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ABSTRACT
Voting rules allow multiple agents to aggregate their pref-
erences in order to reach joint decisions. Perhaps one of
the most important desirable properties in this context is
Condorcet-consistency, which requires that a voting rule
should return an alternative that is preferred to any other
alternative by some majority of voters. Another desirable
property is participation, which requires that no voter should
be worse off by joining an electorate. A seminal result in so-
cial choice theory by Moulin [28] has shown that Condorcet-
consistency and participation are incompatible whenever
there are at least 4 alternatives and 25 voters. We lever-
age SAT solving to obtain an elegant human-readable proof
of Moulin’s result that requires only 12 voters. Moreover,
the SAT solver is able to construct a Condorcet-consistent
voting rule that satisfies participation as well as a number
of other desirable properties for up to 11 voters, proving
the optimality of the above bound. We also obtain tight
results for set-valued and probabilistic voting rules, which
complement and significantly improve existing theorems.

Keywords
Computer-aided theorem proving; social choice theory;
SAT; no-show paradox; participation; Condorcet

1. INTRODUCTION
Whenever a group of autonomous software agents or

robots needs to decide on a joint course of action in a fair
and satisfactory way, they need to aggregate their prefer-
ences. A common way to achieve this is to use voting rules.
Voting rules are studied in detail in social choice theory and
are coming under increasing scrutiny from computer scien-
tists who are interested in their computational properties or
want to utilize them in multiagent systems (see, e.g., [31, 9]).
In social choice theory, voting rules are usually compared

using desirable properties (so-called axioms) that they may
or may not satisfy. There are a number of well-known im-
possibility theorems—among which Arrow’s impossibility is
arguably the most famous—which state that certain axioms
are incompatible with each other. These results, which show
the non-existence of voting rules that satisfy a given set
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of axioms, are important because they clearly define the
boundary of what can be achieved at all. This applies to
the explicitly stated axioms as well as implicit ones such
as boundaries on the number of voters or alternatives. For
instance, if there are only two alternatives, Arrow’s theo-
rem does not apply and there are many voting rules, in-
cluding majority rule, that satisfy the conditions used in
Arrow’s theorem. One impossibility that requires unusu-
ally high bounds on the number of voters and alternatives is
Moulin’s no-show paradox [28], which states that the axioms
of Condorcet-consistency and participation are incompati-
ble whenever there are at least 4 alternatives and 25 voters.
Moulin proves that the bound on the number of alternatives
is tight by showing that the maximin voting rule (with lexi-
cographic tie-breaking) satisfies the desired properties when
there are at most 3 alternatives. The tightness of the more
restrictive condition on the number of voters was left open,
however. The goal of this paper is to give tight bounds
on the number of voters required for Moulin’s theorem and
related theorems that appear in the literature. To achieve
this, we encode these problems as formulas in propositional
logic and then use SAT solvers to decide their satisfiabil-
ity and extract minimal unsatisfiable sets (MUSes) in the
case of unsatisfiability. This approach is based on previous
work by Tang and Lin [35], Geist and Endriss [20], Brandt
and Geist [8], and Brandl et al. [4]. However, it turned
out that a straightforward application of this methodology
is insufficient to deal with the magnitude of the problems
we considered. Several novel techniques were necessary to
achieve our results. In particular, we extracted knowledge
from computer-generated proofs of weaker statements and
then used this information to guide the search for proofs of
more general statements.
As mentioned above, Moulin’s theorem uses the axioms

of Condorcet-consistency and participation. Condorcet-
consistency goes back to one of the most influential notions
in social choice theory, namely that of a Condorcet winner.
A Condorcet winner is an alternative that is preferred to
any other alternative by a majority of voters. The Mar-
quis de Condorcet, after whom this concept is named, ar-
gued that, whenever a Condorcet winner exists, it should be
elected [15]. A voting rule satisfying this condition is called
Condorcet-consistent. Apart from the intuitive appeal of
this condition, Condorcet-consistent rules are more robust
to changes in the of feasible alternatives and less suscepti-
ble to strategic manipulation than other voting rules (such
as Borda’s rule) (see, e.g., [11, 14]). While the desirabil-
ity of Condorcet-consistency—as that of any other axiom—
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has been subject to criticism, many scholars agree that it
is very appealing—if not indispensable—and a large part of
the social choice literature deals exclusively with Condorcet-
consistent voting rules (e.g., [17, 25, 9]). Participation was
first considered by Fishburn and Brams [18] and requires
that no voter should be worse off by joining an electorate,
or—alternatively—that no voter should benefit by abstain-
ing from an election. The desirability of this axiom in any
context with voluntary participation is evident. All the more
surprisingly, Fishburn and Brams have shown that single
transferable vote (STV), a common voting rule, violates par-
ticipation and referred to this phenomenon as the no-show
paradox. Moulin [28], perhaps even more startlingly, proved
that no Condorcet-consistent voting rule satisfies participa-
tion when there are at least 25 voters.
We leverage SAT solving to obtain an elegant human-

readable proof of Moulin’s result that requires only 12 vot-
ers. While computer-aided solving techniques allow us to
tackle difficult combinatorial problems, they usually do not
provide additional insight into these problems. Somewhat
surprisingly, the computer-aided proofs we found possess a
certain kind of symmetry that has not been exploited in pre-
vious proofs. Moreover, the SAT solver is able to construct
a Condorcet-consistent voting rule that satisfies participa-
tion as well as a number of other desirable properties for
up to 11 voters, proving the optimality of the above bound.
This computer-generated voting rule is compatible with the
maximin voting rule in 99.8% of all cases and, in contrast
to maximin, only selects alternatives from the top cycle. As
a practical consequence of our theorem, strategic abstention
need not be a concern for Condorcet-consistent voting rules
when there are at most 4 alternatives and 11 voters, for
instance when voting in a committee. We also use our tech-
niques to provide optimal bounds for related results about
set-valued and probabilistic voting rules [22, 36]. In partic-
ular, we give a tight bound of 17 voters for the optimistic
preference extension, 14 voters for the pessimistic extension,
and 12 voters for the stochastic dominance preference exten-
sion. These results are substantial improvements of previ-
ous results. For example, the previous statement for the
pessimistic extension requires an additional axiom, at least
5 alternatives, and at least 971 voters [22]. Our results are
summarized in Table 1.

