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ABSTRACT
The development of fair and practical policies for shared
content online is a primary goal of the access control com-
munity. Multi-party access control, in which access control
policies are determined by multiple users each with vested
interest in a piece of shared content, remains an outstand-
ing challenge. Purposeful or accidental disclosures by one
user in an online social network (OSN) may have negative
consequences for others, highlighting the importance of ap-
propriate sharing mechanisms. In this work, we develop
a game-theoretic framework for modeling multi-party pri-
vacy decisions for shared content. We assume that the con-
tent owner (uploader) selects an initial privacy policy that
constrains the privacy settings of other users. We prove
the convergence of users’ access control policies assuming
a multi-round consensus-building game in which all players
are fully rational and investigate a variation of rational play
that better describes user behavior and also leads to the
rational equilibrium. Additionally, in an effort to better ap-
proximate human behavior, we study a bounded rationality
model and simulate real user choices in this context. Finally,
we validate model assumptions and conclusions using exper-
imental data obtained through a study of 95 individuals in
a mock-social network.
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1. INTRODUCTION
The ubiquity of online social networks (OSNs) and their

expanding role in the day to day lives of user-members has
led to a substantial amount of shared personal content, and
along with it, increased exposure and privacy-related con-
cerns. Although OSNs provide privacy control mechanisms,
they typically adopt a discretionary approach, wherein con-
tent “uploaders” are also in charge of managing the content
entirely and other stakeholders have no control over their ac-
cess control decisions. For instance, when one user uploads
a photo and tags friends who appear in the photo, tagged
friends cannot restrict who can see this photo. Since mul-
tiple associated users may have different privacy concerns
about a piece of shared content, lack of infrastructure for
collaborative privacy control increases the potential risk of
purposeful or accidental information leakage.

In addition, as noted by [20], government sectors are adopt-
ing social networks to exchange information and establish
specialized groups/communities/task forces. These environ-
ments need to protect and control shared data due to its
potential sensitivity and criticality.

Users face several potential dangers when over-sharing.
Social media usage may lead to strained interpersonal rela-
tionships [31], decreased productivity [24] and susceptibil-
ity to negative feedback in disinhibited online communica-
tion [46], in addition to breeches of privacy. Users’ percep-
tion of these and other risks inform their general comfort
level with sharing personal information and content online.
Individual behavior online, like individual behavior offline,
is also subject to social norms and peer influence [18,21,33].
Notions of what is appropriate in content sharing online is
defined comparatively, so that subtle shifts in local behav-
ior may have much farther-reaching consequences for the
network as a whole. In sum, unlike the SN site which is ul-
timately a business operating with a business model, users
are individuals with more complex incentives, concerns and
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considerations operating voluntarily within the constraints
of the SN.

In this paper, we propose a social-energy minimizing game
framework for modeling the privacy-related decisions of users
in an OSN. We consider a “multi-party” access control de-
cision making process, considering the case of a user/owner
of a piece of shared content, and another set of users who
have some relationship to that content and accordingly a
personal stake in its access control settings. We establish
a utility function representation of users’ interests based on
the core notions of inherent personal comfort and peer pres-
sure.

The emphasis on multi-party access control represents a
shift from the traditional approach taken in the access con-
trol community for two main reasons. First, the access con-
trol community has long investigated models and techniques
to facilitate single subjects’ access to resources according
to well-defined, secure policies. Little, if any, attention has
been given to group-driven access control decisions. The pri-
mary exception to this being secret sharing (see e.g. [40]).
Second, the underlying goal has been to maintain confiden-
tiality rather than facilitate controlled sharing. As such, the
decisions offered by these mechanisms are single-user driven
and often binary and based on inflexible policies. As others
have noted [20], the inflexibility of binary decisions typically
offered by current access control systems is a major inhibitor
to information sharing when dealing with events in social
networking sites. The lack of collective access control for
resource sharing can threaten the protection of user data,
including violating privacy expectations of content owners
(and stakeholders) [12], due to the inability to determine
whether a given disclosure meets the privacy expectations
of the group.

