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ABSTRACT

Recently, the winner determination problem of minimax ap-
proval committee (or referenda) elections has been exten-
sively studied. In particular, Misra et al. [AAMAS 2015]
investigated its parameterized complexity with respect to
various parameters. Among others, they showed that this
problem is FPT with the Hamming distance upper-bound as
parameter. Following the suggestion of Baumeister and Den-
nisen [AAMAS 2015], we consider minimax committee elec-
tion rules for trichotomous votes, linear orders, and partial
orders. Complementing the classical complexity results for
these rules by Baumeister et al. [ADT 2015], we show that
the winner determination problem on trichotomous votes
admits similar parameterized complexity behavior as on di-
chotomous votes. To this end, we fix a flaw in the param-
eterized algorithm given by Misra et al. [AAMAS 2015],
which uses the Hamming distance upper-bound as parame-
ter. Moreover, we prove that on both linear and partial or-
ders, it is W[2]-hard to determine the winners with respect
to the size of the committee. Even with both the size of the
committee and the number of votes as parameters, this prob-
lem remains fixed-parameter intractable; here, it becomes
W/1]-hard. We also present FPT algorithms for both linear
and partial orders with the distance upper-bound as param-
eter. Finally, we show that in several special settings, the
winner determination problem of a minimax approval com-
mittee election is polynomial-time solvable. These special
settings have been considered for similar voting problems.
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1. INTRODUCTION

The problem of aggregating the preferences of different
agents occurs in diverse situations and plays a fundamental
role in artificial intelligence and social choice [9, 12]. Here,
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agents (voters) express their preferences over candidates and
a voting rule is employed to determine which candidate wins.
While the most studied setting is the single-winner case, vot-
ing can also be used to elect a fixed-size set of winners, a so-
called committee. Real-world examples include parliamen-
tary elections, selecting committees, understanding heredity
and signals in DNA, and recommendation systems (see [3]
and the references therein). Recently, we witness an increas-
ing interest in the study of the axiomatic and algorithmic
aspects of committee elections [1, 2, 3, 6, 11, 15, 20, 23, 22,
26]

Approval voting. A widely used rule for committee elec-
tion is the approval voting (AV) approach, where the voters
decide for each candidate, whether they approve or disap-
prove of this candidate. Such votes are called approval votes.
The winning committee consists of the k candidates with
the most approvals. Brams et al. [8] suggested a distance-
based variant of AV, called minimax approval voting, which
selects a set of k candidates that minimize the maximum
Hamming distance from the given votes. Another popular
distance-based AV variant is the minisum approval voting,
whose optimization goal is to minimize the total Hamming
distance of the committee to all given votes. Amanatidis
et al. [1] introduced a so-called ordered weighted averaging
operator to the distance-based AV approach, generalizing
both minimax and minisum approval rules. Other variants
of AV include proportional approval voting, reweighted ap-
proval voting, and satisfaction approval voting (see [3] for
more details).

Extensions of minimax and minisum AV. In 2015,
Baumeister and Dennisen [5] extended the minimax and
minisum approaches to other forms of votes such as trichoto-
mous votes, linear orders, and partial orders. A voting with
trichotomous votes allows the voters in addition to approval
and disapproval to abstain for a candidate [18], which could
be of particular interest in the multiple referenda elections.?
A trichotomous vote can be represented as a vector over the
candidates, where 1 and -1 stand for approval and disap-
proval of candidates, and 0 stands for abstention. The com-
mittee is then a vector with entries from 1 and -1. Baumeis-
ter and Dennisen proposed a modified Hamming distance to
measure the distance between the committee and the votes.
In the case of linear orders, every voter’s preference is rep-
resented as a total, transitive and asymmetric binary rela-
tion of the candidates and the rank-sum distance is used

"Multiple referenda elections seek for a collective decision
over several binary propositions and thus, share similar
properties with committee elections.



to select the winning committee. Partial orders are also
transitive and asymmetric, but not necessarily total. The
dissatisfaction of the voters with a committee is measured
by a generalized Kemeny distance. See the preliminaries for
the definitions of the votes and distance functions. Baumeis-
ter et al. [6] proved that concerning the classical complexity,
the minimax and minisum winner determination problems
admit the same behavior for all three forms of votes. That
is, as in the case of approval votes, the minisum version is
polynomial-time solvable and the minimax version is NP-
hard for all three forms of votes.?

Parameterized Complexity. We focus on the parame-
terized complexity of the above three extensions of the min-
imax approval voting. Parameterized complexity allows to
give a more refined analysis of computational problems and
in particular, can provide a deep exploration of the connec-
tion between the problem complexity and various problem-
specific parameters [14]. In the last years, parameterized
complexity analysis has been applied to diverse problems
from computational social choice, including winner determi-
nation, control, and bribery [7, 10]. Misra et al. [24] ini-
tialized the study of parameterized complexity of the min-
imax approval voting. They showed, among others, that
the winner determination problem of minimax approval vot-
ing is fixed-parameter tractable with respect to the Ham-
ming distance upper-bound, the number of candidates, or
the number of candidates, while it becomes fixed-parameter
intractable (W[2]-hard) with respect to the size of the com-
mittee.

Our results. As in [24], we also consider four parameters:
the number n of votes, the number m of candidates, the
size k of committee, and the distance upper-bound d.