2. RELATED WORK
The no-show paradox was first observed by Fishburn and

Brams [18] for the STV voting rule. Ray [30] and Lep-
elley and Merlin [26] investigate how frequently this phe-
nomenon occurs in practice. The main theorem addressed
in this paper is due to Moulin [28] and requires at least
25 voters. This bound was recently brought down to 21
voters by Kardel [23]. Simplified proofs of Moulin’s the-
orem are given by Schulze [33] and Smith [34]. Holzman
[21] and Sanver and Zwicker [32] strengthen Moulin’s theo-
rem by weakening Condorcet-consistency and participation,
respectively. Jimeno et al. [22] prove variants of Moulin’s
theorem for set-valued voting rules based on the optimistic
and the pessimistic preference extension. Pérez [29] defines
a weaker notion of participation in the context of set-valued
voting rules and shows that all common Condorcet exten-
sions except the maximin rule and Young’s rule violate this
property. Pérez notes that “a practical question, which has
not been dealt with here, refers to the number of candidates

and voters that are necessary to invoke the studied para-
doxes” ([29], p. 614).
When assuming that voters have incomplete prefer-

ences over sets or lotteries, participation and Condorcet-
consistency can be satisfies simultaneously and positive re-
sults for common Condorcet-consistent voting rules have
been obtained by Brandt [7] and Brandl et al. [4, 5, 6]. Ab-
stention in slightly different contexts than the one studied
in this paper recently caught the attention of computer sci-
entists working on voting equilibria and campaigning [16, 1].
The computer-aided techniques in this paper are inspired

by Tang and Lin [35], who reduced well-known impossi-
bility results from social choice theory—such as Arrow’s
theorem—to finite instances, which can then be checked by
a SAT solver. This methodology has been extended and
applied to new problems by Geist and Endriss [20], Brandt
and Geist [8], and Brandl et al. [4]. The results obtained
by computer-aided theorem proving have already found at-
tention in the social choice community [12]. More generally,
SAT solvers have also proven to be quite effective for other
problems in economics. A prominent example is the ongoing
work by Fréchette et al. [19] in which SAT solvers are used
for the development and execution of the FCC’s upcoming
reverse spectrum auction. In some respects, our approach
also bears some similarities to automated mechanism design
(see, e.g., [13]), where desirable properties are encoded and
mechanisms are computed to fit specific problem instances.

3. PRELIMINARIES
Let A be a set of m alternatives and N be a set of n

voters. Whether no-show paradoxes occur depends on the
exact values of m and n. By E(N ) := 2N \{∅} we denote the
set of electorates, i.e., non-empty subsets of N . For many
of our results, we will take A = {a, b, c, d}, and we use the
labels x, y for arbitrary elements of A.
A (strict) preference relation is a complete, antisymmet-

ric, and transitive binary relation on A. The preference re-
lation of voter i is denoted by <i. The set of all preference
relations over A is denoted by R. For brevity, we denote by
abcd the preference relation a <i b <i c <i d, eliding the
identity of voter i, and similarly for other preferences.
A preference profile R is a function from an electorate

N ∈ E(N ) to the set of preference relations R. The set of
all preference profiles is thus given by RE(N ). For the sake
of adding and deleting voters, we define for any preference
profile R ∈ RN with (i,<i) ∈ R, and j ∈ N \N , <j ∈ R

R− i := R \ {(i,<i)}, R + (j,<j) := R ∪ {(j,<j)}.

If the identity of the voter is clear or irrelevant we some-
times, in slight abuse of notation, refer to R− i by R−<i,
and write R +<j instead of R + (j,<j). If k voters with the
same preferences <i are to be added or removed, we write
R + k ·<i and R− k ·<i, respectively.
The majority margin of R is the map gR : A × A → Z

with gR(x, y) = |{i ∈ N | x <i y}| − |{i ∈ N | y <i x}|. The
majority margin can be viewed as the adjacency matrix of
a weighted tournament TR. We say that a preference profile
R induces the weighted tournament TR.
An alternative x is called Condorcet winner if it wins

against any other alternative in a majority contest, i.e., if
gR(x, y) > 0 for all y ∈ A \ {x}. Conversely, an alternative
x is a Condorcet loser if gR(x, y) < 0 for all y ∈ A \ {x}.
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n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Condorcet Thm 4 〉 〈 Thm 3 〈 [23] 〈 [28]
Maximin Thm 1 〉 〈 Thm 1
Kemeny Thm 2 〉 〈 Thm 2

optimistic Thm 5 〉 〈 Thm 6
pessimistic Thm 7 〉 〈 Thm 7

strong SD Thm 9 〉 〈 Thm 9

Possibility Impossibility

Table 1: Bounds on the number of voters for which Condorcet extensions can satisfy participation. Green
cells indicate the existence of a Condorcet extension satisfying participation (for m = 4). Red cells indicate
that no Condorcet extension satisfies participation (for m > 4).