Because ensuring “collective” access control requires tak-
ing into account multiple users’ input, we tackle the prob-
lem of access control by formally modeling how users’ access
control decisions are made, and use those models to develop
actionable and practical access control models that can be
applied in a variety of real-world contexts. For example we
consider which goals, reasons and influential dimensions af-
fect users’ privacy decisions.

The remainder of this paper is organized as follows: In
Section 2 we provide a brief survey of related work to seat
our results in the literature. We discuss our problem state-
ment in Section 3. The model is formalized in Section 4,
where results under rationality assumptions are given. In
Section 5 we discuss a bounded rationality variation of our
model and provide basic simulation results. In Section 6 we
discuss experimental results from human trials. We conclude
in Section 7.

2. RELATED WORK
There is a growing body of work on game-theoretic ap-

proaches to security [2,8,47] including leader-follower Stack-
elberg game models [34–36, 41, 49]. Stackelberg games have
recently been used to model various security issues, with em-
phasis on classic attacker-defenders problems [36], although
some limitations to the applicability of these games have
been noted [51]. In particular, as noted by Pita et al., it
is important to determine whether optimality assumptions
hold when humans are involved in the decision making pro-
cesses [34, 35]. Yet, recent contributions show that with
proper modifications, Stackelberg games are suitable even

with bounded rationality [35]. While this work does not use
explicit Stackelberg formalisms, we do assume an initial de-
cision constrains all players; this decision is not necessarily
made with that fact in mind.

In this paper, we explore a social-energy minimization
game for multi-party access control problems. With the ex-
ception of [17, 37] which explore the single-owner scenario,
we are not aware of any work using game theory in this way
to deal with access control problems.

This work is related in general to the body of work on
game theory in social networks, both offline and online.
Fundamental research efforts exploring cooperation in struc-
tured human populations include [32, 39, 48]. In the realm
of online social networks, game theoretic models have been
implemented for the study of the evolution of various so-
cial dilemmas, influence, bargaining, voting and deception
[4, 14, 22, 25, 26, 38]. Most closely related to our work is
the subset of this research concerning agent-based decision-
making related to privacy and security in online social net-
works. Chen et al. model users’ disclosure of personal at-
tributes as a weighted evolutionary game and discuss the
relationship between network topology and revelation in en-
vironments with varying level of risk [10]. Hu et al. tackle
the problem of multi-party access control in [19], proposing
a logic-based approach for identification and resolution of
privacy conflicts. In [20] these authors extend this work,
this time proposing adopting a game-theoretic framework,
specifically a multi-party control game to model the behavior
of users in collaborative data sharing in OSNs. The primary
difference between our work and theirs is our relaxation of
perfect rationality assumptions in the interest of a more re-
alistic bounded rationality model of human behavior.

Also related to our work is the body of work on the eco-
nomics of privacy. Researchers from many communities
have noted the trade-off between privacy and utility (e.g.,
[6, 9, 28, 43, 45]). The majority of this prior work tends to
view the privacy/utility trade-off as mutually exclusive: an
increase in privacy (resp. utility) results in an immedi-
ate decrease in utility (resp. privacy). While this is cer-
tainly the case in some applications, (e.g. data anonymiza-
tion [27]), it is not always such a straightforward relation-
ship. In particular, the interplay of multiple users in any
access control/privacy decision, in which privacy and utility
are unevenly distributed among the players, and context-
dependent, results in a more complicated relationship be-
tween these concepts.

