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ABSTRACT

Many different animals, including birds and fish, exhibit a
collective behavior known as flocking. Flocking behavior is
believed by biologists to emerge from relatively simple local
control rules utilized by each individual in a flock. Specifi-
cally, each individual adjusts its behavior based on the be-
haviors of its closest neighbors. In our work we consider the
possibility of adding a small set of influencing agents, which
are under our control, to a flock. Specifically, we advance
existing work on adding influencing agents into a flock and
begin to consider the case in which influencing agents must
join a flock in motion. Following ad hoc teamwork method-
ology, we assume that we are given knowledge of, but no
direct control over, the rest of the flock. As such, we use
the influencing agents to alter the flock’s behavior — for ex-
ample by encouraging all of the individuals to face the same
direction or by altering the trajectory of the flock. In this
paper we define several new methods for adding influenc-
ing agents into the flock and compare them against existing
methods.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms

Algorithms, Experimentation

Keywords

Ad Hoc Teamwork; Agent Placement; Flocking

1. INTRODUCTION
As teams of robots become useful in real-world settings,

it becomes increasingly likely that robots that are not pro-
grammed to explicitly be part of these teams will need to
join or otherwise assist these teams. This need could arise
because some members of the team become damaged or lost,
and there is neither the time nor the expertise to program
new robots to add to the team. In this case, an ideal solu-
tion would be to add general agents to the team that can
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perform well as part of the team with no pre-coordination.
Such agents are referred to in literature as ad hoc agents
[11]. In this paper, we consider how ad hoc agents can be
used in a flocking setting.

Flocking is an emergent swarm behavior found in nature.
Each animal in a flock follows a simple local behavior rule,
but these simple behaviors often result in group behavior
that appears well organized and stable. Flocking has been
studied in various disciplines including physics [13], graph-
ics [9], biology [2], and distributed control theory [6, 7, 12]
with the goal of characterizing its emergent behavior. In our
work, we instead consider how to influence a flock to adopt
particular behaviors by adding a small number of control-
lable agents to the flock.

As a motivating example, imagine that a flock of birds is
flying directly towards a dangerous area, such as an airport
or wind farm. Our goal is to encourage the birds to avoid the
dangerous area without significantly disturbing them. Since
there is no way to directly control the flock’s flight path, we
must instead alter the environment so as to encourage the
flock to alter their flight path as desired. In this work, we
choose to alter the environment by adding influencing agents
to the flock. These influencing agents — which could be in
the form of robotic birds1, robotic bees [10], or ultralight
aircraft2 — follow our algorithms but are perceived by the
rest of the flock to be one of their own.

In our work, we follow a well-recognized flocking model [9]
when we assume that each bird in the flock updates its head-
ing at each time step based on the headings of its neighbors.
In previous work we have considered how influencing agents
should behave so as to influence the flock [3, 4] as well as
where influencing agents should be placed in the flock if they
were somehow able to join the flock instantaneously [5]. In
this paper, we (1) extend our work on determining where
influencing agents should be placed in the flock (henceforth
called the Placement case) and (2) consider how influenc-
ing agents should behave in order to join a flock in motion
(henceforth called the Joining case). As such, the research
questions addressed by this paper are: Given computational
limitations, how should influencing agents be placed within
a flock? and How should influencing agents join a flock in
motion if they are able to arrive ahead of the flock?

The remainder of this paper is organized as follows. Sec-
tion 2 situates our research in the literature. Section 3 in-
troduces the problem of adding influencing agents to a flock.
Section 4 overviews existing methods. Section 5 details the

1www.mybionicbird.com
2
www.operationmigration.org

615



experimental set-up. Section 6 introduces and evaluates our
improved methods for deciding where to place the influenc-
ing agents. Section 7 introduces and evaluates our work on
joining a flock in motion. Finally, Section 8 concludes.

2. RELATED WORK
To the best of our knowledge, our work is the only work

so far that has considered how to add controllable agents
to a flock with the goal of using these controllable agents
to influence the flock towards a particular behavior. This
section highlights the work most related to our own.

In a more complete version of the flocking model used in
this work, Reynolds focused on creating a flocking model
that behaved realistically [9]. Reynolds’ model consists of
three simple steering behaviors that determine how each
agent maneuvers based on the behavior of the agents around
it (henceforth called neighbors): Collision Avoidance steers
the agent such that it avoids collisions with neighbors, Veloc-
ity Matching moves the agents at a velocity similar to nearby
neighbors, and Flock Centering steers the agent towards the
average heading and position of its neighbors. Vicsek et
al. considered just part of the Flock Centering aspect of
Reynolds’ model [13]. Hence, like in our work, Vicsek et
al. use a model where all of the particles move at a con-
stant velocity and adopt the average direction neighboring
particles. However, like Reynolds’ work, Vicsek et al. were
only concerned with simulating flock behavior and not with
adding controllable agents to the flock.