Our main findings is that, in contrast to the classical com-
plexity, the winner determination problem admits different
parameterized complexity behavior for the considered vote
forms. First, compared to the case with approval votes, the
introduction of trichotomous votes essentially has no im-
pact on the parameterized complexity with respect to all
four parameters. Hereby, we identify and fix a flaw in the
algorithm by Misra et al. for the case of approval votes
with d as parameter. Moreover, we propose two parameter-
ized algorithms for the linear and partial orders cases with d
as parameter, which are based on completely different idea
than the one for the approval and trichotomous votes cases
and need much more algorithmic effort. However, the re-
sulting running times are comparable with the ones for the
approval and trichotomous votes cases. In particular, we
show that with the linear and partial orders, the winner de-
termination problem becomes fixed-parameter intractable,
i.e., W[1l]-hard, even with both k and n as parameters, in
contrast to the FPT-result with the same parameterization
for the approval and trichotomous votes cases. Finally, we
present polynomial time algorithms for two special cases of
the maximin approval voting with approval votes. These two
special cases have been studied for similar voting problems
[16, 17].

2. PRELIMINARIES

In this section, we introduce the definitions and notations

’In [6], the complexity of the minimax version with linear
orders was left open. According to [4], this problem is NP-
hard as well.
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used in this paper. An election is a pair (C,V), where
C ={c1,...,cm} is a set of candidates (or alternatives) and
V = {v1,...,v,} is an ordered list of voters. Each voter’s
preference among the candidates in C' is expressed through
the vote he casts. We also use V' to denote the list of votes
that the voters in V' cast. We will refer to the list V as a
preference profile, and denote the number of voters in V' by
n, and the number of candidates in C' by m. A commit-
tee election is a triple (C,V, k), where k is the size of the
committee. A committee election system is a mapping that
takes as input an committee election (C,V, k), and outputs
a size-k subset K of C, i.e., the committee.

€ ¢, Cy ¢y C

¢ ¢, ¢ Cy G
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Figure 1: Voter Interval and Candidate Interval. A
black cell stands for a “1”, and a white cell stands
for a “0”.

As in [6], we consider four different forms of votes:
Approval votes. An approval vote v on C' is a subset of C.
While the corresponding voter approves of the candidates in
v, he disapproves of the candidates in C'\v. For a fixed order
of the candidates in C', each vote v can also be represented
as a {0,1}™ vector, where a 1 stands for approval and a 0
for disapproval of the corresponding candidate. We use v/[i]
to denote the ith entry of v. We call the number of 1’s in
an approval vote v as its weight. For the same order of the
candidates in C, a committee K can also be represented by
a {0,1}™ vector with weight k.

The distance for an approval vote v with a committee K is
defined as HD(K,v)=>", ;... |K[i] —v[i]] = |K & v| , that
is, the Hamming distance between K and v, where K @ v is
the symmetric difference of K and v.

Given an election (C, V), we say that V satisfies the voter

interval (VI) property if the votes in V' can be ordered such
that for every candidate ¢ € C' the voters that approve of ¢
form an interval of that ordering [16]. See Figure 1(a) for
an example. We say that V satisfies the candidate interval
(CI) property if the candidates in C' can be ordered such
that for every voter v € V the candidates that v approves
of form an interval of that ordering [17]. See Figure 1(b) for
an example.
Trichotomous votes. A trichotomous vote on C'is a par-
tition of C' into three disjoint subsets C1, Co and C'_1. The
corresponding voter approves of the candidates in C4, dis-
approves of the candidates in C_1, and abstains for the can-
didates in Cy. For a fixed order of the candidates in C, each
vote can also be represented as a {—1,0, 1}™ vector, where 1
stands for approval, —1 for disapproval and 0 for abstention.
Given a trichotomous vote v and a candidate ¢, we will de-
note the opinion of v on ¢, i.e., 1, 0, or -1, by value(v, c¢). We
call the number of 1’s in a trichotomous vote v as its weight,
and denote it by |v|. For the same order, a committee K
can be represented by a {1, —1}" vector with weight k.



The distance between two trichotomous votes u, v is de-

fined as dr(u,v) = Y, <, [uli] — v[i]|. The distance be-
tween a trichotomous vote v and a committee K is defined
as §(K,v) = dr(K,v).
Linear orders. A linear order is a total, transitive, and
asymmetric binary relation over C. We denote the vote of
voter v by >, where ¢ >, d means that v prefers candidate
¢ to candidate d. When the identity of the voter is clear
from the context, we omit the subscript and write > instead
of »».

In this case, the distance for a vote v with a committee

K is defined as the normalized sum of ranks of the committee
members in vote v, i.e., RS(K,v) = Y ., pos(c,v) — @,
where pos(c,v) denotes the position of candidate ¢ in vote
v. For convenience, we can also express the distance in an-
other way. Given a committee K, let npos(c,v) denote the
“normalized” position of candidate c¢ in vote v, i.e., the num-
ber of candidates that procede ¢ in v but are not in K,
or formally, npos(c,v) = |{c'|¢ € C\ K,c" > c}|. Then,
RS(K,v) = > cx npos(c,v).
Partial orders. A partial order is a transitive and asym-
metric, but not necessarily total binary relation over C. We
denote the vote of voter v also by >, where ¢ >, d means
that v prefers candidate ¢ to candidate d. If the relation be-
tween ¢ and d is unknown (or uncomparable), then we write
c~yd.