Finally, our research overlaps with work on decision sup-
port systems (DSS) [5], and in particular, Group-centric
and Model-driven DSS. Group-centric DSS focus on com-
munication related activities of team members engaged in
computer-supported cooperative work [11]. Some group-
oriented work has emphasized the importance of optimizing
group objectives, and developed standardized objectives for
problem solving [29]. Model-driven DSS concentrate on for-
mulation of quantitative (primarily business-related) prob-
lems (e.g., minimize stock or maximize revenue), and over-
lap to some extent with our envisioned approaches to mod-
eling complex multi-party access control. However, DSS
research has concentrated on how to solve group centric
problems faster, especially through mixed-integer-linear pro-
gramming, rather than on rigorous models and concrete case
studies on access control (or security at large) [3, 5].
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3. PROBLEM STATEMENT
Consider a social network (SN) site, wherein users share

pieces of personal content freely within the network and pos-
sibly with selected subgroups of network users, according to
a set of privacy settings for shared content made available by
the site to its users. Examples of these settings in practice
may include “visible to only me”, “share with specific indi-
viduals”, “share with friends”, “share with my network” and
“public”. We abstract away from the details of how privacy
options are presented by a site to its users, and map them to
real values on the interval [0, 1]. In practice, the granularity
of these options aims to be fine enough to meet users’ needs,
but coarse enough to be manageable in implementation for
both the users and the SN site.

We focus here on the problem of assigning a privacy set-
ting to a piece of content shared among multiple stakehold-
ers. Assume one user in the network is the leading stake-
holder, or equivalently, the poster of the content. This user
chooses the privacy setting he is most comfortable with and
posts the content to the site at this setting. This user con-
strains the action space of all subsequent users. Unlike in a
Stackelberg game, we do not assume this user is necessarily
maximizing an objective function, but simply imposing an
upper-bound based on his/her comfort with data sharing.

In posting, we assume owner bounds the set of privacy
options available for the content. In practice, this may mean
that the owner lays out a discrete set of options from which
followers may choose. Or, more simply, the leader sets an
upper- or lower- bound on the sharing level for the given
piece of content and followers choose from amongst options
laid out by the SN site within those bounds. It may even be
possible that the poster is not a personal stakeholder in the
content and that he may choose not to constrain the space of
privacy settings at all. The content stakeholders would then
have the full range of available settings as options. From the
standpoint of the model, these manifestations are equivalent
as they leave followers in the position of jointly selecting one
from amongst a fixed, finite set of access control settings.
Following, we assume that the owner sets an upper-bound
on sharing and remaining stakeholders have the ability to
amend the privacy selection downward (toward more private
options) but not to determine that the content should be
shared more publicly.

Given this assumption, we assume all users’ objective func-
tions are composed of

1. a personal comfort term describing how comfortable
they are with sharing a piece of content and

2. a peer pressure term making them more interested in
coming to consensus with their peers. Peer pressure
here also loosely includes the trust level users have to-
ward each other when sharing content and establishing
privacy settings.

Objective functions are expressed in terms of energy where
a user seeks a minimum (social) energy state at any given
time. The intuition is that users have an inherent degree
of disclosure they feel most comfortable with, but are also
influenced by their peers when making sharing decisions.

Since these two dimensions may not be considered equally
for all users, we introduce weights to capture interpersonal
differences in susceptibility to peer pressure. Precisely, we
offer the option of including weights on either the peer pres-
sure or personal comfort components of the user’s utility

function allowing customization of the model for non- homo-
geneous users and an opportunity to strengthen the model
in the presence of additional information on user behavior,
which the site may learn through observation. An overview
of the general problem is provided in Figure 1.

mytweetbook.com

Social Media Site sets a minimum privacy
threshold, requesting a certain amount of 

information be shared

Content owner establishes
minimum privacy level

More Private

Less Private

Peers negotiate privacy level
and attempt to come to

consensus

Figure 1: A representation of the multi-party access
control problem for collective sharing in OSNs.

4. FULLY RATIONAL MODEL
Assume a SN is represented by a graph G = (V,E), where

V is a set of users (represented by vertices in the graph) and
E is the set of social connections (edges) between them. For
the remainder of this paper, assume |V | = N . The poster-
leader (henceforth, poster) shares a piece of content on the
SN site with privacy setting x0. The other user stakeholders
(henceforth, users) engage in an iterative process of deter-
mining the final privacy setting of the content x∗. At round
k:

1. Each user i chooses value xki ≤ x0.
2. If |xki − xkj | ≤ ε for all pairs i, j, then iteration stops

and x∗ = x̄. For ε = 0, iteration stops when the users
have converged on a common value.

