases.
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𝑆𝑎𝑏 𝑆𝑎𝑐 𝑆𝑏𝑐

〈𝑎, 〈𝑏, 〈𝑏,
𝑏, 𝑎, 𝑐,
𝑐, 𝑐, 𝑎,
𝑑, 𝑑, 𝑑,
𝑎〉 𝑏〉 𝑏〉

𝒮

𝑀 𝛿𝑹𝑆𝑎𝑏
𝑐 𝛿𝑹𝑆𝑎𝑐

𝑐 𝛿𝑹𝑆𝑏𝑐
𝑐

𝑎𝑏 2 −2 0
𝑎𝑐 0 2 −2
𝑎𝑑 −2 0 2
𝑏𝑐 2 0 2
𝑏𝑑 0 −2 −2
𝑐𝑑 2 2 0

𝑇 𝑎𝑏 𝑎𝑐 𝑎𝑑 𝑏𝑐 𝑏𝑑 𝑐𝑑
𝑎𝑏 1 0 −1 0 1 0
𝑎𝑐 0 1 −1 0 0 1
𝑏𝑐 0 0 0 1 −1 1

𝑇 𝑀 𝑘𝑎𝑏 𝑘𝑎𝑐 𝑘𝑏𝑐

𝑎𝑏 4 −4 −4
𝑎𝑐 4 4 −4
𝑏𝑐 4 4 4

Figure 4: Illustrations for Lemma 2, with 𝒜 =
{ 𝑎, 𝑏, 𝑐, 𝑑 }. The set 𝒮 (up, right) defines the delta
vectors in 𝜌 forming the columns of the matrix 𝑀
(middle, right), which get transformed by 𝑇 (mid-
dle, left), obtaining 𝑇 𝛿𝑹𝑆𝑡𝑢

𝑐 = 𝑘𝑡𝑢.

Lemma 4. There exists a set of 𝑚-cycles 𝒮 such that 𝜌 =
{ 𝛿𝑹𝑆

𝑐 , 𝑆 ∈ 𝒮 } spans 𝒦( ̂𝛽).
Proof. Let 𝑧 denote the least alternative in ≻. For

(𝑡, 𝑢) ∈ ≻|𝒜∖{ 𝑧 }, define 𝑆𝑡𝑢 as the 𝑚-cycle constituted by
all alternatives that are in between 𝑡 and 𝑢 in ≻ (in the
order they come in ≻), followed by 𝑡, followed by 𝑢, fol-
lowed by all alternatives that come after 𝑢 in ≻ except 𝑧
(in the order they come in ≻), followed by all alternatives
that come before 𝑡 (in the reverse order of the order they
come in ≻), followed by 𝑧. Let 𝒮 be the set of 𝑚-cycles
{𝑆𝑡𝑢, (𝑡, 𝑢) ∈ ≻|𝒜∖{ 𝑧 }} (Figure 4, top right).

Let 𝜌 denote the set of vectors { 𝛿𝑹𝑆
𝑐 , 𝑆 ∈ 𝒮 } (Figure 4,

middle right). Let us show that 𝜌 spans 𝒦( ̂𝛽). We leave it
to the reader to check that 𝜌 ⊆ 𝒦( ̂𝛽). It remains to show
that 𝜌 is constituted of (𝑚2 ) − (𝑚 − 1) = (𝑚−12 ) independent
vectors. We do so by transforming each of the (𝑚−12 ) vectors
in 𝜌 using linear combinations of their coordinates. Their
independence will then be visible from their simple format.
This is equivalent to defining a linear transform 𝑇 , defining
a matrix 𝑀 constituted by the vectors 𝛿 ∈ 𝜌 as column
vectors, and showing that 𝑇 𝑀 is non-singular.