Jadbabaie et al. considered the impact of adding a con-
trollable agent to a flock [7]. Like Vicsek et al. , they also
used part of the Flock Centering aspect of Reynolds’ model.
Their work showed that a flock with a controllable agent will
always converge to the controllable agent’s heading. Su et
al. presented work that used a controllable agent to make a
flock converge [12] and Celikkanat and Sahin used informed
agents to lead a flock by their preference for a particular di-
rection [1]. However, our work is different from all of these
lines of research in that they all influence a flock to con-
verge to a target heading eventually, while in our work we
influence a flock to converge quickly.

Couzin et al. considered how animals in groups make
informed, unanimous decisions [2]. They showed that only
a very small proportion of informed agents is required for
such decisions, and that the larger the group, the smaller
the proportion of informed individuals required. This line of
research is different from ours because they do not study how
to control agents by accounting for how the other agents will
react. Instead, in this line of research, each agent behaves
in a fixed manner that is pre-decided or solely based on its
type.

Finally, Han et al. assume that an influencing agent can
be placed at any position at any time step [6]. Because of
this assumption, the authors repeatedly ‘teleport’ the influ-
encing agent to the position of the ‘worst’ flocking agent,
which is the one that deviates from the desired orientation
the most. In our work, we do not allow teleporting and
hence we cannot continually place an influencing agent at
the ‘worst’ flocking agent.

3. PROBLEM DEFINITION
To precisely introduce and define the problem of adding

influencing agents to a flock, we must specify (1) a model

of the flock, (2) the possible options for adding influencing
agents to a flock, (3) the actions available to the influenc-
ing agents, and (4) the performance objective. This section
outlines these specifications and introduces the simulation
environment we use in our experiments. Previous method-
ologies for addressing the defined problem are reviewed in
Section 4 while our new methods are presented in Sections
6 and 7.

3.1 Flocking Model
In order to model the flock, we use a simplified version of

Reynolds’ Boid algorithm for flocking [9]. Specifically, the
simplified version only utilizes part of the Flock Centering
aspect of Reynolds’ model and does not use the Collision
Avoidance and Velocity Matching aspects. Although this
model is similar to the model utilized in previous work [3,
5], we present the important details of the model to both
include new aspects of our model as well as to help this
paper stand on its own.

We assume that the flock is comprised of two types of
agents: k influencing agents and m flocking agents. The
flock thus contains n = k+m total agents. The k influencing
agents {a0, . . . , ak−1} are agents whose behavior we control
via the algorithms presented in our work. The m flocking
agents {ak, . . . , aN−1} are agents that we cannot directly
control but that instead behave according to the simplified
version of Reynolds’ flocking algorithm.

Every agent ai in the flock has a velocity vi(t), a position
in the environment pi(t), and an orientation θi(t) at time
t. Each agent’s position pi(t) at time t is updated after
its orientation is updated, such that xi(t) = xi(t − 1) +
vi(t) cos(θi(t)) and yi(t) = yi(t− 1)− vi(t) sin(θi(t)).

As is commonly accepted in most flocking models, we as-
sume that the agents in a flock are only influenced by the
other agents in their neighborhood. We use a visibility radius
to define each agent’s neighborhood. Specifically we let Ni(t)
be the set of ni(t) ≤ n agents at time t which are located
within the visibility radius r of agent ai. All agents in Ni(t)
are considered to be neighbors of ai.

Under the simplified version of Reynolds’ model that we
employ, we assume that agents in a flock update their orien-
tations based on the orientations of the other agents in their
neighborhood. Hence, the global orientation of agent ai at
time step t+1, θi(t+1), is set to be the average orientation
of all agents in Ni(t) at time t. Formally,

θi(t+ 1) = θi(t) +
1

ni(t)

∑

aj∈Ni(t)

calcDiff(θj(t), θi(t)) (1)

We use Equation 1 instead of taking the average orientation
of all agents because of the special cases handled by Algo-
rithm 1. For example, the mathematical average of 350◦ and
10◦ is 180◦, but by Algorithm 1 it is 0◦. Throughout this
paper, we restrict θi(t) to be within [0, 2π).