For a fixed piece of content, we define the optimality privacy
selection of each user in terms of:

1. Peer Pressure (and Reputation)
2. Comfort level

Comfort level in the context of privacy and information dis-
closure refers to the degree of disclosure users feel comfort-
able with. This notion, often used to characterize informa-
tion sharing in online sites (e.g. [1, 13]), is also adopted in
our model. Users reaching their optimal comfort level wish
not to change any of their information sharing practices.
Previous work has indicated that reputation are highly cor-
related [44], and so we consider peer pressure here as a single
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measure representing the social considerations of an individ-
ual user with respect to sharing.

To model peer pressure, we assume that individuals are
encouraged to behave in accordance with the norms of their
social group. In particular as stakeholders in the same piece
of shared content, we assume that there is an additional
pressure to come to agreement and select the privacy setting
for the respective content. We can assume that if a consensus
is not reached by the users some default setting is selected
with which no one is happy (e.g., the content is not published
to the site).

We assume that as time passes without consensus, the
peer pressure felt by all members to come to agreement in-
creases [7]. For User i, we define, let the peer-pressure func-
tion be:

Pi(xi,x−i, k) = ρ(k) ·
∑

j∈N(i)

fP (xi − xj). (1)

Here fP is a differentiable quasi-convex function with mini-
mum at 0, x−i is the vector of strategies of all other users in
the network (other than User i), and N(i) is the immediate
neighborhood of User i in a social network. The coefficients
increase monotonically so that 1 ≤ ρ(1) ≤ ρ(2) ≤ ρ(3) ≤ · · · ,
thus increasing the influence of peer pressure. This is nota-
tionally consistent with [16].

Let the personal comfort function for User i be:

Ci(xi) = fC(xi − x+i ). (2)

Here, x+i is the preferred privacy level for a specific piece of
user content according to User i and fC is a differentiable
quasi-convex function with minimum at 0. Since the privacy
level is constrained by the content owner, we assume that
if x+i is more permissive than this level, then x+i is reset to
the constrained level set by the content owner. This assures
that all privacy decisions will force the information exposure
level downward (toward a more private choice).

In practice x+i may be difficult to determine for an un-
known User i. However, we assume that based on user de-
mographics, as well as observed overall user behavior for a
mass of users, either at the individual or group level, it is
possible to infer of x+i , or at least an expected value E[x+i ]
within a tolerated window of error.

Thus, the total objective function for User i is:

Ji(xi,x−i, k) = Pi(xi,x−i, k) + Ci(xi) =

ρ(k)
∑

j∈N(i)

fP (xi − xj) + fC(xi − x+i ). (3)

Proposition 1 (Rosen 1963). If fP and fC are convex and
xi ∈ Ωi, where Ωi is a convex set for i = 1, . . . , N , then
there is an equilibrium solution x∗1, . . . , x

∗
N .

Rosen’s result informs us that there is a (Nash) equilib-
rium assuming simultaneously play, it neither ensures the
uniqueness of the equilibrium, nor does it ensure flocking or
consensus behavior; i.e., that |xi − xj | < ε for some small ε.

For the case when fP (z) = fC(z) = z2 and we have a
complete graph, it is relatively easy to see that consensus
occur for some value ρ(k). To see this, note that at equi-
librium, each agent must satisfy the equations (derived the
first order necessary conditions of optimality):

ρ(k)
∑
j 6=i

(xi − xj) + (xi − x+i ) = 0 ∀i (4)

This system of equations admits the solution:

x
(k)
i =

 ρ(k)

1 +Nρ(k)

∑
j 6=i

x+j

+

[
(1 + ρ(k))x+i
1 +Nρ(k)

]
(5)

The following is immediately clear:

Proposition 2. Suppose ρ(1) < ρ(2) < · · · < ρ(k) < · · · and
limk→∞ ρ

(k) =∞, then:

lim
k→∞

x∗i =
1

N

∑
j

x+j (6)

Therefore, as long as the pressure to come to consensus
increases on each round, the players converge to their mean
comfort levels.