Let us transform 𝛿𝑡𝑢 = 𝛿𝑹𝑆𝑡𝑢
𝑐 ∈ 𝜌 into a new vector 𝑘𝑡𝑢,

of size (𝑚−12 ), with coordinates indexed using the pairs in
≻|𝒜∖{ 𝑧 }. For each pair (𝑣, 𝑤) ∈ ≻|𝒜∖{ 𝑧 }, define 𝑘𝑡𝑢

𝑣𝑤 = −𝛿𝑡𝑢
𝑣𝑧 +

𝛿𝑡𝑢
𝑣𝑤 +𝛿𝑡𝑢

𝑤𝑧. Equivalently, define a (𝑚−12 )×(𝑚2 ) matrix 𝑇 whose
line 𝑇𝑣𝑤, 𝑣𝑤 ∈ ≻|𝒜∖{ 𝑧 }, is defined as 𝑇 𝑣𝑧

𝑣𝑤 = −1, 𝑇 𝑣𝑤
𝑣𝑤 =

𝑇 𝑤𝑧
𝑣𝑤 = 1, the rest of the line being zero (Figure 4, middle

left). This yields 𝑇𝑣𝑤𝛿𝑡𝑢 = 𝑘𝑡𝑢
𝑣𝑤.

𝑹⟨𝑎,𝑏,𝑐,𝑦,𝑑,𝑒,𝑥,𝑎⟩
𝑐 =

𝑎 𝑏 𝑐 𝑦 𝑑 𝑒 𝑥
𝑏 𝑐 𝑦 𝑑 𝑒 𝑥 𝑎
𝑐 𝑦 𝑑 𝑒 𝑥 𝑎 𝑏
𝑦 𝑑 𝑒 𝑥 𝑎 𝑏 𝑐
𝑑 𝑒 𝑥 𝑎 𝑏 𝑐 𝑦
𝑒 𝑥 𝑎 𝑏 𝑐 𝑦 𝑑
𝑥 𝑎 𝑏 𝑐 𝑦 𝑑 𝑒

.

Figure 5: Illustration of the computation of the delta
score corresponding to an 𝑚-cycle, here with 𝑑 = 4
the distance between 𝑥 and 𝑦 in the cycle.

Observe that 𝛿𝑡𝑢
𝑥𝑦 = 𝑚 − 2𝑑𝑥𝑦 for any 𝑥𝑦 ∈ ≻|𝒜∖{ 𝑧 }, where

𝑑𝑥𝑦 is the number of alternatives in between 𝑥 and 𝑦 in the
cycle 𝑆𝑡𝑢, counting 𝑦 but not 𝑥. To see this, recall 𝛿𝑡𝑢

𝑥𝑦 is
the signed number of victories of 𝑥 against 𝑦 in the profile
𝑹𝑆𝑡𝑢

𝑐 , composed of all preference orders obtained by start-
ing the cycle 𝑆𝑡𝑢 at different positions. Assume the distance
between 𝑥 and 𝑦 is 𝑑 in 𝑆𝑡𝑢. See Figure 5. Consider first
the preference order starting with the (𝑑 − 1) alternatives in
between 𝑥 and 𝑦, then 𝑦, then the remaining 𝑚 − 𝑑 alterna-
tives in 𝒜 ending with 𝑥. In this preference order, 𝑦 is better
than 𝑥, and this will be the case for the preference orders
of the first 𝑑 voters where we gradually shift (cyclically) 𝑦
towards the first position in the ranking. The next shift will
make 𝑦 beaten by 𝑥, and it will remain so for the rest of the
voters. Thus, 𝑥 has won 𝑚−𝑑 times and 𝑦 has won 𝑑 times.