Our central object of study are voting rules, i.e., functions
that assigns every preference profile a socially preferred al-
ternative. Thus, a voting rule is a function f : RE(N ) → A.
In this paper, we study voting rules that satisfy

Condorcet-consistency and participation.

Definition 1. A Condorcet extension is a voting rule
that selects the Condorcet winner whenever it exists. Thus,
f is a Condorcet extension if for every preference profile R
that admits a Condorcet winner x, we have f(R) = x. We
say that f is Condorcet-consistent.

Definition 2. A voting rule f satisfies participation if
all voters always weakly prefer voting to not voting, i.e., if
f(R) <i f(R− i) for all R ∈ RN and i ∈ N with N ∈ E(N ).

Equivalently, participation requires that for all preference
profiles R not including voter j, we have f(R+<j) <j f(R).

4. MAXIMIN AND KEMENY’S RULE
The proofs of both positive and negative results to come

were obtained through automated techniques that we de-
scribe in Section 5. To become familiar with the kind of
arguments produced in this way, we will now study a more
restricted setting which is of independent interest.
Specifically, let us consider voting rules that select winners

in accordance with the popular maximin and Kemeny rules.
For a preference profile R, an alternative x is amaximin win-
ner if it maximizes miny∈A\{x} gR(x, y); thus, x never gets
defeated too badly in pairwise comparisons. An alternative
x is a Kemeny winner if it is ranked first in some Kemeny
ranking. A Kemeny ranking is a preference relation <K ∈ R
maximizing agreement with voters’ individual preferences,
i.e., it maximizes the quantity

∑
i∈N |<K ∩<i|.

We call a voting rule a maximin extension (resp. Kemeny
extension) if it always selects a maximin winner (resp. Ke-
meny winner). Since a Condorcet winner, if it exists, is
always the unique maximin and Kemeny winner of a prefer-
ence profile, any such voting rule is also a Condorcet exten-
sion. We can now prove an easy version of Moulin’s theorem
for these more restricted voting rules.
To this end, we first prove a useful lemma allowing us to

extend impossibility proofs for 4 alternatives to also apply if
there are more than 4 alternatives. Its proof gives a first hint
on how Condorcet-consistency and participation interact.

Lemma 1. Suppose that f is a Condorcet extension satis-
fying participation. Let R be a preference profile and B ( A

a set of bad alternatives such that each voter ranks every
x ∈ B below every y ∈ A \B. Then f(R) /∈ B.

Proof. By induction on the number of voters |N | in R.
If R consists of a single voter i, then, since f is a Condorcet
extension, f(R) must return i’s top choice, which is not bad.
If R consists of at least 2 voters, and i ∈ N , then by partic-
ipation f(R) <i f(R − i). If f(R) were bad, then so would
be f(R− i), contradicting the inductive hypothesis.

The following computer-aided proofs, just like the more
complicated proofs to follow, can be understood solely by
carefully examining the corresponding ‘proof diagram’. An
arrow such as R R′+ abcd indicates that profile R′ is
obtained from R by adding a voter abcd, and is read as “if
one of the bold green alternatives (here ab) is selected at
R, then one of them is selected at R′” (by participation).
A circled node a indicates a profile admitting Condorcet
winner a, although in the proofs of Theorems 1 and 2, we use
it to refer to maximin and Kemeny winners, respectively.

Theorem 1. There is no maximin extension that satis-
fies participation for m > 4 and n > 7. (For m = 4 and
n 6 6, such a maximin extension exists.)

Proof. Let f be a maximin extension which satisfies par-
ticipation. Consider the following 6-voter profile R:

1 2 2 1
a b c d
b d a c
d c b a
c a d b

R
c

+ abcd

b

+ dcba

Suppose f(R) ∈ {a, b}. Adding an abcd vote leads to a
weighted tournament in which alternative c is the unique
maximin winner. But this contradicts participation since
the added voter would benefit from abstaining the election.
Symmetrically, if f(R) ∈ {c, d}, then adding a dcba vote

leads to a weighted tournament in which b is the maximin
winner, again contradicting participation. The symmetry of
the argument is due to an automorphism of R, namely the
relabelling of alternatives according to abcd 7→ dcba.
If m > 4, we add new bad alternatives x1, x2, . . . , xm−4 to

the bottom of R and of the additional voters. By Lemma 1,
f chooses from {a, b, c, d} at each step, completing the proof.
The existence result for n 6 6 is established by the meth-

ods described in Section 5.
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For 3 alternatives, Moulin [28] proved that the voting rule
that chooses the lexicographically first maximin winner sat-
isfies participation. Theorem 1 shows that this is not the
case for 4 alternatives, even if there are only 7 voters and
no matter how we pick among maximin winners.

Theorem 2. There is no Kemeny extension that satisfies
participation for m > 4 and n > 4. (For m = 4 and n 6 3,
such a Kemeny extension exists.)