Corollary 3. For all ε > 0 there exists a K > 0 so that

for all k > K, |x(k)i − x
(k)
j | < ε for all i, j. Thus the system

converges after a finite number of rounds.

If all players realize this, then rational play at each round
results in behavior equivalent to a one shot game where users
intuitively know a K that ensures fast convergence.

An alternate update rule, and more in keeping with human
behavior is to assume a recency model wherein individual
users take their peers’ strategy from the last round of play
and construct a weighted average based on this value rather
than their peers’ initial selections. Specifically, the objective
function for User i is then:

Ji(xi,x−i, k) = ρ(k)
∑

j∈N(i)

fP (xi−x(k−1)
j )+fC(xi−x+i ). (7)

In this case:

x
(k)
i =

ρ(k)
∑
j 6=i x

(k−1)
j

1 + (N − 1)ρ(k)
+

x+i
1 + (N − 1)ρ(k)

(8)

with x
(0)
i = x+i for all i. We show that this play also results

in the rational Nash equilibrium. Let Fk : [0, 1]N → [0, 1]N

be the function whose ith component is given by Equation
8. Then: Fk has at least one fixed point by Brouwer’s Fixed
Point theorem and we can show that:

x∗i (k) =
x+i + ρ(k)

∑
j x

+
j

1 +Nρ(k)
(9)

is a (unique) fixed point of F arising from the solution of N
linear fixed point equations.

Lemma 4. Fk : [0, 1]N → [0, 1]N is a contraction for N ≥ 4.

Proof. For notational simplicity, ρ = ρ(k) and let x,y ∈
[0, 1]N where (e.g.) x = 〈x1, . . . , xN 〉. Then:

|Fk(x)− Fk(y)|2

|x− y|2 =

ρ2

(1 + (N − 1)ρ)2

∑
i

(∑
j 6=i(xj − yj)

)2∑
i(xi − yi)2

(10)

Let:

β =
ρ2

(1 + (N − 1)ρ)2
(11)
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Then we can re-write Expression 10 as:

β
(N − 1)

∑
i(xi − yi)

2 +N
∑
i

∑
j>i(xi − yi)(xj − yj)∑

i(xi − yi)2
=

β

(
(N − 1) +

N
∑
i

∑
j>i(xi − yi)(xj − yj)∑
i(xi − yi)2

)
The expression

(N − 1) +
N
∑
i

∑
j>i(xi − yi)(xj − yj)∑
i(xi − yi)2

has maximum value when xi − yi = 1
2

for all i (this can
be proved using the Karush-Kuhn-Tucker conditions on an
ancillary maximization problem). Evaluating at this point
we have:

(N − 1) +
N
∑
i

∑
j>i(xi − yi)(xj − yj)∑
i(xi − yi)2

≤

(N − 1) +
N(N − 1)

2
= (N − 1)

(
1 +

N

2

)
Thus:

|Fk(x)− Fk(y)|2

|x− y|2 ≤

ρ2(N − 1)
(
1 + N

2

)
(1 + (N − 1)ρ)2

<
ρ2(N − 1)

(
1 + N

2

)
((N − 1)ρ)2

=

1 +N/2

N − 1
(12)

For N ≥ 4, (1 + N/2)/(N − 1) ≤ 1. Since the inequality
is strict in Expression 12, it follows Fk is a contraction for
N ≥ 4.

The following is an immediately consequence of the lemma
and the Banach Fixed Point Theorem.

Corollary 5. The fixed point given by Expression 9 is unique
and is the contraction point for Fk.

Remark 1. In reality, it may be the case we can do better
than N ≥ 4 and show that Fk is a contraction for N ≥ 1.
Certainly for N = 1, Fk is just a constant function and thus
a contraction.