Algorithm 1 calcDiff(θi(t), θj(t))

1: if ((θi(t) − θj(t) ≥ −π) ∧ (θi(t) − θj(t) ≤ π)) then

2: return θi(t) − θj(t)
3: else if θi(t) − θj(t) < −π then

4: return 2π + (θi(t) − θj(t))
5: else

6: return (θi(t) − θj(t)) − 2π
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3.2 Adding Influencing Agents
Influencing agents are added to the flock in order to influ-

ence the flock to behave in a particular way. Our previous
work considered four methods for initially placing influenc-
ing agents directly into a flock by setting {p0(0), . . . , pk−1(0)}
[5]. We overview these methods in Section 4 before consider-
ing improvements to these methods in Section 6. Addition-
ally, in Section 7 we consider the case where
{p0(0), . . . , pk−1(0)} is not under our control.

In the Placement case where {p0(0), . . . , pk−1(0)} is under
our control we place the influencing agents {a0, . . . , ak−1}
wherever we wish at t = 0. In the Joining case where
{p0(0), . . . , pk−1(0)} is not under our control, we assume the
influencing agents {a0, . . . , ak−1} begin from a designated
station and must then actively move to join the flock.

3.3 Influencing Agent Behavior
We can control the behavior of influencing agents

{a0, . . . , ak−1}. Specifically, influencing agents can behave
to either (1) influence neighbors or (2) position to a desired
location. Hence, at each time step our algorithms for the
influencing agents must decide whether to influence or posi-
tion, as well as how to best execute the chosen behavior.

In this paper, Section 4 reviews the algorithm the influ-
encing agents use in this work to influence neighbors. Then,
Section 7 presents some new methods for the influencing
agents to utilize while attempting to join a flock in motion.

3.4 Performance Representation
In previous work we defined the Agent Control and Place-

ment Problem [5]. In this work we present generalizations
that allow influencing agents to travel to their desired po-
sitions instead of being placed in these positions. Specif-
ically, the generalized Agent Control and Placement Prob-
lem is stated as follows: Given a target orientation θ∗ and a
team of n agents {a0, . . . , an−1}, where them flocking agents
{ak, . . . an−1} have positions γm(t) = {pk(t), . . . pn−1(t)} at
time t and calculate their orientation based on Equation
1, determine the desired influencing position π(ti) of in-
fluencing agents {a0, . . . ak−1} at time ti and control Φ =
φ(0), . . . , φ(t) at times t >= 0 such that loss l(π(ti),Φ) is
minimized.

A k-agent placement specifies the positions that each in-
fluencing agent {a0, . . . ak−1} will adopt at time ti, where
time ti is the time at which the influencing agents begin
attempting to influence their neighbors. The k-agent place-
ment is denoted by πk(ti) = {p0(ti), . . . , pk−1(ti)} where
{p0(ti), . . . , pk−1(ti)} is the set of positions for influencing
agents {a0, . . . ak−1} at time ti.

We denote t∗ as the earliest time step at which flocking
agents {ak, . . . , aN−1} are oriented such that, for all t ≥
t∗, {θk(t), . . . , θN−1(t)} are all within ǫ of θ∗. However, in
some cases this can not occur because some flocking agents
may become permanently separated from the flock — we say
these agents are lost. An agent ai is considered lost if there
exists a subset of flocking agents with cardinality m′ < m
and orientations within ǫ of θ∗ for more than 200 time steps
and |θi(t

∗)− θ∗| > ǫ, where t∗ is the time step at which the
subset converged to θ∗.

The loss l(π(ti),Φ) of a k-agent placement πk(ti) and con-
trol Φ is a weighted function of three terms:

• w1 is a weight that emphasizes the importance of min-
imizing the number of lost agents (minimize m−m′)

• w2 is a weight that emphasizes the importance of mini-
mizing the number of simulation experiments in which
any agent is lost (minimize simulation experiments in
which m−m′ > 0)

• w3 is a weight that emphasizes the importance of min-
imizing the number of time steps needed for conver-
gence (minimize t∗)

l(π(ti),Φ) =w1m−m′ +w2p(m−m′ > 0)+

w3t∗
(2)

An optimal placement π∗(ti),Φ
∗ is one with minimal loss

l(π∗(ti),Φ).
In this work, we set w1 > w2 > w3. With these prefer-

ences for w1, w2, and w3 we select influencing agent place-
ments that generally lose the least number of agents on aver-
age but that also attempt to minimize the chances of losing
any agents.

3.5 Simulation Environment
We use the MASON simulator [8] to run the experiments

described in this paper. We altered this simulator to encode
the flock dynamics described above as well as to compute the
performance metric also described above. Pictures of our
altered version of the MASON simulator’s Flockers domain
are shown in Figure 1. In the simulator, each agent orients
and moves in the direction of its current velocity vector. We
describe our experimental setup in detail in Section 5.