Proof. Let f be a Kemeny extension which satisfies par-
ticipation. Consider the following 4-voter profile R:

1 1 1 1
a b c d
d a b c
c d a b
b c d a

R

a
− cbad

b

− dcba

c

− adcb d
− badc

Suppose f(R) = d. Then removing cbad from R yields
a weighted tournament in which a is the (unique) Kemeny
winner, which contradicts participation. Analogously, we
can exclude the other three possible outcomes for R by let-
ting a voter abstain, which always leads to a unique Kemeny
winner and a contradiction with participation. The argu-
ments are identical because R is completely symmetric in
the sense that for any pair of alternatives x and y, there is
an automorphism of R that maps x to y.
Just like for Theorem 1, if m > 4, we add new bad al-

ternatives x1, x2, . . . , xm−4 to the bottom of R and of the
additional voters. By Lemma 1, f chooses from {a, b, c, d}
at each step, completing the proof.

One remarkable and unexpected aspect of the computer-
aided proofs above is that their simplicity is due to automor-
phisms of the underlying preference profiles. Similar auto-
morphisms will also be used in the proofs of the stronger
theorems in Sections 6, 7, and 8. We emphasize that these
symmetries are not hard-coded into our problem specifica-
tion and, to the best of our knowledge, have not been ex-
ploited in previous proofs of similar statements.

5. METHOD: SAT SOLVING FOR
COMPUTER-AIDED PROOFS

The bounds in this paper were obtained with the aid of
a computer. In this section, we describe the method that
we employed. The main tool in our approach is an encod-
ing of our problems into propositional logic. We then use
SAT solvers to decide whether (in a chosen setting) there
exists a Condorcet extension satisfying participation. If the
answer is yes, the solver returns an explicit such voting rule.
If the answer is no, we use a process called MUS extraction
to find a short certificate of this fact which can be trans-
lated into a human-readable proof. By successively proving
stronger theorems and using the insights obtained through
MUS extraction, we arrived at results as presented in their
full generality in this paper.

5.1 SAT Encoding
“For n voters and 4 alternatives, is there a voting rule f

that satisfies Condorcet-consistency and participation?”

A natural encoding of this question into propositional
logic proceeds like this: Generate all profiles over 4 alter-
natives with at most n voters. For each such profile R,
introduce 4 propositional variables xR,a, xR,b, xR,c, xR,d,
where the intended meaning of xR,a is

xR,a is set true ⇐⇒ f(R) = a.

We then add clauses requiring that for each profile R, f(R)
takes exactly one value, and we add clauses requiring f to
be Condorcet-consistent and satisfy participation.
Sadly, the encoding sketched above is not tractable for

the values of n that we are interested in: the number of
variables and clauses used grows as Θ(24n), because there
are 4! = 24 possible preference relations over 4 alternatives
and thus 24n profiles with n voters. For n = 7, this leads to
more than 400 billion variables, and for n = 15 we exceed
1022 variables.
To escape this combinatorial explosion, we will temporar-

ily restrict our attention to pairwise voting rules. This
means that we assign an outcome alternative f(T ) to ev-
ery weighted tournament T . We then define a voting rule
that assigns the outcome f(TR) to each preference profile R,
where TR is the weighted tournament induced by R.
The number of tournaments induced by profiles with n

voters grows much slower than the number of profiles—our
computer enumeration suggests a growth of order about
1.5n. This much more manageable (yet still exponential)
growth allows us to consider problem instances up to n ≈ 16
which turns out to be just enough.
Other than referring to (weighted) tournaments instead

of profiles, our encoding into logic now proceeds exactly like
before. For each tournament T , we introduce the variables
xT,a, xT,b, xT,c, xT,d and define the formulas

non-emptyT := xT,a ∨ xT,b ∨ xT,c ∨ xT,d

mutexT :=
∧
x6=y

(¬xT,x ∨ ¬xT,y)

With our intended interpretation of the variables xT,x, all
models of

∧
T

non-emptyT ∧mutexT are functions from tour-
naments into {a, b, c, d}. (The word mutex abbreviates ‘mu-
tual exclusion’ and corresponds to the voting rule selecting
a unique winner.)
Since we are interested in voting rules that satisfy partici-

pation, we also need to encode this property. To this end, let
T = TR be a tournament induced by R and let < be a pref-
erence relation. Define T + < := TR+<. (The tournament
T + < is independent of the choice of R.) We define

participationT,< :=
∧

x

(
xT,x →

∨
y<x

xT+<,y

)
.

Requiring f to be Condorcet-consistent is straightforward:
if tournament T admits b as the Condorcet winner, we add

condorcetT := ¬xT,a ∧ xT,b ∧ ¬xT,c ∧ ¬xT,d,

and we add similar formulas for each tournament that ad-
mits a Condorcet winner. Then the models of the conjunc-
tion of all the non-empty, mutex, participation, and condorcet
formulas are precisely the pairwise voting rules satisfying
Condorcet-consistency and participation.
By adapting the condorcet formulas, we can impose more

stringent conditions on f—this is how our results for max-
imin and Kemeny extensions are obtained. We can also
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use this to exclude Pareto-dominated alternatives, and to
require f to always pick from the top cycle.
For some purposes it will be useful not to include the

mutex clauses in our final formula. Models of this formula
then correspond to set-valued voting rules that satisfy par-
ticipation interpreted according to the optimistic preference
extension. See Section 7 for results in this setting.

5.2 SAT Solving and MUS Extraction
The formulas we have obtained above are all given in con-

junctive normal form (CNF), and thus can be evaluated
without further transformations by any off-the-shelf SAT
solver. In order to physically produce a CNF formula as
described, we employ a straightforward Python script that
performs a breadth-first search to discover all weighted tour-
naments with up to n voters (see Algorithm 1 for a schematic
overview of the program). The script outputs a CNF for-
mula in the standard DIMACS format, and also outputs
a file that, for each variable xT,x, records the tournament
T and alternative x it denotes. This is necessary because
the DIMACS format uses uninformative variable descriptors
(consecutive integers) and memorizing variable meanings al-
lows us to interpret the output of the SAT solver.