The following lemma is clear from the work done so far:

Lemma 6. The following holds:

lim
k→∞

x∗i (k) = x̄+ =
1

N

∑
j

x+j

further convergence of the sequence of fixed points x∗(k) to
x̄+ is uniform.

It remains to show this is an attracting fixed point of the
recurrence relations. From Theorem 2 of [15] and the fact
that the Fk are contractions, we have:

Theorem 7. Let F0(x) return 〈x+1 , . . . , x
+
N 〉. If Gk(x) =

Fk ◦ Fk−1 ◦ · · · ◦ F0(x) and N ≥ 4, then:

G = lim
k→∞

Gk (13)

is a constant function whose value is the limit of the fixed
points of Fk. Furthermore, convergence of the function se-
quence {Gk}k is uniform.

Having shown that the recency update rule with increas-
ing peer pressure leads to a constant fixed point and that
each individual’s privacy choice approaches this fixed point,
we have the following corollary:

Corollary 8. Assume the latency updating rule and N ≥ 4.
For all ε > 0, there exists a K > 0 so that if k > K, then

|x(k)i − x(k)j | < ε. Thus the system converges after a finite
number of rounds under the latency rule.

5. BOUNDED RATIONALITY
In practice, as users negotiate sharing levels at each itera-

tion of the game, they express their preferences not in terms
of the continuous value x∗i (t) but as a selection among the
discrete set of options {l1, . . . , ln}. In practice these discrete
values map to settings specifying the audience for posted
content, e.g., “friends” or “my network”.

We could expect that perfectly rational users, observing
complete information without error will, at any given time

t, choose the option li closest to x
(k)
i . That is, each user will

select li = min{l1,...,ln} |li − x
(k)
i |.

However, [23, 42] suggests that realistic models of human
behavior should relax perfect-rationality assumptions in fa-
vor of bounded rationality models accounting for limited time
and information, as well as cognitive limitations. Let:

U
(k)
i,j = Ji

(
lj ,x

(k)
−i

)
.

This is the social stress experienced by User i making choice

lj when all other players make choice x
(k)
−i at round k.

One well-established model of bounded rationality is the
Quantal Response model [30], which gives the probability
that user i will choose setting lj at epoch k:

q
(k)
i (λ|x) =

exp
(
−λU (k)

i,j

)
∑
r exp

(
−λU (k)

i,r

)
Recent work has indicated that a Quantal Response model

is a promising model of human behavior in the context of
security games [50]. In our consensus-building formulation,
the probabilities that each player will select each option con-
verge to a single probability distribution (see Proposition 9)
under the assumption of rational play.

Proposition 9. Suppose ρ(1) < ρ(2) < · · · < ρ(k) < · · · and
limk→∞ ρ

(k) = ∞. If users engage in rational play, then
there is a probability distribution with support {l1, . . . , lk},
q∗(λ) so that:

lim
k→∞

q
(k)
i (λ|x) = q∗(λ). (14)

Proof. As k → ∞, x∗i = x∗j for all i, j. As a result, U
(k)
i,r =

U
(k)
j,r for all i, j. Thus, q

(k)
i (λ|x) = q

(k)
j (λ|x) = q∗(λ).

Given perfectly rational players, that is as λ → ∞, this
distribution will tend to 1 for the choice nearest to x∗i (t) and
0 everywhere else. In this case, players are guaranteed to
come to agreement on an access control policy. For decreas-
ing values of λ and more uniform corresponding probability
distributions, players’ actual selections are non-deterministic
and therefore non-convergent. This is particularly true when
users engage in the recency model of play in which previous
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players’ decisions are weighted against the users’ preferred
privacy level.

To gain a better understanding of the consensus-building
game with bounded rationality, we simulated play among
players in various population sizes for a varying rationality
parameter λ.