(a) (b)

Figure 1: Images of (a) the start of a trial and (b) the end of
a trial. The gray agents are influencing agents while the black
agents are other members of the flock.

4. EXISTING BEHAVIOR AND PLACEMENT

METHODS
The research presented in this paper utilizes and compares

against multiple behavior and placement methods from pre-
vious work [3, 5]. In this section, we present high-level
overviews of these methods with the goal of making our
own methods and experiments that rely on these methods
approachable.

4.1 1-Step Lookahead Behavior
The 1-Step Lookahead behavior specifies how an influenc-

ing agent should behave in order to influence its neighbors
to orient towards a particular heading [3]. Specifically, the
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1-Step Lookahead behavior considers all of the influences on
neighbors of the influencing agent at a particular point in
time. By considering the influences on neighbors, the influ-
encing agent can determine the orientation to adopt that will
exert the most influence on the flock during the next time
step. The 1-Step Lookahead behavior was found in previous
work to be the best behavior in terms of the trade-off be-
tween performance and algorithmic complexity. Hence, this
is why we chose it to be used by influencing agents in the
research described in this paper.

4.2 Placement Methods
Previous work considered where to place influencing agents

{a0, . . . , ak−1} into the flock at time t = 0 [5]. We assume
that once the influencing agents are placed into the flock,
they will immediately follow the 1-Step Lookahead behavior
described in Section 4.1 to influence the flock.

In this section, we review the four initial placement meth-
ods presented in previous work. For each of these placement
methods, we assume that the m flocking agents are initially
placed within a pre-set area that is formed by the area in
which the flocking agents could initially be placed at time
t = 0 — we refer to this pre-set area as FApreset.

(a) Grid (b) Border (c) Graph

Figure 2: Examples of three of the influencing agent placement
methods from previous work.

4.2.1 Random Approach

The Random placement method serves as a simple base-
line approach. Specifically, it randomly places the k in-
fluencing agents within FApreset. These influencing agent
placements are calculated in constant time.

4.2.2 Grid Approach

The Grid placement method places k influencing agents at
predefined, well-spaced, gridded positions within FApreset.
The placement of the influencing agents is dependent on
FApreset and not on the actual positions of the flocking
agents. Hence, the placement of k influencing agents is
determined in constant time. Grids are available that can
fit at most x influencing agents, where the smallest grid in
which k ≤ x is used. Grids are available in which x ∈
{1, 2, 4, 9, 16, 25, 36, . . .}. For each grid size, agents are spread
out among the possible positions as much as possible.

4.2.3 Border Approach

The Border placement method places k influencing agents
as evenly as possible along the borders of FApreset. The
placement of the influencing agents is not dependent on the
positions of flocking agents. Hence, the placements of k in-
fluencing agents are determined in constant time. The Bor-
der placement method places influencing agents on the left
side of the flock, right side of the flock, bottom of the flock,

and top of the flock in order until all k influencing agents are
placed. At most ⌈ k

4
⌉ influencing agents are placed on any

particular side of the flock. If more than one influencing
agent is placed on a particular side of the flock, the influ-
encing agents spread out as much as possible on that side of
the flock.

4.2.4 Graph Approach

The Graph approach considers many possible k-sized sets
of positions in which the k influencing agents could be placed,
and then evaluates how well each of these sets connects the
m flocking agents with the k influencing agents. Specifically,
it considers adding influencing agents at two different types
of positions: (1) mid-points between flocking agents that
are within two neighborhood radii of each other and (2)
extremely near each flocking agent. Each possible k-sized
set of positions is then evaluated in terms of three criteria:
(1) minimize the number of flocking agents to which any
influencing agent’s influence will not spread, (2) maximize
the flocking agents that are influenced (both immediately
and over time) by influencing agents, and (3) maximize the
number of flocking agents that have an influencing agent as
a neighbor. The complexity of placing k influencing agents

using the Graph placement method is O(n3
(

m2+m

k

)

).

5. EXPERIMENTAL SETUP
We utilize the MASON simulator [8] for our experiments

in this paper. We introduced the MASON simulator in Sec-
tion 3.5, but in this section we present the details of our
experimental environment that are vital for understanding
and replicating our experimental setup. We generally only
discuss an experimental variable or control if we changed
it from the default setting for the simulator. We introduce
our experimental setup at this point in the paper so that we
can present experimental results throughout the remainder
of the paper.

The relevant experimental variables for both the Place-

ment case and the Joining case are given in Table 1 .