Algorithm 1 Generate formula for up to n voters
T0 ← {weighted tournament on {a, b, c, d} with

all edges having weight 0}.
for k = 1, . . . , n do

Tk ← ∅
for T ∈ Tk−1 do

for < ∈ R do
Calculate T ′ := T + <
Add T ′ to Tk
Write non-emptyT ′ , mutexT ′ , condorcetT ′

Write participationT,<

As an example, the output formula for n = 15 in DI-
MACS format has a size of about 7 GB and uses 50 million
variables and 2 billion clauses, taking 6.5 hours to write.
Plingeling [3], a popular SAT solver that we used for all re-
sults in this paper, solves this formula in 50 minutes of wall
clock time, half of which is spent parsing the formula.
In case a given instance is satisfiable, the solver returns

a satisfying assignment, giving us an existence proof and a
concrete example for a voting rule satisfying participation
(and any further requirements imposed). In case a given
instance in unsatisfiable, we would like to have short certifi-
cate of this fact as well. One possibility for this is having
the SAT solver output a resolution proof (in DRUP format,
say). This yields a machine-checkable proof, but has two
major drawbacks: the generated proofs can be uncomfort-
ably large [24], and they do not give human-readable insights
about why the formula is unsatisfiable.
We handle this problem by computing a minimal unsat-

isfiable subset (MUS) of the unsatisfiable CNF formula. An
MUS is a subset of the clauses of the original formula which
itself is unsatisfiable, and is minimally so: removing any
clause from it yields a satisfiable formula. We used the tools
MUSer2 [2] and MARCO [27] to extract MUSes. If an unsat-
isfiable formula admits a very small MUS, it is often possible
to obtain a human-readable proof of unsatisfiability from it
[8, 4].

Note that for purposes of extracting human-readable
proofs, it is desirable for the MUS to be as small as possible,
and also to refer to as few different tournaments as possible.
The first issue can be addressed by running the MUS ex-
tractor repeatedly, instructing it to order clauses randomly
(note that clause sets of different cardinalities can be mini-
mally unsatisfiable with respect to set inclusion); similarly,
we can use MARCO to enumerate all MUSes and look for
small ones. The second issue can be addressed by comput-
ing a group MUS : here, we partition the clauses of the CNF
formula into groups, and we are looking for a minimal set
of groups that together are unsatisfiable. In our case, the
clauses referring to a given tournament T form a group. In
practice, finding a group MUS first and then finding a stan-
dard (clause-level) MUS within the group MUS yielded sets
of size much smaller than MUSes returned without the in-
termediate group-step (often by a factor of 10).
To translate an MUS into a human-readable proof, we

created another program that visualized the MUS in a con-
venient form.1 Indeed, this program outputs the ‘proof di-
agrams’ like Figure 1 that appear throughout this paper
(though we re-typeset them). We think that interpreting
these diagrams is quite natural (and is perhaps even easier
than reading a textual translation). More importantly, the
automatically produced graphs allowed us to quickly judge
the quality of an extracted MUS.

5.3 Incremental Proof Discovery
The SAT encoding described in Section 5.1 only concerns

pairwise voting rules, yet none of the (negative) results in
this paper require or use this assumption. This is the prod-
uct of multiple rounds of generating and evaluating SAT for-
mulas, extracting MUSes, and using the insights generated
by this as ‘educated guesses’ to solve more general problems.
Following the process as described so far led to a proof

that for 4 alternatives and 12 voters, there is no pairwise
Condorcet extension that satisfies participation. That proof
used the assumption of pairwiseness, i.e., it assumed that the
voting rule returns the same alternative on profiles inducing
the same weighted tournament. However, intriguingly, the
preference profiles mentioned in the proof did not contain
all 4! = 24 possible preference relations over {a, b, c, d}. In
fact, it only used 10 of the possible orders. Further, each
profile included R0 = {abdc, bdca, cabd, dcab} as a subpro-
file. As we argued at the start of Section 5.1, it is intractable
to search over the entire space of preference profiles. On the
other hand, it is much easier to merely search over all ex-
tensions of R0 that contain at most n = 12 voters and only
contain copies of the 10 orders previously identified. The
SAT formula produced by doing exactly this turned out to
be unsatisfiable, and a small MUS extracted from it gave
rise to Theorem 3.
The proof of Theorem 6 for 17 voters was obtained by run-

ning Algorithm 1 with T0 initialized to the weighted tour-
nament induced by the initial profile R used in the proof of
Theorem 3. Before finding this tournament, we tried var-
ious other tournaments as T0, including ones featuring in
Moulin’s original proof, and ones occurring at other steps in
the proof of Theorem 3, but R turned out to give the best
1Roughly, the visualization program proceeds by drawing
an edge for every participationT,< clause that occurs in the
MUS, and marks the nodes for which condorcetT clauses
appear in the MUS.
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2 3 3 2
a b c d
b d a c
d c b a
c a d b

R

Rα

Rβ

a
+ badc

b

+ 3 · dcba

− abcd

− 2 · cabd

− dcab

c

+ acdb

− 2 · bdca

+ 2 · abcd
R′α

b

+ dbac

− 2 · cabd

R′β

c

+ 3 · abcd

− dcba
d

+ cdab

− 2 · bdca

− abdc

+ 2 · dcba

Figure 1: Computer-aided proof of Theorem 3 in graphical form, showing that there is no Condorcet extension
that satisfies participation for m > 4 and n > 12. See Section 4 for an explanation of how to read this diagram.