Specifically, consider a game among human users acting
with bounded rationality and using the recency model. The
uploader shares a piece of content with privacy setting x0
and the remaining stakeholders (followers) determine their
individual xki ≤ x0 according the user objective function (3).
We (randomly) assign users a discrete choice from the fixed
set of privacy settings at each iteration of play based on
the probabilities given by the Quantal Response model (5).
We iterate this procedure until we obtain convergence of the
expected value of each player’s strategy vector within some
small interval ε. We consider games with 3, 4, 5, 6, 7, 8, 9 and
10 players, and vary 0 ≤ λ ≤ 10. Simulations are run 100
times for each population size/lambda pairing, and averages
are reported.

Of primary interest is the expected value of the final prob-
ability vector q∗. Figure 2 shows a histogram of the average
differences 1

N

∑
j E[qj ]− 1

N

∑
j x

+
j obtained for simulations

run for each population size/lambda pairing (88 total). We
observe that E[q∗] → x̄+. This result is consistent with
Equations 6 and 9, despite using the recency update rule
with bounded rationality. We will make this result formal,
proving convergence to the mean comfort in future work.

−1 −0.5 0 0.5 1
0

2

4

6

8

10

12

14

16

18

20

1
N

∑
j E[qj ]−

1
N

∑
j x

+
j

Figure 2: A histogram of average difference be-
tween average expected value and average comfort
obtained over 100 simulations for 88 parameter pairs.

Despite the convergence of E[qi] for all players, we have ar-
gued that in the presence of bounded rationality, each user’s
actual choice from among the discrete set of options will
vary depending on λ. That is, less rational actors are more
likely to deviate from optimal play. Formally,

lim
λ→0

q
(k)
i =

1

n

for lj ∈ {l1, . . . , ln}. This relationship between decreasing
lambda and increasing variance is illustrated in Figure 3 for
our simulations.

An additional practical consideration for real applications
of multi-party access control is the number of iterations
of revisions required for group consensus, or at least suf-

Figure 3: A plot of the average statistical variance of
users’ final selected privacy settings, obtained over
100 simulations for given number of players and ra-
tionality parameter λ.

ficient convergence of E[qi]. Figure 4 indicates the num-
ber of rounds of play until convergence within an interval
of ε = 0.1. Here the number of iterations is increasing in
lambda, respecting the greater difficulty in aligning the ex-
pected values of non-uniform probability vectors. In other
words, more rational users or users more acutely aware of
their optimal choice may take longer to reach consensus. Ac-
cess control decisions for a single piece of shared content in
an OSN are typically not subject to multiple revisions, but
are rather posted by the uploader and potentially revised
once (e.g., a user may remove a tag of him or herself in an
image or remove a tagged image from his or her profile page,
newsfeed, or similar). However, we suggest that multiple re-
visions may be considered an abstraction of a process which
spans the course of multiple instances of collective sharing
decisions for a given group of users. Similarly, we can inter-
pret ε as the granularity of a privacy policy, where a wider
set of options would require a smaller ε for group consensus
in real-life scenarios.

Figure 4: Average number of iterations of play un-
til group consensus within ε = 0.1, obtained over 100
simulations for given number of players and ratio-
nality parameter λ.

6. EXPERIMENTAL RESULTS
In order to validate the mathematical results discussed for

multi-party privacy decisions, we collected real-world data
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on privacy setting selections in a small group setting. Our
small groups (of 3 or 4 individuals) represent a set of user-
stakeholders determining access control settings for a piece
of shared content, within a set of constraints, namely given
a fixed set of privacy options.

Specifically, we created a fictitious SN site using Drupal
as a backbone and invited users to generate a social group
within the site. Participants were asked to work in teams
of 3 or 4 to jointly set up fictitious privacy options for a
newly formed social group, and select, for three different con-
tent types (images, documents, posts/event notifications)
the privacy settings the group should offer as well as default
settings for each content type.