Variable
Placement

Case

Joining

Case
toroidal domain no no
domain height 300 600
domain width 300 600
units moved by each flocking agent
per time step (vk = . . . = vN−1)

0.2 0.2

units moved by each influencing agent
per time step (v0 = . . . = vk−1)

0.2 0-0.2

neighborhood for each agent (radius) 10 10

Table 1: Experimental variables for the Placement and Join-

ing cases. Italicized values are default settings for the simulator.

Most of our experimental variables in Table 1, such as
toroidal domain, domain height, domain width, and the
units each agent moves per time step, are not set to the
default settings for the MASON simulator. We removed the
toroidal nature of the domain in order to make the domain
more realistic. Hence, if an agent moves off of an edge of our
domain, it will not reappear. This is particularly important
for lost agents remaining lost. We also increased the domain
height and width, and decreased the units each agent moves
per time step, in order to give agents a chance to converge
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with the flock before leaving the visible area. However, we
have no reason to believe the exact experimental settings we
chose for the experiments are of particular importance.

All of the experiments reported in this paper used m = 10
flocking agents and k = 2 to k = 10 influencing agents. Dur-
ing our initial research, we ran smaller scale experiments
with as many as m = 50 flocking agents and k = 25 in-
fluencing agents. We did not run full scale experiments for
flocks with more than m = 10 flocking agents mainly due
to the high computation time required for the Graph place-
ment approach — this computation issue was the main mo-
tivation behind the hybrid approach presented in Section
6.2. As such, we decided to maintain consistency by utiliz-
ing m = 10 flocking agents for all our experiments in this
paper. However, our limited experiments did indicate that
results from smaller flocks generally do scale to larger flocks.

In all of our experiments, the flocking agents are initially
randomly placed within FApreset, which is a small square at
the top left of the environment. Agents are initially assigned
random headings that are within 90 degrees of θ∗ for the
Placement case. For the Joining case, the flocking agents
all begin facing the same orientation (not equal to θ∗) —
in our experiments reported in this paper, this particular
orientation was 90 degrees away from θ∗.

Experiments and experimental results will be presented
throughout the following sections. In all of our experiments,
we run 100 trials for each experimental setting and we use
the same set of 100 random seeds for each set of experiments.
The random seeds are used to determine the exact placement
(and orientation for Placement experiments) of all of the
flocking agents at the start of a simulation experiment. The
error bars in all of our graphs depict the standard error of
the mean.

6. PLACEMENT IN A FLOCK
Section 4 summarized various published methods for plac-

ing influencing agents into a flock at t = 0, with the goal of
placement being for the influencing agents to influence the
flocking agents to orient towards a particular orientation. In
this section, we introduce an effective extension to the meth-
ods discussed in Section 4.2 as well as a new approach that
mitigates the high computational complexity of the Graph
placement method reviewed in Section 4.2.4.

6.1 Scaling Placement Area
Three of the placement methods summarized in Section

4.2 — the Random placement approach, the Grid placement
approach, and the Border placement approach — do not
place influencing agents based on where the flocking agents
are initially placed. Instead, these methods all place the in-
fluencing agents in predetermined locations based on (1) how
many influencing agents are to be added and (2) FApreset.

In order to improve upon these three placement approaches,
we decided to scale the area in which the influencing agents
are placed based on the area actually occupied by the flock-
ing agents. Specifically, we search all of the locations of
the flocking agents and save the highest and lowest x and
y values at which flocking agents are located (xlow, xhigh,
ylow, and yhigh). We then extend these x and y values by r
(the neighborhood radii) and then use the rectangular box
formed by xlow − r, xhigh + r, ylow − r, and yhigh + r as the
area in which influencing agents can be placed. We call this
area FAscaled.

For the Random Scaled Approach, we randomly place in-
fluencing agents within FAscaled. Similarly, for the Border
Scaled Approach we spread influencing agents along the bor-
ders of FAscaled. For the Grid Scaled Approach, we place the
k influencing agents at predefined, well-spaced, gridded po-
sitions within FAscaled. Within FAscaled we follow the tech-
nique for the Grid placement approach from Section 4.2.2.
Specifically, we spread out the influencing agents among the
possible grid positions as much as possible. Note that there
is not a Graph Scaled Approach because the Graph Place-
ment Approach already places influencing agents based on
where the flocking agents are placed.

In this section we run Placement case experiments to com-
pare the performance of the initial placement methods sum-
marized in Section 4.2 against the scaled versions of these
methods presented in Section 6.1.

(a) Average Lost - Random (b) Number Lost - Random

(c) Average Lost - Grid (d) Number Lost - Grid

(e) Average Lost - Border (f) Number Lost - Border

Figure 3: Results for the Scaling Placement Area experiments.
These graphs compare (a,c,e) the average number of flocking
agents lost and (b,d,f) the number of trials in which any flocking
agents are lost.