(and indeed a tight) bound, and additionally exhibits a lot
of symmetry that was also present in the MUS we extracted.

6. MAIN RESULT
We are now in a position to state and prove our main

claim that Condorcet extensions cannot avoid the no-show
paradox for 12 or more voters (when there are at least 4 al-
ternatives), and that this result is optimal.

Theorem 3. There is no Condorcet extension that satis-
fies participation for m > 4 and n > 12.

Proof. The proof follows the structure depicted in Fig-
ure 1. Let R be the preference profile shown there.
Since R remains fixed after relabelling alternatives ac-

cording to abcd 7→ dcba, we may assume without loss of
generality that f(R) ∈ {a, b}. (An explicit proof in case
f(R) ∈ {c, d} is indicated in Figure 1.)
By participation, it follows from f(R) ∈ {a, b} that also

f(Rα := R + 2 · abcd) ∈ {a, b} since the voters with prefer-
ences abcd cannot be worse off by joining the electorate. If
f(Rα) = a, again by participation, removing 2 voters with
preferences bdca does not change the winning alternative
(so f(Rα − 2 · bdca) = a), and neither does adding acdb, so
f(Rα − 2 · bdca + acdb) = a, which, however, is in conflict
with Rα − 2 · bdca + acdb having a Condorcet winner, c.
Thus we must have f(Rα) = b, which implies that f(Rα−

dcab) = b, and thus f(Rβ := Rα− dcab− 2 · cabd) ∈ {b, d}.
We again proceed by cases: If f(Rβ) = b, we can add

a voter badc to obtain a profile with Condorcet winner a,
which contradicts participation. But then, if f(Rβ) = d, we
get that f(Rβ − abcd) = d and, by another application of
participation, that f(Rβ − abcd + 3 · dcba) = d in contrast
to the existence of Condorcet winner b, a contradiction.
If m > 4, we add bad alternatives x1, x2, . . . , xm−4 to the

bottom of R and all other voters. By Lemma 1, f chooses
from {a, b, c, d} at each step, completing the proof.

The following result establishes that our bound on the
number of voters is tight. A very useful feature of our
computer-aided approach is that we can easily add addi-
tional requirements for the desired voting rule. Two com-
mon requirements for voting rules are that they should only

return alternatives that are Pareto-optimal and contained in
the top cycle (also known as the Smith set) (see, e.g., [17]).

Theorem 4. There is a Condorcet extension f that sat-
isfies participation for m = 4 and n 6 11. Moreover, f is
pairwise, Pareto-optimal, and a refinement of the top cycle.
The Condorcet extension f is given as a look-up table,

which is derived from the output of a SAT solver. The look-
up table lists all 1, 204, 215 weighted tournaments inducible
by up to 11 voters and assigns each an output alternative
(see Figure 2 for an excerpt). The relevant text file has a
size of 28 MB (gzipped 4.5 MB) and is available as part of
an arXiv version of this paper [10].
Comparing this voting rule with known voting rules, it

turns out that it picks a maximin winner in 99.8% and a Ke-
meny winner in 98% of all weighted tournaments. Moreover,
the rule agrees with the maximin rule with lexicographic
tie-breaking on 95% of weighted tournaments. The similar-
ity with the maximin rule is interesting insofar as a well-
documented flaw of the maximin rule is that it fails to be a
refinement of the top cycle (and may even return Condorcet
losers). Our computer-generated rule always picks from the
top cycle while it remains very close to the maximin rule.
80% of the considered weighted tournaments admit a Con-

dorcet winner, which uniquely determines the output of the
rule; this can be used to reduce the size of the look-up table.

7. SET-VALUED VOTING RULES
A drawback of voting rules, as we defined them so far, is

that that the requirement to always return a single winner is
in conflict with basic fairness conditions, namely anonymity
and neutrality. A large part of the social choice litera-
ture therefore deals with set-valued voting rules, where ties
are usually assumed to be eventually broken by some tie-
breaking mechanism.
A set-valued voting rule (sometimes known as a voting

correspondence or as an irresolute voting rule) is a function
F : RE(N ) → 2A \ {∅} that assigns each preference profile R
a non-empty set of alternatives. The function F is a (set-
valued) Condorcet extension if for every preference profile R
that admits a Condorcet winner x, we have F (R) = {x}.
Following the work of Pérez [29] and Jimeno et al. [22],

we seek to study the occurrence of the no-show paradox in
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a,#1,(1,1,1,1,1,1)
a,#1,(1,1,1,1,1,-1)
a,#1,(1,1,1,-1,1,1)
a,#1,(1,1,1,-1,-1,1)
a,#1,(1,1,1,1,-1,-1)
a,#1,(1,1,1,-1,-1,-1)
b,#1,(-1,1,1,1,1,1)
b,#1,(-1,1,1,1,1,-1)
b,#1,(-1,-1,1,1,1,1)
b,#1,(-1,-1,-1,1,1,1)
b,#1,(-1,1,-1,1,1,-1)
b,#1,(-1,-1,-1,1,1,-1)
c,#1,(1,-1,1,-1,1,1)
c,#1,(1,-1,1,-1,-1,1)

a,#11,(9,11,3,9,1,-9)
a,#11,(11,9,3,7,1,-9)
c,#11,(5,-9,-1,-11,-1,7)
c,#11,(5,-9,-1,-11,-1,5)
c,#11,(3,-11,-1,-9,1,7)
c,#11,(3,-11,-3,-9,1,7)
c,#11,(3,-11,-3,-11,-1,7)
b,#11,(-1,3,-5,-3,5,-3)
b,#11,(-3,3,-7,-3,5,-3)
b,#11,(-3,1,-7,-3,5,-3)
c,#11,(-3,1,-5,-5,5,-1)
a,#11,(3,7,11,-3,9,11)
a,#11,(3,7,11,-3,9,9)
a,#11,(3,7,11,-5,9,11)