Once the available privacy options were established, par-
ticipants were asked to individually set their privacy pref-
erences for each piece of content shown to them. All users
within the group simultaneously entered their preferences for
that piece of content. As individual selections were made,
they were displayed to the rest of the members of the group.
Upon observation of their peers’ selected privacy settings,
group members were allowed to revise their options as de-
sired, for as many iterations as they chose. Users were en-
couraged to come to a consensus, being told that if they did
not, the content would not be shared at all.

Monitoring the iterated individual revisions of selected
privacy settings, we compare the influence of users’ peers
on individual behavior with the behavior anticipated by our
theoretical results. In particular, we aim to determine whether
the mean-consensus model (6,9) well-describes user observed
behavior.

Overall, we had 95 participants (74% females and 26%
males). Participants were college-aged students, and re-
ported a high frequency of use of SNing sites (87% declared
accessing SN once or more a day). Further, 93% of respon-
ders indicated changing their privacy settings on any of their
profile items at least once, therefore indicating some degree
of privacy awareness. We partitioned participants into 25
fictional social groups and recorded each group’s data for 9
pieces of content - 3 photos, 3 blog posts and 3 events.

Each available privacy setting (specifically, “everyone”,
“friends”, “colleagues”, “family”, “self”) is mapped into the
interval [0, 1], where 0 indicates most restrictive (“only self”)
and 1 least restrictive (“everyone”). Each team represents
a small complete friendship graph on three or four nodes.
For a given piece of content, let the initial privacy setting
selection for User i represent his comfort level x+i , since this
selection is made before any information is obtained about
peers’ preferences.

As User i receives feedback from his peers, we argue that
the iterative revisions he makes to his own preferences should
tend toward x∗i = 1

N

∑
j x

+
j if his objective function follows

similarly to one we have proposed.
Consider each group’s decision process for each piece of

content as negotiation amongst followers to come to agree-
ment on an access control policy. Amongst 225 of these
games represented in our dataset, 109 involved at least one
user revision. In 85 of these 109, the revision process led to
group consensus. If we assume that each user’s initial pri-
vacy setting, before seeing his peers’ selections, represents
his inherent comfort level for sharing that particular con-
tent, we expect that the final group choice is equal to the
mean of the users’ initial selections (6). Let x∗ be the final
collaborative access control decision of a particular group

for a particular piece of content. Figure 5 gives a histogram
of values x∗ − 1

N

∑
j x

+
j for the 85 games in which consen-

sus was reached after revision. As expected, these center
very near 0, with mean 0.006 and standard deviation 0.099.
Notice Figure 5 is qualitatively similar to Figure 2. In future

Figure 5: A histogram of values x∗i − 1
N

∑
j x

+
j for 85

pieces of shared content.

work, we plan to collect more data and compare these two
results using (e.g.) a χ2 Goodness of Fit test to determine
whether the simulated user behaviors provides a reasonable
model of true human behavior.

7. CONCLUSION
We present a behavioral game-theoretic model of multi-

party access control in OSNs. Specifially, we address the
problem where one user shares a piece of content online
and other users with a personal stake in the given con-
tent respond within the constraints established by the up-
loader. We discuss the convergence of user decisions given a
consensus-building game with fully-rational users, and sim-
ulate play with a quantal response model to better approx-
imate the bounded rationality of human agents. Results
of experimental validation with real users in a mock-social
network indicate that these models closely approximate real
user behavior.

We suggest that this work meets a growing need for foun-
dational research to understand and facilitate the privacy
requirements of multiple users for collaboratively manag-
ing shared data in OSNs, and may serve as the basis for
extended validation. Future work includes incorporating
asymmetrical peer pressure, alternate rationality parame-
ters, penalties for iterated revision, and dynamic comfort
which may represent memory and allow users to learn from
previous games.

The model we have developed here does not rely on the
structure of the OSN and we propose is generalizable in the
context of collaborative sharing more widely. Other varia-
tions of this model may need to consider context-dependent
amendments to the peer pressure function, provided the na-
ture of peer pressure remains quantifiable and can be as-
sumed to be increasing over time with lack of consensus.
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