In this case, Baumeister and Dennisen [5] introduced a
so-called “generalized Kemeny distance” between a commit-
tee K and a vote v: Dist(K,v) =3, .o dkv(a,b), where
dr,»(a,b) is the distance between K and v regarding two
candidates a and b defined as:

dK,v(a, b) =

1 farnybAN((a€e KAVEK)V(ag KNbEK)),
2 f(ae KAbEKAb>ya)V

(ag KAbe KANa=,b),
0 otherwise.

‘We now define the social choice problem that is central to
this work.

DEFINITION 1. [A-Minimaz-Voting] Given a list of votes
V ={v1,...,un} over a set of candidates C = {c1,...,cm},
and two non-negative integers d and k, find a size-k subset
K of C (committee) with max;=1,...» A(K,v;) < d, where
A € {HD,é, RS, Dist} stands for the distance function for
approval votes, trichotomous votes, linear orders or partial
orders, respectively.

Note that there might be more than one committee satis-
fying the distance upper-bound. For A-Minimax-Voting, it
suffices to find one of them.

Finally, we briefly introduce the relevant notions of pa-
rameterized complexity theory [13, 19, 25]. A parameter-
ized decision problem is a language £ C X" x N. L is fized-
parameter tractable (or in the class FPT) if for each (z, k) in
2* x N, there exists an algorithm determining whether (z, k)
is in £ with running time O(f(k)-|x|®), where f is some com-
putable function, c is a constant, and k is the parameter. If
no such algorithm exists for £, £ is called fized-parameter
intractable.

Given two parameterized problems £ and £’ (both en-
coded over ¥* x N), we say L is FPT-reducible to L' if there
is an algorithm that can map a given instance (x, k) of £
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to an instance (z',k’) of L' in time O(f(k) - |z|°), where
k' < g(k), and f and g are computable functions, such that
(z,k) is a yes-instance of £ if and only if (2/,k’) is a yes-
instance of £’. Parameterized reductions are used to prove
hardness of problems in the sense of parameterized complex-
ity. The basic class of fixed-parameter intractable problems
is W[1]. A parameterized problem L is said to be Wt]-hard
for ¢ > 1 if all the problems in W {t] are FPT-reducible to L.

The following table gives a summary of the parameterized
complexity of the winner determination problem in the min-
imax committee elections for the above four forms of votes.

Table 1: Summary of parameterized complex-
ity results for A-Minimax-Voting, where A €
{HD,é, RS, Dist} stands for the distance function for
approval votes, trichotomous votes, linear orders or
partial orders, respectively. The results with m as
parameter are trivial. New results of this paper are
in boldface. W[1]-h. (or WJ[2]-h.) stands for W[1]-
hard (or WJ[2]-hard).

HD 5 RS Dist
k| W2lh. [24] | W2]-h. [24] | W[2]-h. | W[2]-h.
d FPT 24 FPT FPT FPT
n FPT [24 FPT WIi]-h. | W[i]-h.
m FPT FPT FPT FPT
kon | FPT [24] FPT W(i]-h. | W[i]-h.

3. PARAMETERIZED COMPLEXITIES

3.1 s-Minimax-Voting

3.1.1 Parameter d: FPT

We show here that J-Minimax-Voting is fixed-parameter
tractable with respect to the parameter d, by extending the
algorithm by Misra et al. [24] for HD-Minimax-Voting.

The algorithm by Misra et al. starts with constructing a
candidate committee. To do this, it modifies an arbitrary
given vote v. If v has exactly k 1’s, then v is used as the
candidate committee; if v has more than k 1’s, the algo-
rithm changes arbitrarily |v| — k 1’s to 0’s. In the case of
less than k 1’s, k — |v| 0’s are changed to 1’s. Let K de-
note the resulting vote. Then if there is a vote v € V' with
HD(K,v) > 2d, the algorithm outputs NOT FOUND; if
there is no vote with HD(K,v) > d, then K is output as so-
lution. Otherwise, there exists at least one vote v € V' that
satisfies d < HD(K,v) < 2d. For an arbitrary such vote, a
search tree approach is applied. We note that this algorithm
contains a flaw by giving a counterexample: d = 3, k = 2,
|C| =8, and V = {v; := 11111000, v2 := 00011111}. If the
algorithm uses v; to construct K and changes the last three
1’s to 0’s, then we have K = 11000000 and H D (K, v2) > 2d.
This means that the algorithm reports NOT FOUND. How-
ever, it is not hard to check that there exists a unique so-
lution 00011000 for the given instance. The problem of the
algorithm lies in the newly constructed candidate commit-
tee K. Even if the distance between any pair of votes in the
original V' is at most 2d, the distance between K and some
vote in V' may be greater than 2d. Thus, the algorithm by
Misra et al. cannot always return the right answer.



By extending the upper-bound in the first if-condition
from 2d to 3d and incorporating new idea dealing with tri-
chotomous votes, we derive an algorithm for §-Minimax-
Voting running in O*(d%) time®.

THEOREM 1. §-Minimaz-Voting can be solved in O*(d®)
time with the distance upper-bound d as parameter and thus,
18 fized-parameter tractable.

3.1.2 Parameter n: FPT

THEOREM 2. With n as parameter, §-Minimax-Voting is
fixed-parameter tractable.

PROOF. We describe an integer linear program (ILP) with
at most 2-3" variables that solves §-Minimax-Voting. Fixed-
parameter tractability then follows from the result that ILP
is fixed-parameter tractable with the number of variables as
parameter [21].