Figure 2: Excerpt of look-up table giving
a pairwise Condorcet extension satisfying par-
ticipation for n 6 11 voters (from Theo-
rem 4). Each row lists a weighted tournament as
(gR(a, b), gR(a, c), gR(a, d), gR(b, c), gR(b, d), gR(c, d)) with
a chosen alternative, and with the number of voters
inducing the tournament.

this setting. To do so, we need to define appropriate notions
of participation, and for this we will need to specify agents’
preferences over sets of alternatives. Here, we use the op-
timistic and pessimistic preference extensions. An optimist
prefers sets with better most-preferred alternative, while a
pessimist prefers sets with better least-preferred alternative.
For example, if U = {a, b, d} and V = {b, c}, then an opti-
mist with preferences abcd prefers U to V , while a pessimist
prefers V to U . With these notions, we extend the partici-
pation property to set-valued voting rules.

Definition 3. A set-valued voting rule F satisfies opti-
mistic participation if max<i F (R + <i) <i max<i F (R).
A set-valued voting rule F satisfies pessimistic participa-

tion if min<i F (R) <i min<i F (R− i).

A set-valued voting rule F is called resolute if it al-
ways selects a single alternative, so that for all R we have
|F (R)| = 1. A (single-valued) voting rule f is naturally
identified with a resolute set-valued voting rule F ; if f sat-
isfies participation, then this F satisfies both optimistic and
pessimistic participation. Hence, by Theorem 4, there is
a (resolute) set-valued Condorcet extension F that satis-
fies both optimistic and pessimistic participation. However,
there might be hope that allowing voting rules to be irres-
olute also allows for participation to be attainable for more
voters, and indeed this is the case.

Theorem 5. There is a set-valued Condorcet extension F
that satisfies optimistic participation for m = 4 and n 6 16,
and also is Pareto-optimal and a refinement of the top cycle.

The SAT solver indicates that no such set-valued voting
rule is pairwise. Theorem 5 is optimal in the sense that
optimistic participation cannot be achieved if we allow for
one more voter.

Theorem 6. There is no set-valued Condorcet extension
that satisfies optimistic participation for m > 4 and n > 17.

Proof. Let F be such a function, and consider the fol-
lowing 10-voter profile R:

2 3 3 2
a b c d
b d a c
d c b a
c a d b

R
Rα

a

+ 5 · bacd

c

+ 3 · acbd

+ 2 · abcd

R′α

b

+ 3 · dbca

d

+ 5 · cdba

+ 2 · dcba

Suppose that either a ∈ F (R) or b ∈ F (R). (The case
of c ∈ F (R) or d ∈ F (R) is symmetric.) Then let Rα :=
R+2·abcd. By optimistic participation, we then have either
a ∈ F (Rα) or b ∈ F (Rα). If we had a ∈ F (Rα), then also
a ∈ F (Rα + 3 · acbd) but this profile has Condorcet winner
c, and if b ∈ F (Rα) then also b ∈ F (Rα + 5 · bacd) but this
profile has Condorcet winner a. This is a contradiction.
This argument extends to more than 4 alternatives by

appealing to a set-valued analogue of Lemma 1.

Inspecting Moulin’s original proof [28] shows that it also
establishes an impossibility for optimistic participation (for
25 voters). Apparently unaware of this, Jimeno et al. [22]
explicitly establish such a result for 27 voters and 5 alter-
natives. It is worth observing that each step of the proof
of Theorem 6 involves adding voters to the current profile,
and we never remove voters. In light of Definition 3, this is
the reason why the proof establishes a result for optimistic
participation. If we restrict ourselves to deleting voters, we
obtain a result for pessimistic participation.

Theorem 7. There is no set-valued Condorcet extension
that satisfies pessimistic participation for m > 4 and n > 14.
On the other hand, for m = 4 and n 6 13, there exists such
a set-valued voting rule.

Proof Sketch. The proof has a similar structure to the
proof of Theorem 3, displayed in Figure 1. The initial profile
of this proof is R + 2 · abcd + 2 · dcba, taking R to be the
profile of Figure 1. We further replace proof steps in which
voters are added by similar ones where voters are deleted,
and invoke pessimistic participation at each such step to
obtain a contradiction.

This result strengthens a result of Jimeno et al. [22], who
show that for m > 5 no set-valued Condorcet extension sat-
isfying a property called “weak translation invariance” can
also satisfy pessimistic participation. Our proof does not
need the extra assumption, already works for m = 4 alter-
natives, and uses just 14 instead of 971 voters.2
As previously observed, adding voters in our impossibility

proofs corresponds to optimistic participation, while remov-
ing voters corresponds to pessimistic participation. In the
proof of Theorem 3, we use both operations, which allows for
a tighter bound of just 12 voters. In the set-valued setting,
we can formulate this result in a slightly stronger way.

2The large number of voters is due to several applications of
the “weak translation invariance” axiom, each of which adds
5! = 120 voters to the preference profile under consideration.