Figure 3(a,c,e) shows the average number of flocking agents
lost and Figure 3(b,d,f) shows the total number of trials in
which at least one flocking agent is lost. The graphs show
these data for six different placement methods when adding
k = 2 to k = 10 influencing agents to a flock with m = 10
flocking agents. In the graphs, ‘Random’ should be com-
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pared to ‘Random Scaled’, ‘Grid’ should be compared to
‘Grid Scaled’, and ‘Border’ should be compared to ‘Border
Scaled’.

A few interesting trends arise in Figure 3. First, the Grid
Scaled and Border Scaled lose more flocking agents on av-
erage than their non-scaled counterparts when k = 2 and
k = 4 but lose fewer flocking agents on average than their
non-scaled counterparts when k = 6, k = 8, and k = 10
(significantly so for k = 6 and k = 8 of the Grid placement
approach). However, the difference between the scaled and
non-scaled approaches are not as large for any of the three
placement approaches when k = 2, k = 4, and k = 10. Sec-
ond, in terms of the number of trials in which no flocking
agents are lost, Figure 3(d) shows that the Grid Scaled ap-
proach has many more trials in which no flocking agents are
lost than its non-scaled counterpart when k = 6 and k = 8.
Additionally — outside of k = 6 for the Border placement
approach — this difference between the scaled and non-
scaled methods does not appear for the other approaches.
Both of these trends lead us to believe that influencing agent
placement may be less important when there are either few
or many influencing agents added to a flock. Of course, the
actual k and m values where the scaled approaches perform
much better than the non-scaled approaches will vary based
on the exact experimental settings.

6.2 Combining Placement Methods for Better
Scalability

The Graph placement approach summarized in Section
4.2.4 was shown in previous work [5] to perform better than
other approaches in terms of agents lost and trials in which
any flocking agents were lost. However, the Graph place-
ment method was not widely and generally useful because

the O(n3
(

m2+m

k

)

) computational complexity limited the sizes
of the flocks in which it could be quickly applied.

With this computational complexity issue in mind, in this
paper we evaluate hybrid approaches that utilize the Graph
placement method to pick the first kg influencing agent po-
sitions and then assign the remaining k−kg positions based
on more computationally efficient methods. The remaining
k − kg positions are randomly chosen from the possible k
placements of the more computationally efficient method.

In our experiments, we compare multiple values of kg as
well as multiple placement methods to assign the k − kg
placements not assigned by the Graph placement method.
We compared the four initial placement methods summa-
rized in Section 4.2 against hybrid approaches that combine
the Graph placement approach with more computationally
efficient approaches. These experiments were run under the
Placement case settings described in Section 5.

Figure 4(a,c,e) shows the average number of flocking agents
lost when initially placing influencing agents according to
the Baseline, Graph, and hybrid placement approaches. ‘Base-
line’ refers to the initial placement method that is used, cho-
sen from the Random placement approach, the Grid place-
ment approach, and the Border placement approach. The
Baseline/Graph (2 Graph) hybrid placement approach places
two influencing agents according to the Graph placement
approach and then places any remaining influencing agents
based on the Baseline placement approach. Likewise, the
Baseline/Graph (4 Graph) hybrid placement approach places
four influencing agents according to the Graph placement

(a) Average Lost - Random (b) Number Lost - Random

(c) Average Lost - Grid (d) Number Lost - Grid

(e) Average Lost - Border (f) Number Lost - Border

Figure 4: Results for the hybrid approach experiments. These
graphs compare (a,c,e) the average number of flocking agents lost
and (b,d,f) the number of trials in which any flocking agents are
lost.

approach and then places any remaining influencing agents
based on the Baseline placement approach.

Figure 4(b,d,f) shows the number of trials in which at
least one flocking agent was lost. We strive to minimize the
number of trials in which any flocking agents are lost. The
results in Figure 4(b,d,f) generally appear as we would ex-
pect, but there are a few surprising results. Specifically, the
data points showing that the Grid and Border placement
approaches have fewer trials in which a flocking agent is lost
than the hybrid approaches were initially surprising. How-
ever, this could be because the hybrid placement approach
may cover some areas twice while leaving other areas open
that would be covered by the Grid and Border placement
approaches. This hypothesis is supported by the fact that
the Random placement graph in Figure 4(b) shows that for
all k values, the Random placement approach loses at least
one flocking agent in more trials than the hybrid placement
approaches.