Consider the list of votes as an n X m matrix. Then each
of the m columns of this matrix is an element in {1,0, —1}".
Thus, there are at most 3" different column types. Based
on this observation, we can get an instance of ILP that is
equivalent to the §-Minimax-Voting instance. Let T' denote
the set of all column types, and for each type t € T, let n
denote the number of columns in the input of type t. Also,
let ¢ € {1,0,—1} denote the letter (or value) at position
i in a given column type t.

The instance of ILP is defined over a set of |[{1, —1}|-|T| <
2 - 3" variables, one variable z;, for each ¢ € T and ¢ €
{1,—1}. The variable z¢, contains the number of columns
of type t whose corresponding positions of the solution vector
will be set to the value . The ILP instance then consists
of the following constraints:

Z Z lp — el -2t < d Vi<i<n
teT pe{l,-1}
Z Tt,p = Nt Vit S T
pe{l,—1}
S =k
teT

Et,¢€{0,1,2,...}

Let K denote a vector formed from a feasible solution to
the above ILP. The i-th constraint of the first type ensures
that dr(K,v;) < d for vote v;. It is not difficult to verify
that the above ILP has a feasible solution if and only if the
6-Minimax-Voting instance has a solution. []

3.2 RS-Minimax-Voting
3.2.1 Parameter k: W[2]-Hard

The W][2]-hardness result is proved by a reduction from
the W[2]-complete problem Dominating Set [13]. Given a
graph G = (V, &), with V = {v1,v2, -+ , v}, the closed
neighborhood of a vertex v; € V is defined to be {v;|{vi,v;} €
&} U {vi}, denoted by N[v;]. A subset V' C V), where V' =
{v],v5, -+, v}, is called a size-k’ dominating set of G if
and only if every vertex v € V is adjacent to at least one
vertex in V', i.e., v is in at least one of the closed neighbor-
hoods N[vi],...,N[v},]. Dominating Set asks for a size-k’
dominating set.

Vvt e T\Vy € {1, -1}

3In the O* notation we omit the polynomial terms, so that
O*(f(d)) stands for O(f(d)p(n)) for some polynomial p.
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THEOREM 3. RS-Minimaz-Voting is W[2]-hard with re-
spect to the parameter k.

PROOF. Given a DOMINATING SET instance (G = (V, £), k'),
where V = {v1,...,vn}, we construct a RS-MINIMAX-VOTING
instance (A, P,d, k) as follows:

Let k = k" and d = (o + 2n)(k — 1) + n, where a =
n(k — 1) + 1. With every v; € V, we associate a candidate
¢i. Denote by C the set {c1,...,c,}. Additionally, for each
v; € V, we introduce three sets of dummy candidates, X; =
{."L‘il, . 7Iin}, Yz = {y“, e ,ym}, and Z,', = {Zil, ey Ziﬁ},
where 8 = k(a+2n). Thus, A=CUX;U---UX,UY1 U
- UY,UZ1U---UZ,. For every vertex v; € V, we have a
corresponding vote v;. The set of candidates corresponding
to the vertices in Nv;] is denoted by Cle], ie., Cle;] =
{¢jlv; € N[v;]}. For every v;, we arbitrarily select n — |Cle;]|
elements from X; and put them in a set denoted by X/. The
vote v; is set as follows:

(C[Ci]>X{>K>C\C[Ci]>xi\Xé>Zi> U Xj>
Jj€ln],j#i
U Y- U 2%
JE€[n],g#i J€[n],j#i

where R > S for two sets of candidates R and S means that
Va € R and b € S, we have a > b but the ordering of R (or
S) can be arbitrary.

In the following, we show that the Dominating Set in-
stance has a size-k dominating set if and only if there is a
size-k subset K of A such that max;—1,.. » RS(K,v;) < d.

= Suppose that there exists a dominating set V' =
{vi,..., v} in G. Denote by K the set of candidates c, .. ., ¢},
in C that correspond to the vertices in V’. For each v; € P,
at least one candidate ¢; € K (1 <4 < k) is in C[¢;] and
npos(ci,v;) < n. On the other hand, we have |[K N (C'\
Clei])| < k=1 and, for each candidate in K N (C \ Cle;]),
its “normalized” position in v; is less than a + 2n. It is easy
to see that RS(K,v;) < n+ (a +2n)(k — 1) = d. Thus,
maX;=1,...,n RS(K, Ui) S d.

<«: Now suppose there is a size-k subset K = {c],...,c.}
of A such that max;—1, . » RS(K,v;) < d. Denote by V'
the set of vertices v{,....v), in V that correspond to the
candidates in K.

First, we claim that, in each vote v;, none of the can-
didates in K appears after Z;. If this is not true, there
is a candidate ¢ € K that lies after Z; in vote v;,. Then,
npos(c,vi) > |C| + | Xi| + |Vi] + |Zi| — 2E2 = 2n + o +
k(a+2n)— @ > (a+2n)(k —1) +n = d, which implies
that RS(K,v;) > d. The above claim implies that, in any
vote v;, none of the candidates in K appears in X;, Y;, or
Z;. Thus, all elements of K are from C. Next, we show
that, in each vote v;, at least one of the candidates in K
appears in Cle¢;]. If this is not true, then there is a vote
v; such that all the candidates in K appear in C' \ Cleci].
Then, npos(K,v;) > (n+ a)k > (e +2n)(k — 1) +n = d,
a contradiction. The above claim implies that the vertex
corresponding to candidate ¢; must be adjacent to at least
one of the vertices that correspond to the candidates in K.
In other words, every vertex v; € V must be in at least one
of the closed neighborhoods N[v}],...,N[v;]. By definition,
set V' forms a dominating set of graph G. [

3.2.2 Parameter d: FPT

THEOREM 4. RS-Minimaz-Voting can be solved in O (4d)



time and thus is fixed-parameter tractable with respect to the
parameter d.