We obtain 𝑘𝑡𝑢
𝑣𝑤 = 3𝑚 − 2(𝑑𝑧𝑣 + 𝑑𝑣𝑤 + 𝑑𝑤𝑧). Now only

two cases need to be distinguished, thanks to the order of
the alternatives in the cycle 𝑆𝑡𝑢 compared to the ordering
≻. Consider as an example ≻= (𝑎, 𝑏, 𝑐, 𝑡, 𝑑, 𝑒, 𝑓, 𝑢, 𝑔, ℎ, 𝑧),
𝑆𝑡𝑢 = ⟨𝑑, 𝑒, 𝑓, 𝑡, 𝑢, 𝑔, ℎ, 𝑐, 𝑏, 𝑎, 𝑧, 𝑑⟩. (The reasoning which fol-
lows is general though.) Because (𝑡, 𝑢) and (𝑣, 𝑤) are taken
in ≻|𝒜∖{ 𝑧 }, we know that in ≻, 𝑡 comes before 𝑢 and 𝑣
comes before 𝑤, and all are different from 𝑧. Consider any
𝑣 ∈ 𝒜∖{ 𝑧 }. Assume 𝑡 ≻ 𝑣. Then, 𝑤 being in between 𝑣 and
𝑧 in ≻ implies that 𝑤 is in between 𝑣 and 𝑧 in 𝑆𝑡𝑢. Similarly,
𝑤 is in between 𝑣 and 𝑧 in 𝑆𝑡𝑢 whenever (𝑡 = 𝑣 ∧ 𝑢 = 𝑤)
or (𝑡 = 𝑣 ∧ 𝑢 ≻ 𝑤). It is easy to check that in all other
cases, 𝑣 is in between 𝑤 and 𝑧 in 𝑆𝑡𝑢. Finally, observe that
𝑑𝑧𝑣 + 𝑑𝑣𝑤 + 𝑑𝑤𝑧 equals 𝑚 when 𝑤 is in between 𝑣 and 𝑧 in
𝑆𝑡𝑢 and equals 2𝑚 otherwise.

We conclude that 𝑘𝑡𝑢
𝑣𝑤 = 𝑚 whenever 𝑡 ≻ 𝑣 ∨ (𝑡 = 𝑣 ∧ 𝑢 =

𝑤) ∨ (𝑡 = 𝑣 ∧ 𝑢 ≻ 𝑤), and 𝑘𝑡𝑢
𝑣𝑤 = −𝑚 in the remaining

cases. Hence, 𝑇 𝑀 (Figure 4, bottom) has its entries on the
diagonal and below equal to 𝑚 and the rest equal to −𝑚,
which shows it is nonsingular, or equivalently, that {𝑘𝑡𝑢, 𝑡𝑢 ∈
≻|𝒜∖{ 𝑧 }} is a set of (𝑚−12 ) independent vectors.

Once suitable values for 𝑟, 𝑹𝐸 and 𝑹𝐶 have been found, it
suffices to present a proof following the structure presented
in Section 3.2 (or simple modifications thereof, in case some
of the profiles found are null profiles). This terminates the
proof of correctness of our Borda-expl algorithm.

Theorem 2 (Borda justification). For any given
profile, Borda-expl computes a proof justifying the outcome
of the Borda rule in terms of the ℒ-axiomatisation 𝐽𝐵.

Proof. This is a consequence of Lemma 2, which itself
follows from Lemma 3 and Lemma 4.
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3.4 Comparison with Young’s Axiomatisation
This instantiation of our framework is based on the ax-

iomatisation of the Borda rule given by Young [21]. Young
used the axioms of neutrality, faithfulness, cancellation, and
reinforcement. We chose a slightly different set of axioms to
make the argument more concrete and the proofs built by
our algorithm shorter. In particular, we included elemen-
tary and cyclic profiles in the axioms themselves (rather
than make them follow from the axioms of Young).

Young’s work also inspired our approach to proving cor-
rectness of our algorithm. Lemmas 1 and 3, the idea of
using the spaces 𝛿 , 𝛽 and the transformation ̂𝛽 are due
to him. The novelty in our approach is that our vectors can
be defined from a restricted set of cyclic profiles, whereas
Young uses a more general construction. Thus, the results
specific to the space of cyclic profiles (the construction and
exploitation of 𝒮 as done in Lemma 4) are new.

4. BEYOND OUTCOME JUSTIFICATION
In this section we briefly explore additional opportunities

for putting our general framework to use and sketch how it
may be applied to argue about voting rules in other ways
that simply justifying a given outcome.

4.1 Types of Arguments
Proofs of claims may be used in various ways to argue in

favour of one voting rule or to attack another rule. There
are clear links with argumentation theory [3], which could
be further developed to arrive at a fully fledged framework
for arguing about voting rules. Here we only define a few
categories of arguments we can create in our framework. In
the context of a voting rule 𝑓 , a proof for a claim [𝑹 ∈⟼ 𝛼],
saying that in profile 𝑹 the set of winners should be selected
from 𝛼, can constitute different types of arguments:

• a partial justification for 𝑓 when 𝑓(𝑹) ∈ 𝛼;
• a full justification for 𝑓 on 𝑹 when 𝛼 = { 𝑓(𝑹) };
• an attack against 𝑓 when 𝑓(𝑹) ∉ 𝛼.