For all of the graphs in Figure 4, for k = 2 the results for
all of the placement approaches except the Random place-
ment approach are the same — this is expected because both
hybrid placement approaches should use the Graph place-
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ment approach for both influencing agent placements. Like-
wise, for k = 4, the results of both the Graph placement ap-
proach and the Baseline/Graph (4 Graph) approach should
be the same since both approaches use the Graph placement
approach for all four influencing agent placements.

Finally, although the computation complexity is better

for the hybrid placement approach (O(n3
(

m2+m

kg

)

)) than for

the Graph placement approach, the complexity is still dom-
inated by the general flock size. Even so, we still obtained
the expected result of the hybrid placement approaches be-
ing a better trade-off in terms of performance and complex-
ity. To make this tradeoff more concrete, consider proces-
sor CPU timings across 10 different placements with k = 5
and m = 15 — the average placement times were 3.11 min-
utes for the graph placement approach, 19.4 seconds for the
Grid/Graph (4 Graph) approach, and 2.51 seconds for the
Grid/Graph (2 Graph) approach.

7. JOINING A FLOCK
So far, all of the work in this paper has considered where

influencing agents should be placed into a flock if we assume
they can somehow be placed into the flock instantaneously.
However, a more realistic scenario would require influencing
agents to join a flock in motion. Specifically, the influencing
agents would have to leave stations positioned throughout
the environment and join the flock. In this section, we intro-
duce some initial work on behaviors for influencing agents
to join a flock.

The scenario we consider is as follows: flocking agents
begin flocking together in a specific direction and the influ-
encing agents must join the flock and influence it to change
its current direction of travel to be towards some desired
heading θ∗. In this work, we consider the initial case in
which the influencing agents are always able to arrive ahead
of the flock’s expected path of travel. We make the impor-
tant assumption that although the influencing agents can
move slower than the flock, they are unable to move quicker
than the flock.

The questions we ask in this work involve three main as-
pects: where the influencing agents should position them-
selves ahead of the flock, how the influencing agents should
behave as the flock arrives, and how the influencing agents
should attempt to influence the flock. We consider each of
these aspects below and present experimental results in turn.

7.1 Positioning Ahead of the Flock
In this work we assume that the influencing agents are able

to fly ahead of the flock and position themselves ahead of
the flock’s expected path. By positioning themselves as they
wish before the flock arrives and then remaining stationary
(i.e. adopting a 0 velocity), the influencing agents are able
to reach their desired positions before any flocking agents
enter their neighborhood. This scenario differs from the pre-
vious one because once the influencing agents are within the
flocking agents’ neighborhoods, the flocking agents will be
influenced. As such, the important question addressed in
this section is: How should the influencing agents position
themselves if they are able to arrive ahead of the flock?

To answer this question, we run experiments in which the
influencing agents move ahead of the flock’s arrival to adopt
the positions suggested by methods in Section 4.2 before the
flock arrives.

(a) Average Lost (b) Number Lost

Figure 5: Graphs for the positioning ahead of the flock experi-
ments. These graphs compare (a) the average number of flocking
agents lost and (b) the number of trials in which any flocking
agents are lost.

Figure 5 shows how well the four initial placement meth-
ods summarized in Section 4.2 fare as desired positions in
the Joining case. As can be seen in Figure 5, our exper-
imental results show that these placement approaches do
well in the Joining case. Specifically, the Graph placement
approach does consistently much better than the other ap-
proaches in terms of both the average number of flocking
agents lost and the number of trials in which at least one
flocking agent is lost. Additionally, the Grid placement ap-
proach and the Border placement approach do better than
the Random placement approach for larger values of k. As
expected, these general trends are similar to those seen in
Placement experimental results reported in previous work
[5].

Although the Graph placement approach was shown to
perform best, its complexity is much more computationally
intensive than the other methods. Hence, for the remain-
der of the paper we will use the Border placement method
for selecting the desired positions of the influencing agents
within the flock.

7.2 Behavior as the Flock Arrives
As the flock approaches the waiting influencing agents,

the influencing agents will begin to be within the flocking
agents’ neighborhoods and hence will begin to influence the
flocking agents. In this section, we consider how the influ-
encing agents should behave in the short time span between
when they are first able to influence the flocking agents and
when the flock has reached the point at which they are in
their desired positions with respect to the flock’s current
position.

We present results for two possible behaviors the influ-
encing agents may adopt as the flock is arriving. However,
we tested many other behaviors, most of which were un-
successful for one of two reasons: (1) they influenced the
flock before the flock reached the point at which the influ-
encing agents are in their desired positions with respect to
the flock’s current position or (2) they splintered the flock.