PROOF. Let v; be an arbitrary vote in V. Note that all
candidates ¢ € C with pos(c,v;) > k + d cannot be in K,
since otherwise, npos(c,v;) would be greater than d, which
implies that RS(K,v;) > d. In the following, we distinguish
two cases:

k < d: In this case, we check for every size-k subset
K of the first £ 4+ d candidates in vote v; whether it sat-
isfies maxj=1,....n» RS(K,v;) < d. The time complexity is

0" (4] = 0" (%) = 0" () = 0" (a).

k > d: We claim that the first k& — d candidates in vote
v; must be in K. For the purpose of contradiction, suppose
that at least one of the first £k — d candidates in v; is not in
K. Then at least k — (k—d — 1) = d+ 1 candidates, whose
positions are greater than k — d, must be in K. This would
imply that RS(K,v;) > d. Based on the above claim, all
possible solutions have to contain the first k — d candidates
in v; and k — (k — d) = d candidates from the candidates
whose positions in vote v; are greater than k—d and at most
k + d. The brute-force approach leads to a time complexity
of 07 (%)) < 0" (a7). D

3.2.3  Parameters k and n: W[ ]-hard

THEOREM 5. RS-Minimaz-Voting is W/[1]-hard with re-
spect to the parameters k and n.

PROOF. We reduce from the Multi-Colored Clique (MCC)
problem, which, given an undirected graph G = (V,€) and
an integer k' > 0, where V can be partitioned into k' sub-
sets and all edges in £ are between different subsets, asks
for a clique which contains exactly one vertex from each of
the subsets. MCC is known to be W[1]-hard with respect
to k', even if all subsets have the same cardinality n [14].
Moreover, it is not hard to prove the following claim:
Claim. MCC remains W[1]-hard with k' as parameter even
if

1. all subsets have the same cardinality n.

2. there exists a non-constant integer D, such that for
each two subsets S1 and Sz and each vertex v € Sy, it
holds that |N(v) N S2| = D, where N(v) is the neigh-
borhood of vertex v, i.e., N(v) = {v;|{v,v;} € £}.

The basic idea of the reduction is to construct (k'—1)-D+1
candidates for every vertex, one for the vertex itself and
one for each of its neighbors. Then, we construct for each
of the k" subsets A C V a vote, denoted by va, with the
candidates that represent the vertices from this subset be-
ing in the first n positions. The distance d is set properly
to make sure that at least one of these n candidates needs
to be in the committee, encoding that at least one vertex
from this subset has to be in the clique. Moreover, we con-
struct 3(k" — 1) votes for each subset A, three votes for each
subset B with A # B. In the first vote ’U11413 for B, the
candidates which represent the B-neighbors of the vertices
in A are placed in the first n - D positions. The distance d
guarantees that at least one of these n - D candidates has
to be in the committee. Further, the other two votes viL B
and v%, g guarantee that the candidate selected due to va
and the candidate selected due to 11114, p correspond to the
same vertex in A. Finally, we construct four votes to check
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the adjacency of the vertices correpsonding to the candidates
which have been selected due to va and vp respectively. In
the following we present the details of the reduction.

We also use a; to denote the vertex candidate representing
the vertex a; € A. Further the neighbor candidate repre-

senting the neighbor b; € B of a; is denoted as a?’. Let ¢’
be the set of candidates constructed for the vertices in V.
Then, |C'| = k¥ -n- (D(k' —1) +1). We set the size k of
the committee equal to k2. The first subset of votes con-
tains k votes, one for each vertex subset. For instance, the
vote v for A has a1 > a2 »,...,> an in the first n po-
sitions. Between these n candidates and other candidates
in C’ there are z := (k> — 1)(|]C’| — n) + D many “dummy”
candidates; they are ordered arbitrarily. Let d denote the
distance upper-bound, which will be set in the following.
Each dummy candidate can be in the first d positions of
only one vote and thus, can never be in a committe with
distance at most d to the votes. The remaining candidates
in C' are placed directly after the dummy candidates, with
an arbitrary order among them. By setting the distance
upper-bound d equal to (k"2 — 1)(|C'| + z) + n + D, we ob-
serve that if none of the first n candidates in C’ is added to
the committee, then the distance between v4 and the result-
ing committee is at least k’*(z + n) which is clearly greater
than d. Thus, at least one candidates from as, ..., a, has to
be in the committee.

Next, we present the three votes vi\, B vi B, and vj B

o b
In the first n - D positions of vk’B, we have a,’t = ... =

aijD - agll = al:fD, where the first D candidates
represent the neighbors of a1 in B, the next D candidates
the neighbors of a2, and so on. After them, there are y =
x—(nD—n—D)/(k'*—1) many dummy candidates, and the
order among these dummy candidates is arbitrary. Without
loss of generality, we may assume here nD —n — D can be
divided by k> — 1. The remaining candidates from C’ are
placed after the dummy candidates with an arbitrary order.
By the same argrument as for v4, at least one candidate in
the first n - D positions has to be in the committee. Since
we have k' — 1 such v'-votes for every vertex subset and
these k&’ — 1 v'-votes have distinct candidates in their first
n - D positions, all feasible committees contain exactly one
candidate in the first n- D positions of each v!-vote. That is,
for each of the k" vertex subsets A C V, a feasible committee
contains exactly one vertex candidate a; which corresponds
to a vertex in A and exactly one neighbor candidate a?’
with b; € B for every other subset B # A.