320



Theorem 8. There is no set-valued Condorcet extension
that satisfies optimistic and pessimistic participation simul-
taneously for m > 4 and n > 12. On the other hand, for
m = 4 and n 6 11 such a set-valued rule exists (and also is
Pareto-optimal and a refinement of the top cycle).

Proof. Use the proof of Theorem 3, invoking optimistic
participation for edges labelled with the addition of a voter
(+), and invoking pessimistic participation for edges labelled
with removal of a voter (−). On the other hand, the (single-
valued) voting rule of Theorem 4 clearly satisfies both opti-
mistic and pessimistic participation.

The preference extension combining the optimistic and
pessimistic preference extension is also known as the Egli-
Milner extension.

8. PROBABILISTIC VOTING RULES
A probabilistic voting rule (also known as a social decision

scheme) assigns to each preference profile R a probability
distribution (or lottery) over A. Thus, a probabilistic voting
rule might assign a fair coin flip between a and b as the
outcome of an election.
Formally, let ∆(A) = {p : A → [0, 1] :

∑
x∈A p(x) = 1}

be the set of lotteries over A; a lottery p ∈ ∆(A) assigns
probability p(x) to alternative x. A probabilistic voting rule
f is a function f : RE(N ) → ∆(A). In this context, we say
that f is a Condorcet extension if f(R) puts probability 1 on
the Condorcet winner of R whenever it exists: if R admits
x as the Condorcet winner, then f(R)(x) = 1.
As in the set-valued case, we need a notion of comparing

outcomes in order to extend the definition of participation.
Here, we use the concept of stochastic dominance (SD).

Definition 4. Let < ∈ R be a preference relation
over A, and let p, q ∈ ∆(A) be lotteries. Then p is (weakly)
SD-preferred over q by < if for each alternative x, we have∑

y<x p(y) >
∑

y<x q(y).

In this case, we write p <SD q.

For example, the lottery 2
3 a + 1

3 c is SD-preferred to the
lottery 1

3 a + 1
3 b + 1

3 c by a voter with preferences abcd. A
voter with preferences bacd will feel the other way around.
The main appeal of stochastic dominance stems from the
following equivalence: p <SD q if and only if p yields at
least as much von-Neumann-Morgenstern utility as q under
any utility function that is consistent with the ordinal pref-
erences <. Using this notion of comparing lotteries, we can
define participation analogously to the previous settings.

Definition 5. A probabilistic voting rule f satisfies
strong SD-participation if f(R) <SD

i f(R−i) for all R ∈ RN
and i ∈ N with N ∈ E(N ).

Any (single-valued) voting rule f can be seen as a prob-
abilistic voting rule that puts probability 1 on its chosen
alternative. If f satisfies participation, then this derived
probabilistic voting rule is easily seen to satisfy strong SD-
participation. Hence Theorem 4 gives us a probabilistic
Condorcet extension that satisfies strong SD-participation
for n 6 11 voters and m = 4 alternatives.
We now establish a connection between strong SD-

participation and the set-valued notions of participation

that we considered in Section 7. This connection will al-
low us to translate the impossibility results we obtained
there to the probabilistic setting. To set up this connec-
tion, let us define the support of a lottery p ∈ ∆(A) to be
supp(p) := {x ∈ A : p(x) > 0}.

Proposition 1. Let f be a probabilistic voting rule sat-
isfying strong SD-participation. Let F = supp ◦f be the sup-
port of f , i.e., F (R) = supp(f(R)) for all profiles R. Then
F satisfies both optimistic and pessimistic participation.

Proof. We only verify optimistic participation; the pes-
simistic case is similar. Let R be a preference profile with
electorate N ∈ E(N ), and let i ∈ N \N be a voter with pref-
erences <i. Let x = max<i F (R), and let U = {y : y <i x}.
We need to show that max<i F (R +<i) <i x, by finding an
alternative y ∈ U that is in the support of f(R + <i).
But since f satisfies strong SD-participation, we have∑

y∈U f(R + <i)(y) >
∑

y∈U f(R)(y) > 0,

where the strict inequality follows from the definition of the
support and of x. Hence some alternative from U is in the
support of f(R + <i), as required.

Putting these results together with the impossibility result
of Theorem 8, we obtain the following.

Theorem 9. There is no probabilistic Condorcet exten-
sion that satisfies strong SD-participation for n > 12 and
m > 4. On the other hand, for m = 4 and n 6 11, such a
probabilistic voting rule exists.

Theorem 9 resolves an open problem mentioned by Brandl
et al. [5, Sec. 6].

9. CONCLUSIONS AND FUTURE WORK
We have given tight results delineating in which situa-

tions no-show paradoxes must occur. As such, our results
nicely complement recent advances to satisfy Condorcet-
consistency and participation by exploiting uncertainties of
the voters about their preferences or about the voting rule’s
tie-breaking mechanism [4, 5, 6].
Due to unmanageable branching factors when there are

5 alternatives (and hence 5! = 120 possible preference rela-
tions), we were unable to check using our approach whether
no-show paradoxes occur with even less voters when the
number of alternatives grows. It would be interesting to gain
a deeper understanding of the computer-generated Con-
dorcet extension that satisfies participation for up to 11 vot-
ers. So far, we only know that it (slightly) differs from all
Condorcet extensions that are usually considered in the lit-
erature. As a first step, it would be desirable to obtain a
representation of this rule that is more concise than a look-
up table.
Another interesting topic for future research is to find op-

timal bounds for a variant of the no-show paradox due to
Sanver and Zwicker [32], in which participation is weakened
to half-way monotonicity. Their proof requires 702 voters.
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