The two influencing agent behaviors that worked best as
the flock was arriving were some of the simplest approaches
we attempted. Under the first behavior, called ‘Face Cur-
rent’, the influencing agents orient towards the heading at
which the flock is currently traveling and stay in place until
it is time to influence the flock at time ti. The second behav-
ior, called ‘Face Goal’, is very similar to the first. Under the
‘Face Goal’ behavior, the influencing agents orient towards
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θ∗ and stay in place until it is time to influence the flock at
time ti. In both cases, the influencing agents stay in place by
setting (v0(tstart) . . . vk−1(ti) = 0. tstart denotes the time at
which the flocking agents begin to remain stationary after
they originally adopt their desired position.

Finally, at time ti the influencing agents begin influenc-
ing the flocking agents with the goal of orienting the flock
as a whole towards θ∗. Previous work [3] showed that the
flocking agents can become lost if the flock is influenced too
quickly. Hence, in addition to considering influencing imme-
diately via the 1-Step Lookahead algorithm we also consider
influencing the flock to alter its orientation over a longer set
of time (specifically, 100 and 200 time steps in our experi-
ments).

(a) Average Lost (b) Number Lost

Figure 6: Results for the arrival experiments. These graphs
compare (a) the average number of flocking agents lost and (b)
the number of trials in which any flocking agents are lost.

Figure 6 compares two different behaviors for the influ-
encing agents while the flock is arriving. Although the ‘Face
Goal’ behavior does better in terms of both the average
number of flocking agents lost and the number of trials in
which any flocking agents are lost when k = 2, in general
the ‘Face Current’ behavior does much better. When k = 8
and k = 10, the ‘Face Current’ behavior loses significantly
fewer flocking agents on average than the ‘Face Goal’ behav-
ior. This is likely because the ‘Face Current’ behavior waits
until the influencing agents are in their desired positions be-
fore influencing, whereas the ‘Face Goal’ behavior influences
flocking agents towards θ∗ as the influencing agents enter
the flocking agents’ neighborhood. Although this type of
coincidental influence sometimes influences flocking agents
to orient towards θ∗, it is much more likely to result in the
flocking agents straying away from both the flock and θ∗.

There are cases in which the ‘Face Goal’ behavior performs
much better than the ‘Face Current’ behavior. One such
case we found in our extensive experiments was when k = 2
or k = 4 with m = 10 and a neighborhood radius r = 5.
Hence, it seems that there are cases in which each behavior
would be appropriate, but based on the experiments we ran,
the ‘Face Current’ behavior usually performs better.

Figure 7 shows results from taking 0 (default), 100, and
200 time steps to slowly influence the flock to orient to-
wards θ∗. The experiments show that although ‘Influence
100’ and ‘Influence 200’ perform slightly better than ‘In-
fluence 0’ in most cases, in general the performance is effec-
tively the same. Despite this, we expect that influencing the
flock to orient slowly may be more effective than influenc-
ing the flock to orient quickly under particular experimental
settings. In particular, one case that showed promise was

(a) Average Lost (b) Number Lost

Figure 7: Results for the influencing experiments. These graphs
compare (a) the average number of flocking agents lost and (b)
the number of trials in which any flocking agents are lost.

attempting to influencing a dense flock using a very limited
number of influencing agents.

8. CONCLUSION
In this paper we consider how influencing agents should

initially be placed within a flock given computational lim-
itations. We also begin to consider how influencing agents
should join a flock in motion if they can arrive ahead of
the flock. We present multiple methods towards addressing
both of these areas, and we present selected results from
our extensive experiments. Experimental results show that
for larger numbers of influencing agents, scaling the area in
which influencing agents are placed to match the area where
flocking agents are initially placed fares well. Additionally,
hybrid methods that combine simple methods with the com-
putationally complex Graph placement approach provide a
decent trade-off between performance and computation time
when initially placing influencing agents into a flock. Finally,
we also showed that the influencing agent placement meth-
ods that worked well for initial placement also work well if
the influencing agents are able to position themselves within
the flight path of an incoming flock.

As was seen throughout this paper, influencing agent place-
ment in a flock is an important aspect to utilizing influencing
agents to influence a flock. As such, there are many poten-
tial areas for future work. One natural extension to this
work is to determine how to join a flock in motion when the
influencing agents are not able to arrive and position them-
selves ahead of the flock. Additionally, a related question
of interest regards how the influencing agents will be able
to detach themselves from the flock once they are finished
influencing the flock. Finally, although the 1-Step Looka-
head algorithm is effective at influencing flocking agents, it
would be interesting to develop an algorithm that leveraged
coordinated behaviors between multiple influencing agents.
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