The votes vi’ g and 11134, g are constructed to force i =
j. Both votes v%,B and vi’B put the candidates in C’ \
({a1,a2,...,an} U {a?j|a,- € A}) in the first |C'| —nD —n
positions. Then, the next z = (k> —2)|C’|+ (kK> —1)x) /n+
D + 2 positions of vi p are occupied by dummy candidates,
followed by a1, and then, again z many dummy candidates,
followed by a2, till a, is placed in the (|C'| — nD +n - 2)-th
position. After a,, we have again z many dummy candi-
dates followed by the D neighbor candidates of a,, which
correspond to the B-neigbhors of a,; the order among these
neighbor candidates is arbitrary. After these neighbor can-
didates, we have again z many dummy candidates and then
the neighbor candidates of a,—1. The last neighbor candi-
date of a1 is in the (|C’| +2n - 2)-th position. The vote v’ 5
has almost the same construction as v%, 5 with the only ex-
ception that the order of the vertex candidetes of A is re-



versed, that is, a, appears as the first vertex candidate,
then a,—1, and so on; the appearance order of the neigh-
bor candidates is also reversed, first the neighbor candidates
of a1, then the ones of a2, and the last one being a neigh-
bor candidate of a,,. With these two votes, we can guarantee
that if a vertex candidate a; is added to committee due to the
vote v, then the vote vi\’ p must add one neighbor candidate
of a; to the committee. By doing so, we have a committee
with a distance of less than |C’'| = (D+ 1)n+n-z+ D =d
to both 1}1247 g and vi, g~ If the chosen neighbor candidate is
not of a;, then at least one of vrj’ g and vfh g has a distance
of more than (n+ 1) - z > d to the committee.

Finally, we have for each vertex subset 2(k’ — 1) votes to
check the adajency between the vertex candidate of this sub-
set and other chosen vertex candidates, two votes for each
other subset. For instance, we have the following two votes
for A C V to check whether the vertex candidate added to
the committee due to va is adjacent with the vertex candi-
date of B. These two votes are very similar to v%, 5 and vi’ B-
Both have the candidates in C'\ ({a1, az, ..., a,}U{bj"|a; €
A}) at the beginning. Then, both have the a;’s blocks, each
consisting of dummy candidates and one vertex candidate
at the end, but one in the ascending order of the indices
and the other in the descending order. The difference lies in
the blocks of neighbor candidates. Here, for a vertex can-
didate a;, the corresponding block contains instead of the
neighbor candidates ai’l ’s but the neighbor candidates of b,
that is, b;"’s. Again, the blocks appear in one vote in ascend-
ing order of the indices of a;’s, and the orther in descending
order. By the same argument, if a; is in the committee,
then at least one of b]'*’s has to be in the committee, which
means the corresponding vertices are adjecent. Since this
is true for every pair of subsets, a committee of size k with
distance at most d to all votes can be directly transformed
to a clique of size k' in the original graph. Moreover, the
number of votes and the size of the committee depend only
on k', which completes the theorem. O

3.3 Dist-Minimax-Voting

Since Dist-Minimax-Voting is a generalized version of RS-
Minimax-Voting, one can easily conclude that this problem
is W[2]-hard with the committee size k as parameter and
W/(1]-hard with both k and the number n of votes as param-
eters. It remains to prove that the parameterization of the
distance upper-bound leads to an FPT-result.

THEOREM 6. With the distance upper-bound d as param-
eter, Dist-Minimax-Voting is fized-parameter tractable.

PrROOF. We distinguish two cases d < k and d > k.
If d > k, then we consider an arbitrary vote v and apply
a depth-bounded search tree approach to enumerate all pos-
sible committees which have distance at most d to v. These
feasible committees can then be checked against all other
votes with the same time bound. The depth of the search
tree is bounded by k + d and thus, its size by 2F7¢ < 49,
During the branching process, we maintain three sets K, U,
and N and initialize K and N as empty sets and U = C.
The set K contains the candidates which should be added to
the committee, the set IV the candidates not to add to the
committee, while the candidates in U are still undecided.
The branching is terminated, if U =0, d < 0, or k = 0.

At a node of the search tree, we compute the set S =
{a € U € Uwithd =, a} and consider an arbitrary
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candidate a € S. Note that U # () implies S # (. We
branch into two subcases: 1) N := N U {a} and d :=d — k;
2) If k > 0, then add a to K and set k := k — 1. Moreover,
for each candidate b € N with b >, a decrease d by one;.
If at one leaf, we have kK > 0 and d > 0, then output K as
solution.

The branching is clearly complete. In the first subcase, a
is not added to the committee. Then, by the definition of .S,
we have a >, b or a ~, b for each candidate b which will be
added to K. Therefore, it is safe to decrease parameter d
by k. If we add a to the committee, the parameter k should
be decreased by one. Further, since for the candidates b € N
with b >, a we only decreased the parameter d by one at the
node dealing with b, we need to decrease d by one. Thus,
the search tree algorithm is correct. Since in one subcase we
decrease k by one and in the other d is decreased by at least
one, the total running time is then bounded by O*(2*+4) =
O*(4%). This completes the proof for k < d.