An argument may belong to more than one of these cate-
gories, e.g., it may simultaneously be a justification for some
rule and an attack against some other rules.

An argument can also attack an ℒ-axiomatisation instead
of a specific voting rule. A system using an ℒ-axiomatisa-
tion 𝐽 could establish that 𝐽 ′ is incompatible with 𝐽 (mean-
ing that voting rules conforming to 𝐽 necessarily give differ-
ent results in some cases from rules conforming to 𝐽 ′) and,
assuming that the user will favour 𝐽 over 𝐽 ′ when realising
that they are incompatible, could thus argue by simply giv-
ing an example illustrating the incompatibility. It is then
up to that system to choose its example as wisely as pos-
sible. Formally, an attack against 𝐽 ′ by 𝐽 consists of two
proofs, one of [𝑹 ∈⟼ 𝛼] grounded in 𝐽 and one of [𝑹 ∈⟼ 𝛼′]
grounded in 𝐽 ′, for some profile 𝑹 and some sets 𝛼 and 𝛼′

with 𝛼 ∩ 𝛼′ = ∅. An attack against 𝐽 ′ is also an attack
against any rule 𝑓 ′ conforming to 𝐽 ′.

4.2 Attacking and Defending Borda
As an illustration, we present here, first, an argument

that could be given against Borda, namely, that it does not
satisfy the Condorcet property. We then also show how to
defend Borda against this argument by producing a counter-
argument to the Condorcet argument.

Consider 𝐽𝐶 = { Cond }, including only the ℒ-axiom say-
ing that, if there is a Condorcet winner, it must be returned
as the sole winner. Now take any profile with a Condorcet
winner where Borda does not select that Condorcet winner.
For example, take 𝒜 = { 𝑎, 𝑏, 𝑐 } and 𝑹 defined as follows:

𝑹 =
𝑏 𝑏 𝑎 𝑎 𝑎
𝑐 𝑐 𝑏 𝑏 𝑏
𝑎 𝑎 𝑐 𝑐 𝑐

.

Although 𝑎 is the Condorcet winner, Borda shamelessly
selects { 𝑏 }. Thus, an attack against Borda can be built
by putting forward the claim [𝑹 ↦ { 𝑎 }] and its (trivial)
proof grounded in 𝐽𝐶 , whilst observing that this contradicts
Borda’s choice.

As a defence, a system arguing for Borda may give a justi-
fication for choosing { 𝑏 } using its own ℒ-axiomatisation, by
giving an argument for [𝑹 ↦ { 𝑏 }] grounded in 𝐽𝐵 as com-
puted by Borda-expl. But this is unlikely to be convincing:
such an attack rather calls for a more specific response. The
system could also counter-attack by saying that we do not
want to follow Condorcet in general, by using Fishburn’s
argument. Define 𝐽 ′

𝐵 as the set of ℒ-axioms for Borda
described above, together with FvsC, the Fishburn-versus-
Condorcet ℒ-axiom (see Section 2.2). An attack against
𝐽𝐶 can now be produced by giving a proof grounded in 𝐽 ′

𝐵
for [𝑹𝐹 ↦ { 𝑎 }], together with a proof grounded in 𝐽𝐶 for
[𝑹𝐹 ↦ { 𝑤 }]. This shows the incompatibility between these
two ℒ-axiomatisations.

5. CONCLUSION AND RELATED WORK
We have developed a general logic-based framework for

representing arguments in favour of or against specific elec-
tion outcomes. While these arguments can be based on
general axioms familiar from social choice theory, when ac-
tually used, they apply to concrete instances of elections,
thereby making them understandable to non-experts. We
have also devised a practical algorithm for generating the
arguments required to justify the election outcome selected
by the Borda rule, for any given profile of preferences.

Related work has aimed at explaining or justifying recom-
mendations [4, 10, 11, 12] or outcomes of elections [15, 16].
However, these approaches are all based on specific ways of
justifying decisions and propose no general framework capa-
ble of integrating different kinds of arguments, including in
particular counter-arguments against their own claims.

Our work is also related to existing work on logic and
automated reasoning for social choice theory [5, 7, 17], aimed
at automatically deriving theorems in social choice theory.
However, to date work in that literature has not attempted
to tackle the problem of justifying election outcomes.
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