Concerning the case k > d, we again apply a search tree

approach to enumerate all feasible committees for a fixed
vote v. Note that in each step of the branching, the pa-
rameter d is also decreased accordingly. The branching is
terminated once k < 0 or d < 0. First we compute Sp
{a € C | P with b =, a} and then for i > 0, S; := {a €
(C\U,;<;55) | 3b € Si—1 with b~y a}. Let I be the maximal
index with S; # ( and set S;11 = C\ U, ., Si- We need the
following claim to prove the correctness of our algorithm.
Claim. For all subsets S; and S;, if 7 > i + 2, then we
have a >, b for all a € S; and b € Sj;.
Proof of claim: We prove this claim by contradiction. If a >,
b is not true, then by the definition of S;, we have b >, a.
Clearly, a ¢ Sp. Then, there exists a candidate a1 € S;—1
with a1 ~, a. Since b ¢ S;, we have either b >, a1
or a; >, b. Since a1 >, b would imply a1 >, a by tran-
sitivity of the linear order, we have b >, a1. This argument
can then be applied to a candidate in S;_2, which leads to
the conclusion that there is a candidate ¢ in Sy with b >, ¢,
contradicting to the definition of Sp. This completes the
proof of the claim. O

Clearly, for each feasible committee K, there exists a
minimal index ¢ with S; \ K # (. Moreover, we can ob-
serve that ¢ > 1: Suppose there is a size-k committee K
with So \ K # 0. Let a be a candidate in So \ K. Then,
for each candidate b € K we have then a >, b or a ~, b,
due to the definition of Sy. The distance between K and v
is then at least kK > d. Therefore, we iterate from i = 1
to i =1+ 1 and assume that N := S;\ K # 0 and S; C K
for all j < i. The set K is initialized as |J;_,; S;, while the
set N, the set of the candidates not to be added to K, is
initialized as empty.

If |Si] < d, then we branch on every subset X of S; and
assume X is not in K. This branch adds S;\ X to K, X to N,
and decreases d by 2 - [{(a,b) | a € X and b € K with a >,
b} + |{(a,b) | a € X and b € K with a ~, b}|. Since for
every candidate a € S; there is a candidate b € S;—1 C K
with @ ~, b, this branching leads to a |S;|-bit branching
vector with all entries being at least one.

If |S;| > d, then we first consider the subset S := {a €
S; | #b € S; with a =, b}. If |S?| > d, then we can conclude
that there is no feasible committee K with S; \ K # 0:
None of the candidates in S? can be in S; \ K, since for
each candidate a € S; there is a candidate b € S;_1 C K
with b ~, a and for every two candidates a,b € S?, we



have a ~, b. If S C K, then by |S?| > d, no candidate
of S; can be in S; \ K due to the definition of S?. Next, we
compute the set S} := {a € (S;\ S{)|#b € S;\ S{ with a =,
b}. By transitivity of the linear order and the facts that
|SY| < dand |S;| >d, Sf # 0. If |S) U S} > d, then (S U
SH)\ K # ), since each candidate a in S; \ K has a =, b
or a ~, bwith each b € (S;USY) and thus, (SYUS)\ K =0
would result in that the distance between K and v exceeds d.
With the same argument, we can conclude that for all j’s, if
|Ui<; St > d, then (U,<; S/)\ K # 0. Let j be the minimal
index with |U,; S!| > d. Since |S;| > d, such an index j
must exist. Thus, (U,;_, 5i) \ K # 0 or ST\ K # 0.
By the same argument as for SY, if Uigja SH\K =0,
then |S?| < d. We apply here a branching into at most 2k
subcases: If |S?| > d, then branch into at most 2d subcases;
each adds one candidate ain {J,;_, St to N and decreases d
by 2:|{b € K | a >y b}|+|{b € K | a ~, b}|. If|S?| < d, then
branch into at most d subcases; each adds one candidate a
inlJ,« j 5! to N and decreases d accordingly. Again, since for
every candidate a € S; there is a candidate b € S; 1 C K
with a ~, b, this branching leads to a branching vector
better than the vector with 2d 1-entries.

After all candidates in S; have been added to either K
or N, we recompute the partition of the remaining candi-
dates. While setting Sp := K, we recompute S = {a €
C\(KUN) | 3b € So withbd ~, a}. Observe that all
candidates a in S; have b >, a or b ~, a with all candi-
dates b € N. Therefore, adding a candidate a € S1 to K
will decrease d by at least one. Be the definition of S,
adding a to N decreases d by at least one too. This leads
to a (1,1)-branching. We can then repeat this branching
till S; = (). Note that every time we add a candidate to N
or K we recompute Sj.

At this point, we have that all candidates ¢ in C'\ (K UN)
satisfy b =, aor b ~, aforallbe NUK. If |[K| < k we
have to add some of the remaining candidates to K. We now
further partition these remaining candidates into subsets:
So:={a € C\(KUN) | # € C\(KUN)withd =,
a} and for j > 0, Sj := {a € C"\ (NUU,,;S) | #b €
(N UU,, S1) with b >, a}. Note that none of the vertices
in S; with j > d can be added to K without violating the
distance upper-bound d. Moreover, consider a S; with j <
d. If |Sj| > d, then none of the candidates in ;5 ; Si can

be added to K. Therefore, we have at most d? possible
candidates to add to K. Since all candidates a in C'\ (KUN)
satisfy b >, a or b ~, a for all b € N, we can add at most d
candidates to K. Thus, we have at most (d;) possibilities.

Altogether, we have at most m - (d;) many possible com-
mittees which have distance at most d to the vote v. All
these committees can be enumerated in O*((%)) time. To
verify whether a committee has distance at most d to all
other votes can be done in polynomial time, which com-
pletes the proof. [

4. SPECIAL CASES OF HD-MINIMAX
-VOTING

4.1 V satisfies VI

‘We present a polynomial-time algorithm (Algorithm 1) to

347

solve HD-Minimax-Voting for the special case that the input
V' satisfies VI.

Our algorithm adopts a greedy strategy. Starting with an
empty partial committee, it gradually expands the partial
committee by processing the votes, one by one, following
the VI order of the votes. In each step, it adds some can-
didates to the partial committee, without violating the dis-
tance upper-bound between the current vote and the partial
committee. When doing this, the algorithm greedily selects
such new candidates that are included in as many as possible
votes that have not been processed so far. The algorithm
stops, if either the distance between the current vote and
the current partial committee exceeds the upper-bound, or
the partial committee has k candidates.

THEOREM 7. Given a HD-Minimazx-Voting instance
(C,V,k,d), if V satisfies VI, then Algorithm 1 can find a
solution in O (nmlogm) time.

Algorithm 1: Algorithm for HD-Minimax-Voting in
case that V satisfies VI.
Input : List of votes V = {v1,...,v,} over candidate
set C' = {c1,...,¢m}, an order of the votes
v1 C - C v, with respect to which V'
satisfies VI, integers d and k.
Output: A committee K with
max;—1,...n HD(K,v;) < d if it exists, and
NOT FOUND otherwise.

K« 0;

for i + 1 to n do

X(—’UZ'\K;

if |K @ vi| +k—|K|>dthen
e "KEB'U,- +2197K7d-|;

if r >k —|K| orr > |X| then
| return NOT FOUND

Sort the candidates ¢ € X in the non-increasing
order of the number of votes that contain ¢

and are after v; in the order v1 C --- C vy
| Add the first r elements in the sorted X to K;

o o o s W N

if k > |K| then
| Add arbitrary k — |K| candidates from C'\ K to K;

return K;

4.2 'V satisfies CI

We present a polynomial-time algorithm (Algorithm 2) to
solve HD-Minimax-Voting for the special case that the input
V' satisfies CI.

Since V satisfies CI, each vote occupies a consecutive block
of the given CI order of the candidates. For a vote v € V,
we call the first and last candidates of the block its head
and tail, respectively. Our algorithm first sorts the votes in
V' according to the ascending order of the positions of their
heads. If two votes have the same head position, then the
vote with smaller weight lies in front of the other. Algorithm
2 adopts a similar greedy strategy as Algorithm 1. The main
difference lies in how they select new candidates to modify
the current partial committee.

THEOREM 8. Given a HD-Minimax-Voting instance



(C,V,k,d), if V satisfies CI, then Algorithm 2 can find a
solution in time O (nmlogm).

Algorithm 2: Algorithm for J-Minimax-Voting in case
that V satisfies CL.

Input : List of votes V = {v1,...,v,} over candidate
set C ={c1,...,cm}, an order of the
candidates ¢1 < - -+ < ¢, With respect to which
V satisfies CI, integers d and k.

Output: A committee K with

max;=1,....n HD(K,v;) < d if it exists, and
NOT FOUND otherwise.

1 V' <V, V « empty list, V" < empty list;
2 for i< 1 to m do
3 if V' is not empty then
4 V" « all votes in V' that contain ¢;;
5 V'« V' \ V"
6 if V" is not empty then
7 Sort the votes in V" in the non-decreasing order
of their weights;
8 Add V" at the end of V;
o K« 0;
10 for i < 1 ton do
11 X v\ K;
12 if |K @ vi|+k—|K|>dthen
13 r [\K@U,H;—lm—ﬂ;
14 if r >k —|K| orr > |X| then
15 | return NOT FOUND
16 Y < all candidates in K which lie after the tail
of v; in the order ¢1 < -+ < ¢m;
17 Remove from K min{r, |Y|} many candidates
that have the minimal indices in the order
1 << em;
18 Add into K such r elements in X that have the
maximal indices in the order ¢; < -+ < ¢m;
19 if k > |K| then

20 | Add arbitrary k — |K| candidates from C'\ K to K;

21 return K;

S. FUTURE RESEARCH DIRECTION

Amanatidis et al. [1] proposed a mixture of the minisum
and minimax versions of approval voting, where an ordered
weighted averaging operator balances the total distance of
the committee to all votes and its maximal distance to indi-
viduals. They proved that for most relevant cases, the win-
ner determination problem under the mixture model turns
out to be NP-hard. It would be interesting to explore its
parameterized complexity with respect to the parameters
considered in this paper.

Aziz et al. [3] studied the complexity of several variants
of the approval voting rule and among others, they proved
that the winner determination problem for the proportional
approval voting is fixed-parameter intractable with respect
to the size of committee. The parameterized complexity of
this problem with respect to other parameters and of other
variants remains unexplored, a promising research direction.
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